
1

16.480/552 Microprocessor II and
Embedded Systems Design

Lecture 2: 8088/8086
Assembly Language Programming

Revised based on “The 8088 and 8086 Microprocessors” by Triebel and Singh

216.480/552 Micro II

Outline

• Embedded systems overview
– What are they?

• Design challenge – optimizing design metrics
• Technologies

– Processor technologies
– IC technologies
– Design technologies

• Introduction to 8088/8086

316.480/552 Micro II

Internal Architecture of the 8088/8086 Microprocessor-
Parallel Processing

• Employs a multiprocessing
architecture- parallel processing

• Two processing units:
• Bus interface unit
• Execution unit

• Each unit has dedicated functions and
they both operate at the same time

• Parallel processing results in higher
performance

416.480/552 Micro II

Bus Interface Unit

• Interface to the outside world
• Key elements

• Segment registers
• Hold address information for accessing data

• Instruction pointer
• Holds address information for accessing code

• Address generation/control logic
• Creates address and external control signals

• Instruction queue
• Holds next instructions to be executed

• Responsibilities
• Performs address generation and bus control
• Fetching of instruction
• Reading and writing of data for memory
• Inputting and outputting of data for input/output peripherals
• Prioritizes bus accesses—data operands highest priority

516.480/552 Micro II

System Bus

• System Bus
• Interface between MPU and the memory and

I/O subsystems
• All code and data transfers take place over the

“system bus”
• Multiplexed address/data bus—address

and data carried over same lines but at
different times

• 8088—8-bit wide data bus, 20 bit address
bus, 1 byte/memory cycle

• 8086—16-bit wide data bus, 20 bit
address bus, 2 bytes/memory cycle

• 1M-byte physical memory address space

616.480/552 Micro II

Instruction Queue

• Instruction Queuing
• BIU implements a mechanism known as the “instruction queue”

• 8088 queue- 4 bytes
• 8086 queue- 6 bytes

• Whenever the queue is not full the BIU looks ahead in the program and
performs bus cycles to pre-fetch the next sequential instruction code
• FIFO instruction queue- Bytes loaded at the input end of the queue

automatically shift up to the empty location nearest the output
• Bytes of code are held until the execution unit is ready to accept them
• Code passed to the EU via instruction pipeline

• Result is that the time needed to fetch many of the instructions in a
microcomputer program is eliminated.

• If queue is full and the EU is not requesting access to data in memory, BIU does
not perform bus cycles (Idle states).

716.480/552 Micro II

Execution Unit
• Key elements of the EU

• Arithmetic/logic unit (ALU)
• Performs the operation identified by the instruction: ADD, SUB, AND, etc.

• Flags register
• Holds status and control information

• General-purpose registers
• Holds address or data information

• Responsible for decoding and execution of instructions
• Reads machine code instructions from the output side of the instruction queue
• Decodes the instructions to prepare them for execution
• Generates addresses and requests the BIU to perform read/write operations to

memory or I/O
• Performs the operation identified by the instruction on the operands
• Accesses data from the general purpose registers if necessary
• Tests the state of flags if necessary
• Updates the state of the flags based on the result produced by executing the

instruction.

816.480/552 Micro II

The Software Model

• Aid to the programmer in understanding the operation of the
microcomputer from a software point of view

• Elements of the software model
• Register set
• Memory address space
• Input/output address space

• What the programmer must know about the microprocessor
• Registers available within the device
• Purpose of each register
• Function of each register
• Operating capabilities of each register
• Limitations of each register
• Size of the memory and input/output address spaces
• Organization of the memory and input/output address spaces
• Types of data

916.480/552 Micro II

Register Set

• 13- 16-bit registers
• (4) Data registers- AX, BX, CX,

DX
• (2) Pointer registers- BP, SP
• (2) Index registers- SI, DI
• (1) Instruction pointer- IP
• (4) Segment registers- CS, DS, SS,

ES
• Status register (SR)-FLAG

1016.480/552 Micro II

Memory and Input/Output

• Architecture implements
independent memory and
input/output address spaces

• Memory address space-
1,048,576 bytes long (1M-byte)

• Input/output address space-
65,536 bytes long (64K-bytes)

1116.480/552 Micro II

Address Space

• Memory in the 8088/8086 microcomputer is organized
as individual bytes

• Memory address space corresponds to the 1M addresses
in the range 00000H to FFFFFH

00000H= 000000000000000000002
FFFFFH= 111111111111111111112

220= 1,048,576 = 1M
• Data organization:

• Double-word: contents of 4 contiguous byte
addresses

• Word: contents of two contiguous byte addresses
• Byte: content of any individual byte address

1216.480/552 Micro II

Aligned and Misaligned Words

• Words and double words of data can be
stored in memory at either an even or odd
address boundary
• Examples of even address boundaries: 0000016,

0000216, 0000416

• Examples of odd address boundaries: 0000116,
0000316, 0000516

• Words stored at an even address
boundary are said to be aligned words
• Examples are words 0, 2, 4, and 6

• Words stored at an odd address boundary are
said to be misaligned or unaligned words
• Examples are words 1 and 5

1316.480/552 Micro II

Aligned and Misaligned Double-Words

• Aligned double-words are stored at
even addresses that are a multiple of
4
• Examples are double-words 0

and 4
• Misaligned double-words are stored

at addresses that are not a multiple
of 4
• Examples are double words 1,

2, 3, and 5
• There is a performance impact for

accessing unaligned data in memory

1416.480/552 Micro II

Examples of Words of Data

Example [Fig. 2.4 (a)]
(0072516) = 0101 01012=55H= MS-byte
(0072416) = 0000 00102=02H= LS-byte
as a word they give

01010101000000102=5502H
Address in binary form
 0072416 = 000000000111001001002
Even address  Aligned word
Example 2.1 [Fig. 2.4 (b)]
(0072C16) = 1111 11012=FDH= MS-byte
(0072B16) = 1010 10102= AAH= LS-byte
as a word they give

11111101101010102= FDAAH
Address in binary form
0072B16= 000000000111001010112
Odd address  misaligned word

1516.480/552 Micro II

Example of Double Word Pointer

• Pointer consists of two 16 bit address
elements: Segment base address and offset
address

• LS-Byte:
 Address 00004H = 65H

• MS-Byte:
 Address 00007H = 3BH

• Arranging as double word gives the pointer
 Address= 00004H = 3B4C0065H
• Since address is a multiple of 4  aligned

double word
• Offset address = lower addressed word =

0065H
• Segment base address = higher addressed

word = 3B4CH

1616.480/552 Micro II

Active Segments of Memory

 Memory Segmentation
 Not all of the 8088/8086 address space is
active at one time
 Address value in a segment register points
to the lowest addressed byte in an active
segment
 Size of each segment is 64K contiguous
bytes
 Total active memory is 256k bytes

 64K-bytes for code
 64K-bytes for stack
 128K-bytes for data

 Four Segment Registers
 Code segment (CS) register- Code storage
 Stack segment (SS) register- Stack storage
 Data segment (DS) register- Data storage
 Extra segment (ES) register- Data storage

1716.480/552 Micro II

User access, Restrictions, and Orientation

 Segment registers are user accessible
 Programmer can change values under
software control
 Permits access to other parts of memory
 Example: a new data space can be activated
by replace the values in DS and ES

 Restriction on the address of a segment in
 memory

 Must reside on a 16 byte address boundary
 Examples: 00000H, 00010H, 00020H

 Orientation of segments:
 Contiguous—A&B or D,E&G or JK
 Adjacent
 Disjointed—C&F
 Overlapping—B&C or C&D

1816.480/552 Micro II

Memory Map
• Memory address space is partitioned into general

use and dedicated use areas
• Dedicated/Reserved:

• 0H → 7FH interrupt vector table
• 1st 128 bytes
• 32 4-byte pointers

• 16-bit segment base address—2 MSBytes
• 16-bit offset—2 LSBytes

• 0H → 13H dedicated to internal interrupts and
exceptions

• 14H → 7FH reserved for external user-defined
interrupts

• FFFF0H → FFFFBH dedicated to hardware reset
• FFFFCH → FFFFFH reserved for future products

• General use:
• 80H → FFFEFH
• Available for stack, code, and data

1916.480/552 Micro II

Accessing Code Storage Space

 Instruction pointer (IP): identifies the location of the next word of
instruction code to be fetched from the current code segment

 16-bit offset—address pointer
 CS:IP forms 20-bit physical address of next word of instruction code

 Instruction fetch sequence
 8088/8086 fetches a word of instruction code from code segment in
memory

 Increments value in IP by 2
 Word placed in the instruction queue to await execution
 8088 prefetches up to 4 bytes of code

 Instruction execution sequence
 Instruction is read from output of instruction queue and executed

 Operands read from data memory, internal registers, or the
instruction queue
 Operation specified by the instruction performed on operands
 Result written to data memory or internal register

2016.480/552 Micro II

Internal Storage of Data and Addresses

 Four general purpose data registers
 Accumulator (A) register
 Base (B) register
 Count (C) register
 Data (D) register

 Can hold 8-bit or 16-bit data
 AH/AL = high and low byte value
 AX = word value

 Uses:
 Hold data such as source or destination operands for most
operations—ADD, AND, SHL
 Hold address pointer for accessing memory

 Some also have dedicated special uses
 C—count for loop, repeat string, shift, and rotate operations
 B—Table look-up translations, base address
 D—indirect I/O and string I/O

2116.480/552 Micro II

Pointer and Index Registers- Accessing
Information in Memory

 Pointers are offset addresses used to access
information in a segment of memory
 Two pointer registers

 Stack pointer register
 SP = 16-bit stack pointer

 Base pointer register
 BP = 16-bit base pointer

 Access information in “stack segment” of
memory

 SP and BP are offsets from the current
value of the stack segment base address
 Select a specific storage location in the
current 64K-byte stack segment
 SS:SP—points to top of stack (TOS)
 SS:BP—points to an element of data in
stack

2216.480/552 Micro II

Pointer and Index Registers- Accessing
Information in Memory

 Value in an index register is also an address
pointer
 Two index registers

 Source index register
 SI = 16-bit source index register

 Destination index register
 DI = 16-bit destination index register

 Access source and destination operands in
data segment of memory

 DS:SI—points to source operand in
data segment
 DS:DI—points to destination operand in
data segment
 Also used to access information in the
extra segment (ES)

2316.480/552 Micro II

Status Register- Status and Control Flags

 FLAGS register: 16-bit register used to hold
single bit status and control information called
flags

 9 active flags in real mode
 Two categories

 Status Flags—indicate conditions that
are the result of executing an instruction

 Execution of most instructions
update status
 Used by control flow instructions
as test conditions

 Control Flags—control operating
functions of the processor

 Used by software to turn on/off
operating capabilities

2416.480/552 Micro II

Flags Register- Status Flags

 Examples of Status Flags—CF, PF, ZF, SF, OF, AF
 Carry flag (CF)

1 = carry-out or borrow-in from MSB of the
result during the execution of an arithmetic
instruction
 0 = no carry has occurred

 Parity flag (PF)
 1 = result produced has even parity
 0 = result produced has odd parity

 Zero flag (ZF)
 1 = result produced is zero
 0 = result produced is not zero

 Sign bit (SF)
 1 = result is negative
 0 = result is positive

 Others
 Overflow flag (OF)
 Auxiliary carry flag (AF)

2516.480/552 Micro II

Flags Register- Control Flags

 Examples of Control Flags—TF, IF, DF
Interrupt flag (IF)

 Used to enable/disable external maskable interrupt requests
 1 = enable external interrupts
 0 = disable external interrupts

 Trap flag (TF)
 1 = turns on single-step mode
 0 = turns off single step mode
 Mode useful for debugging
 Employed by monitor program to execute one instruction at at time
(single step execution)

Direction flag (DF)
 Used to determine the direction in which string operations occur
 1 = automatically decrement string address—proceed from high address
to low address
 0 = Automatically increment string address—proceed from low address
to high address

2616.480/552 Micro II

Generating a Memory Address- Logical and
Physical Addresses

 Logical address: real-mode architecture described by
a segment address and an offset

 Segment base address (CS, DS, ES, SS) are 16
bit quantities
 Offsets (IP, SI, DI, BX, DX, SP, BP, etc.) are 16
bit quantities
 Examples:

CS:IP 100H:100H Code access
DS:SI 2000H:1EFH Data access
ES:DI 3000H:0H Data access
SS:SP F000H:FFH Stack access

 Physical Address: actual address used for accessing
memory

 20-bits in length
 Formed by:

 Shifting the value of the 16-bit segment base
address left 4 bit positions
 Filling the vacated four LSBs with 0s
 Adding the 16-bit offset

2716.480/552 Micro II

Generating a Memory Address- Example

 Example:
Segment base address = 1234H
Offset = 0022H

1234H = 0001 0010 0011 01002
0022H = 0000 0000 0010 00102

Shifting base address,
 000100100011010000002 = 12340H

Adding segment address and offset
000100100011010000002 + 00000000001000102 =

= 000100100011011000102
= 12362H

2816.480/552 Micro II

Generating a Real-Mode Memory Address-
Boundaries of a Segment

 Four active segments CS, DS, ES, and SS
 Each 64-k bytes in size  maximum
of 256K-bytes of active memory

 64K-bytes for code
 64K-bytes for stack
 128K-bytes for data

 Starting address of a data segment
DS:0H  lowest addressed byte

 Ending address of a data segment
DS:FFFFH  highest addressed
byte

 Address of an element of data in a data
segment

DS:BX  address of byte, word, or
double word element of data in the
data segment

2916.480/552 Micro II

Relationship between Logical and Physical
Addresses

 Many different logical addresses map to
the same physical address

 Examples:

2BH:13H = 002B0H+0013H =
002C3H

2CH:3H = 002C0H + 0003H =
002C3H

 These logical addresses are called
“aliases”

3016.480/552 Micro II

The Stack

 Stack—temporary storage area for information such as
data and addresses

 Located in stack segment of memory
 Real mode—64K bytes long
 Organized as 32k words
 Information saved as words, not bytes

 Organization of stack
 SS:0000H end of stack (lowest addressed word)
 SS:FFFEH bottom of stack (highest addressed word)
 SS:SP top of stack (last stack location to which data
was pushed
 Stack grows down from higher to lower address

 Used by call, push, pop, and return operations
 Examples

PUSH SI  causes the current content of the SI
register to be pushed onto the “top of the stack”
POP SI  causes the value at the “top of the stack”
to be popped back into the SI register

3116.480/552 Micro II

Push Stack Operation

 Status of the stack prior to execution of the
instruction

PUSH AX
AX = 1234H
SS = 0105H
AEOS = SS:00  01050H = end of stack
SP = 0008H
ABOS = SS:FFFEH  1104EH
ATOS = SS:SP  01058H = current top of
stack
BBAAH = Last value pushed to stack

 Addresses < 01058H = invalid stack data
Addresses >= 01058H = valid stack data

 In response to the execution of PUSH AX instruction
1. SP 0006H decremented by 2
 ATOP  01056H
2. Memory write to stack segment
 AL = 34H  01056H
 AH = 12H  01057H

3216.480/552 Micro II

Pop Stack Operation

 Status of the stack prior to execution of the instruction POP AX:
AX = XXXXH
SS = 0105H
SP = 0006H

ATOS = SS:SP  01056H = current top of stack
1234H = Last value pushed to stack

 Addresses < 01056H = invalid stack data
Addresses >= 01056H = valid stack data

 In response to the execution of POP AX instruction
1. Memory read to AX
 01056H = 34H  AL
 01057H = 12H  AH
2. SP 0008H incremented by 2
 ATOP  01058H

 In response to the execution of POP BX instruction
1. Memory read to BX
 01058H = AAH  BL
 01059H = BBH  BH
2. SP 000AH incremented by 2: ATOP  0105AH

3316.480/552 Micro II

Organization of the I/O Address Space

 Input/output address space
 Place where I/O devices are normally
implemented
 I/O addresses are only 16-bits in length
 Independent 64K-byte address space
 Address range 0000H through FFFFH

 Page 0
 First 256 byte addresses 0000H -
00FFH
 Can be accessed with direct or variable
I/O instructions
 Ports F8H through FF reserved

3416.480/552 Micro II

Organization of the I/O Data

 Input/output data organization
 Supports byte or word I/O ports

 64K independent byte-wide I/O ports
 32K independent aligned word-wide I/O
ports

 Examples:
Byte ports 0,1, 2  addresses 0000H, 0001H,
and 0002H
Aligned word ports 0,1, 2  addresses 0000H,
0002H, 0004H

 Advantages of Isolated I/O
 Complete memory address space available for
use by memory devices
 I/O instructions tailored to maximize
performance

 Disadvantage of Isolated I/O
 All inputs/output must take place between I/O
port and accumulator register

3516.480/552 Micro II

8088/8086 Instruction Groups and Assembly
Notation

• Instructions are organized into groups of functionally related instructions
• Data Transfer instructions
• Input/output instructions
• Arithmetic instructions
• Logic instructions
• String Instructions
• Control transfer instructions

• In assembly language each instruction is represented by a “mnemonic” that describes its
operation and is called its “operation code (opcode)”
• MOV = move  data transfer
• ADD = add  arithmetic
• JMP = unconditional jump  control transfer

• Operands: Identify whether the elements of data to be processed are in registers or
memory

• Source operand– location of one operand to be processed
• Destination operand—location of the other operand to be processed and the

location of the result

3616.480/552 Micro II

8088/8086 Machine Language

• Native language of the 8088/8086 (PC) is “machine language (code)”
• One to one correspondence to assembly language statements
• Instructions are encoded with 0’s and 1’s
• Machine instructions can take up from 1 to 6 bytes
• Example: Move=MOV

• The wide choice of register operands, memory operands, and addressing
mode available to access operands in memory expands the move instruction
to 28 different forms

• Ranges in size from 3 to 6 bytes

3716.480/552 Micro II

Structure of an Assembly Language Statement

• General structure of an assembly language statement
LABEL: INSTRUCTION ;COMMENT

• Label—address identifier for the statement
• Instruction—the operation to be performed
• Comment—documents the purpose of the statement
• Example:

START: MOV AX, BX ; COPY BX into AX
• Other examples:

 INC SI ;Update pointer
ADD AX, BX

• Few instructions have a label—usually marks a jump to point
• Not all instructions need a comment

What is the “MOV part of the instruction called?
What is the BX part of the instruction called?
What is the AX part of the instruction called?

3816.480/552 Micro II

Assembler and the Source Program
• Assembly language program

• Assembly language program (.asm) file—known as
“source code”

• Converted to machine code by a process called
“assembling”

• Assembling performed by a software program — an
“8088/8086 assembler”

• “Machine (object) code” that can be run on a PC is
output in the executable (.exe) file

• “Source listing” output in (.lst) file—printed and used
during execution and debugging of program

• DEBUG—part of “disk operating system (DOS)” of the PC
• Permits programs to be assembled and disassembled
• Line-by-line assembler
• Also permits program to be run and tested

• MASM—Microsoft 80x86 macroassembler
• Allows a complete program to be assembled in one step

3916.480/552 Micro II

Reading the Listing File
• Instruction statements—operations to be performed

by the program
• Example—line 53

0013 8A 24 NXTPT: MOV AH, [SI] ;Move a byte
Where:
0013 = offset address (IP) of first byte of code in
the CS
8A24 = machine code of the instruction
NXTPT: = Label
MOV = instruction mnemonic
AH = destination operand
[SI] = source operand in memory
;Move xxxxx = comment

• Directives—provides directions to the assembler
program
• Example—line 20
0000 0040 DB 64 DUP(?)

Defines and leaves un-initialized a block of 64
bytes in memory for use as a stack

4016.480/552 Micro II

More Information in the Listing

• Other information provided in the listing
• Size of code segment and stack

• What is the size of the code segment?
• At what offset address does it begin? End?

• Names, types, and values of constants and
variables
• At what line of the program is the symbol

“N” define?
• What value is it assigned?
• What is the offset address of the instruction

that uses N?
• # lines and symbols used in the program

• Why is the value of N given as 0010?
• # errors that occurred during assembly

4116.480/552 Micro II

Converting Assembly Language to Machine Code

• Part of the 80x86 instruction set architecture (ISA)
• What is the machine instruction length (fixed, variable, hybrid)?
• What are the sizes of the fields—varying sizes?
• What are the functions of the fields?

• 80x86’s register-memory architectures is hybrid length
• Multiple instruction sizes, but all have byte wide lengths—

• 1 to 6 bytes in length for 8088/8086
• Up to 17 bytes for 80386, 80486, and Pentium

• Advantages of hybrid length
• Allows for many addressing modes
• Allows full size (32-bit) immediate data and addresses

• Disadvantage of variable length
• Requires more complicated decoding hardware—speed of decoding is critical in modern

uP
• Load-store architectures normally fixed length—PowerPC (32-bit), SPARC (32-bit), MIP (32-bit),

Itanium (128-bits, 3 instructions)

4216.480/552 Micro II

General Instruction Format

• Information that must be coded into the instruction
• Operation code--opcode
• Source(s) and destination registers
• Size of data-W
• Addressing mode for the source or destination
• Registers used in address computation
• Immediate address displacement: How many bytes?
• Immediate data: How many bytes?

4316.480/552 Micro II

3.3 Converting Assembly Language to Machine Code- General
Instruction Format

• Byte 1 information:
• Opcode field (6-bits)—specifies the operation to be

performed by the instruction
• Move immediate to registers/memory = 1100011
• Move memory to accumulator = 1010000
• Move segment register to register/memory = 10001100

• REG (3-bit)—selects a first operand as a register
• Move immediate to register = 1011(w)(reg)—only requires

one register which is the destination
• Accumulator register= 000
• Count register = 001
• Data Register = 010

• W (1-bit)—data size word/byte for all registers
• Byte = 0
• Word =1

• D (1-bit)—register direction: tells whether the register
which is selected by the REG field in the second byte is
the source or destination

• Add register to register = 000000(d)(w)
• D = 0  source operand
• D= 1  destination operand

4416.480/552 Micro II

Binary Instruction Format: Example

• One Byte Example:
• Encode the instruction in machine code

INC CX
• Solution:

• Use “INC register” instruction
format—special short form for 16-bit
register

01000 (REG)
• CX is destination register

CX = 001
• Machine code is

01000 (001) = 01000001 = 41H  one
byte instruction
 INC CX = 41H

4516.480/552 Micro II

3.3 Converting Assembly Language to Machine Code- General
Instruction Format

• Byte 2 information:
• MOD (2-bit mode field)—specifies the type of

the second operand
• Memory mode: 00, 01,10—Register to

memory move operation
• 00 = no immediate displacement

(register used for addressing)
• 01 = 8-bit displacement (imm8) follows

(8-bit offset address)
• 10 = 16-bit displacement (imm16)

follows (16-bit offset address)
• Register mode: 11—register to register move

operation
• 11 = register specified as the second

operand

4616.480/552 Micro II

3.3 Converting Assembly Language to Machine Code- General
Instruction Format

• Byte 2 information (continued):
• REG (3-bit register field)—selects the

register for a first operand, which may be
the source or destination

• Accumulator register= 000
• Count register = 001
• Data Register = 010
• Move register/memory to/from register

• Byte 1= 100010(d)(w)
• Byte 2 = (mod) (reg) (r/m)

• Affected by byte 1 information:
• W (1-bit)—data size word/byte for all

registers
• Byte = 0
• Word =1

4716.480/552 Micro II

3.3 Converting Assembly Language to Machine Code- General
Instruction Format

• Byte 2 information (continued):
• R/M (3-bit register/memory field)—specifies the

second operand as a register or a storage location
in memory

• Dependent on MOD field
• Mod = 11 R/M selects a register

• R/M = 000 Accumulator register
• R/M= 001 = Count register
• R/M = 010 = Data Register

• Move register/memory to/from register
• Byte 1= 100010(d)(w)
• Byte 2 = (mod) (reg) (r/m)

• Affected by byte 1 information:
• W (1-bit)—data size word/byte for all registers

• Byte = 0
• Word =1

• D (1-bit)—register direction for first operand in
byte 2 (reg)

• D = 0  source operand
• D= 1  destination operand

4816.480/552 Micro II

3.3 Converting Assembly Language to Machine Code- General
Instruction Format

• Byte 2 information (continued):
• MOD = 00,10, or 10 selects an addressing

mode for the second operand that is a
storage location in memory, which may
be the source or destination

• Dependent on MOD field
• Mod = 00 R/M

• R/M = 100  effective
address computed as
 EA = (SI)

• R/M= 000 =  effective
address computed as
 EA = (BX)+(SI)

• R/M = 110 =  effective
address is coded in the
instruction as a direct
address

EA = direct address = imm8
or imm16

4916.480/552 Micro II

3.3 Converting Assembly Language to Machine Code- General
Instruction Format

• Move register/memory to/from register
• Byte 1= 100010(d)(w)
• Byte 2 = (mod) (reg) (r/m)

• Affected of byte 1 information:
• W (1-bit)—data size word/byte for all

registers
• Byte = 0
• Word =1

• D (1-bit)—register direction for first
operand in byte 2 (reg)

• D = 0  source operand
• D= 1  destination operand

5016.480/552 Micro II

3.3 Converting Assembly Language to Machine Code- General
Instruction Format

• Two Byte example using R/M field for a register:
• Encode the instruction in machine code

INC CL
• Solution:

• Use “INC register/memory” instruction format—general form
for 8-bit or 16-bit register/memory

• Byte 1
1111111(W)

• CL= byte wide register  W = 0
11111110 =FEH

5116.480/552 Micro II

3.3 Converting Assembly Language to Machine Code- General
Instruction Format

• Two Byte example using R/M field for a register (continued):
• Byte 2

(MOD) 000(R/M)
• Destination is register register CL

• MOD = 11
• R/M = 001
(11)000(001) = 11000001 =C1H

• Machine code is
(Byte 1)(Byte 2) = 11111110 11000001 = FEC1H  two byte
instruction

INC CL = FEC1H

5216.480/552 Micro II

3.3 Converting Assembly Language to Machine Code- General
Instruction Format

• Two Byte example using R/M field for a register:
• Encode the instruction in machine code

MOV BL,AL
• Solution:

• Use “register/memory to/from register” instruction format—most
general form of move instruction

• Byte 1
100010(D)(W)

• Assuming AL (source operand) is the register encoded in the
REG field of byte 2 (1st register)

• D = 0 = source
• Both registers are byte wide

• W = 0 = byte wide
• Byte 1 = 100010(0)(0) = 10001000 =88H

5316.480/552 Micro II

3.3 Converting Assembly Language to Machine Code- General
Instruction Format

• Two Byte Example (continued):
• Byte 2

(MOD)(REG)(R/M)
• Both operands are registers

• MOD = 11
• 2nd register is destination register BL

• R/M = 011
• 1st register is source register AL

• REG = 000
(11)000(011) = 11000011 = C3H

• Machine code is
(Byte 1)(Byte 2) = 10001000 11000011 = 88C3H  two byte instruction

MOV BL,AL = 88C3H

5416.480/552 Micro II

3.3 Converting Assembly Language to Machine Code- General
Instruction Format

• Two Byte example using R/M field for memory:
• Encode the instruction in machine code

ADD AX,[SI]
• Solution:

• Use “register/memory with register to either” instruction format
• Most general form of add instruction
• No displacement needed—register indirect addressing

• Byte 1
000000(D)(W)

• AX (destination operand) is the register encoded in the REG field of byte 2 (1st register)
• D = 1 = destination

• Addition is of word wide data
• W = 1 = word wide

• Byte 1 = 000000(1)(1) = 00000011 =03H

5516.480/552 Micro II

3.3 Converting Assembly Language to Machine Code- General
Instruction Format

• Two Byte example using R/M field for memory
(continued):

• Byte 2
(MOD)(REG)(R/M)

• Second operand is in memory and pointed to
by address is SI

• MOD = 00  [SI]
• R/M specifies the addressing mode

• R/M = 100  [SI]
• 1st register is destination register AX

• REG = 000
(00)000(100) = 00000100 = 04H

• Machine code is
(Byte 1)(Byte 2) = 00000011 00000100

 = 0304H  two byte instruction
ADD AX,[SI] = 0304H

5616.480/552 Micro II

3.3 Converting Assembly Language to Machine Code- General
Instruction Format

• Multi-Byte Example using R/M field with memory displacement:
• Encode the instruction in machine code

XOR CL,[1234H]
• Solution:

• Use “register/memory and register to either” instruction format
• Most general form of XOR instruction
• Displacement needed—direct addressing

• Byte 1
001100(D)(W)

• CL (destination operand) is the register encoded in the REG field of byte 2 (1st register)
• D = 1 = destination

• XOR is of byte wide data
• W = 0 = byte wide

• Byte 1 = 001100(1)(0) = 00110010 =32H

5716.480/552 Micro II

3.3 Converting Assembly Language to Machine Code- General
Instruction Format

• Multi-Byte Example using R/M field with memory
displacement (continued):

• Byte 2
(MOD)(REG)(R/M)

• Second operand is in memory and pointed
to by a direct address

• MOD = 00  direct address
• R/M specifies the addressing mode

• R/M = 110  direct address
• 1st register is destination register CL

• REG = 001
(00)001(110) = 00001110 = 0EH

5816.480/552 Micro II

3.3 Converting Assembly Language to Machine Code- General
Instruction Format

• Multi-Byte Example using R/M field with memory displacement (continued):
• Bytes 3 & 4

(LOW DISP) (HIGH DISP)
• Indirect address is the displacement from the current data segment address

(DS)
• [1234H] = [12 34]
• Byte 3 = LOW DISP = 34H =
• Byte 4 = HIGH DISP =12H
•

• Machine code is:
(Byte 1)(Byte 2)(Byte 3(Byte 4) = 320E3412H  two byte instruction

XOR CL,[1234H] = 320E3412H

5916.480/552 Micro II

3.3 Converting Assembly Language to Machine Code- General
Instruction Format

• Some other special fields for instructions
• SR (2-bit segment register field)—used in formats of instructions to specify a segment

register
• SR = 11  DS = data segment register
• SR = 00  ES = extra segment register

• 1-bit special purpose fields
• V = shift count for shift and rotate instructions

• V = 0 = shift count is 1
• V =1 = shift count is in CL register

• Z = repeat condition for REP string instruction
• Z = 0  repeat while ZF =0
• Z = 1  repeat while ZF =1

6016.480/552 Micro II

Translating Assembly Langauge to Machine Code

Displacement for
jump to NXTPT:

6116.480/552 Micro II

Storing The Machine Code Program in Memory

Displacement

6216.480/552 Micro II

Addressing Modes of the 8088/808 Microprocessor-
Addressing Modes

• Addressing mode
• Instructions perform their specified operation on elements of data that are called its

operand
• Types of operands

• Source operand
• Destination operand
• Content of source operand combined with content of destination operand 

Result saved in destination operand location
• Operands may be

• Part of the instruction—source operand only
• Held in one of the internal registers—both source and destination operands
• Stored at an address in memory—either the source or destination operand
• Held in an input/output port—either the source or destination operand

• Types of addressing modes
• Register addressing modes
• Immediate operand addressing
• Memory operand addressing
• Each operand can use a different addressing mode

6316.480/552 Micro II

Register Operand Addressing Mode

• Register addressing mode operands
• Source operand and destination operands

are both held in internal registers of the
8088/8086

• Only the data registers can be accessed as
bytes or words

Ex. AL,AH  bytes
 AX  word

• Index and pointer registers as words
Ex. SI  word pointer

• Segment registers only as words
Ex. DS  word pointer

6416.480/552 Micro II

Register Operand Addressing Mode

• Example
MOV AX,BX

Source = BX  word data
Destination = AX  word data

 Operation: (BX)  (AX)
• State before fetch and execution

CS:IP = 0100:0000 = 01000H
Move instruction code = 8BC3H
(01000H) = 8BH
(01001H) = C3H

 (BX) = ABCDH
(AX) = XXXX  don’t care state

6516.480/552 Micro II

• Example (continued)
• State after execution

CS:IP = 0100:0002 = 01002H
01002H  points to next sequential
 instruction
(BX) = ABCDH
(AX) = ABCDH  Value in BX copied
 into AX

Register Operand Addressing Mode

6616.480/552 Micro II

• Immediate operand
• Operand is coded as part of the instruction
• Applies only to the source operand
• Destination operand uses register

addressing mode
• Types

• Imm8 = 8-bit immediate operand
• Imm16 = 16-bit immediate operand

• General instruction structure and operation
MOV Rx,ImmX
ImmX  (Rx)

Immediate Operand Addressing Mode

6716.480/552 Micro II

• Example
MOV AL,15H

Source = Imm8  immediate byte
 data

Destination = AL  Byte of data
 Operation: (Imm8)  (AL)

• State before fetch and execution
CS:IP = 0100:0000 = 01000H
Move instruction code = B015H
(01000H) = B0H
(01001H) = 15H  Immediate data

 (AL) = XX  don’t care state

Immediate data

Immediate Operand Addressing Mode
Example

6816.480/552 Micro II

• Accessing operands in memory
• Only one operand can reside in memory—either the

source or destination
• Calculate the 20-bit physical address (PA) at which

the operand in stored in memory
• Perform a read or write to this memory location

• Physical address computation
• Given in general as

PA = SBA:EA
SBA = Segment base address
EA = Effective address (offset)

• Components of a effective address
• Base  base registers BX or BP
• Index  index register SI or DI
• Displacement  8 or 16-bit displacement
• Not all elements are used in all

computations—results in a variety of addressing
modes

Memory Operand Addressing Mode

6916.480/552 Micro II

• Direct addressing mode
• Similar to immediate addressing in that

information coded directly into the
instruction

• Immediate information is the effective
address called the direct address

• Physical address computation
PA = SBA:EA  20-bit address
PA = SBA:[DA]  immediate 8-bit or

16 bit displacement
• Segment base address is DS by default

PA = DS:[DA]
• Segment override prefix (SEG) is required to

enable use of another segment register
PA = SEG:ES:[DA]

Direct Addressing Mode

7016.480/552 Micro II

• Example
MOV CX,[1234H]

• State before fetch and execution
• Instruction

CS = 0100H
IP = 0000H
CS:IP = 0100:0000H = 01000H
(01000H,01001H) = Opcode = 8B0E
(01003H,01002) = DA = 1234H

• Source operand—direct addressing
DS = 0200H
DA = 1234H
PA = DS:DA = 0200H:1234H

 = 02000H+1234H
 = 03234H

(03235H,03234H) = BEEDH
• Destination operand--register addressing

(CX) = XXXX  don’t care state

Direct address

Direct Addressing Mode Example

7116.480/552 Micro II

• Example (continued)
• State after execution

• Instruction
CS:IP = 0100:0004 = 01004H
01004H  points to next

sequential
instruction

• Source operand
(03235H,03234H) = BEEDH 
unchanged

• Destination operand
(CX) = BEED

Direct Addressing Mode Example

7216.480/552 Micro II

Register Indirect Addressing Mode

• Register indirect addressing mode
• Similar to direct addressing in that the affective

address is combined with the contents of DS to
obtain the physical address

• Effective address resides in either a base or index
register

• Physical address computation
PA = SBA:EA  20-bit address
PA = SBA:[Rx]  16-bit offset

• Segment base address is DS by default for BX, SI,
and DI

PA = DS:[Rx]
• Segment override prefix (SEG) is required to enable

use of another segment register
PA = SEG:ES:[Rx]

• What about BP?

7316.480/552 Micro II

• Example
MOV AX,[SI]

• State before fetch and execution
• Instruction

CS = 0100H
IP = 0000H
CS:IP = 0100:0000H = 01000H
(01000H,01001H) = Opcode = 8B04H

• Source operand—register indirect addressing
DS = 0200H
SI = 1234H
PA = DS:SI = 0200H:1234H

 = 02000H + 1234H
 = 03234H

(03235H,03234H) = BEEDH
• Destination operand—register operand addressing

(AX) = XXXX  don’t care state

Register Indirect Addressing Mode

7416.480/552 Micro II

Register Indirect Addressing Mode

• Example (continued)
• State after execution

• Instruction
CS:IP = 0100:0002 = 01002H
01002H  points to next sequential
 instruction

• Source operand
(03235H,03234H) = BEEDH  unchanged

• Destination operand
(AX) = BEED

7516.480/552 Micro II

Base Addressing Mode

• Based addressing mode
• Effective address formed from contents of a base

register and a displacement
• Base register is either BX or BP (stack)

• Direct/indirect displacement is 8-bit or 16bit
• Physical address computation

PA = SBA:EA  20-bit address
PA = SBA:[BX or BP] + DA

• Accessing a data structure
• Based addressing makes it easy to access elements

of data in an array
• Address in base register points to start of the array
• Displacement selects the element within the array
• Value of the displacement is simply changed to

access another element in the array
• Program changes value in base register to select

another array

7616.480/552 Micro II

Base Addressing Mode

• Example
MOV [BX] +1234H,AL

• State before fetch and execution
• Instruction

CS = 0100H, IP = 0000H
CS:IP = 0100:0000H = 01000H
(01000H,01001H) = Opcode = 8887H
(01002H,01003H) = Direct displacement = 1234H

• Destination operand—based addressing
DS = 0200H, BX = 1000H, DA = 1234H
PA = DS:DS+DA = 0200H:1000H+1234H

 = 02000H+1000H+1234H
 = 04234H

(04234H) = XXH
• Source operand—register operand addressing

(AL) = ED

7716.480/552 Micro II

Base Addressing Mode

• Example (continued)
• State after execution

• Instruction
CS:IP = 0100:0004 = 01004H
01004H  points to next sequential

 instruction
• Destination operand

(04234H) = EDH
• Source operand

(AL) = EDH  unchanged

7816.480/552 Micro II

Indexed Addressing Mode
• Indexed addressing mode

• Similar to based addressing, it makes accessing
elements of data in an array easy

• Displacement points to the beginning of array in
memory

• Index register selects element in the array
• Program simply changes the value of the

displacement to access another array
• Program changes (recomputes) value in index

register to select another element in the array
• Effective address formed from direct displacement

and contents of an index register
• Direct displacement is 8-bit or 16-bit
• Index register is either SI source operand or DI

 destination operand
• Physical address computation

PA = SBA:EA  20-bit address
PA = SBA: DA + [SI or DI]

7916.480/552 Micro II

Indexed Addressing Mode

• Example
MOV AL,[SI] +1234H,

• State before fetch and execution
• Instruction

CS = 0100H
IP = 0000H
CS:IP = 0100:0000H = 01000H
(01000H,01001H) = Opcode = 8A84H
(01002H,01003H) = Direct displacement = 1234H

• Source operand—indexed addressing
DS = 0200H
SI = 2000H
DA = 1234H
PA = DS:SI+DA = 0200H:2000H+1234H

 = 02000H+2000H+1234H
 = 05234H

(05234H) = BEH
• Destination operand—register operand addressing

(AL) = XX  don’t care state

8016.480/552 Micro II

Indexed Addressing Mode

• Example (continued)
• State after execution

• Instruction
CS:IP = 0100:0004 = 01004H
01004H  points to next sequential

instruction
• Source operand

(05234H) = BEH  unchanged
• Destination operand

(AL) = BEH

8116.480/552 Micro II

Based-Indexed Addressing Mode
• Based-indexed addressing mode

• Combines the functions of based and indexed addressing modes
• Enables easy access to two-dimensional arrays of data
• Displacement points to the beginning of array in memory
• Base register selects the row (m) of elements
• Index register selects element in a column (n)
• Program simply changes the value of the displacement to access

another array
• Program changes (re-computes) value in base register to select another

row of elements
• Program changes (re-computes) the value of the index register to select

the element in another column
• Effective address formed from direct displacement and contents of a base

register and an index register
• Direct displacement is 8-bit or 16bit
• Base register either BX or BP (stack)
• Index register is either SI  source operand or DI  destination

operand
• Physical address computation

PA = SBA:EA  20-bit address
PA = SBA:DA + [BX or BP] + [SI or DI]

8216.480/552 Micro II

Based- Indexed Addressing Mode: Example
MOV AH,[BX][SI] +1234H,
• State before fetch and execution

• Instruction
CS = 0100H, IP = 0000H
CS:IP = 0100:0000H = 01000H
(01000H,01001H) = Opcode = 8AA0H
(01002H,01003H) = Direct displacement = 1234H

• Source operand—based-indexed addressing
DA = 1234H, DS = 0200H, BX = 1000H,SI = 2000H
PA = DS:DA +BX +SI
 = 0200H:1234H + 1000H + 2000H

 = 02000H+1234H +1000H + 2000H
 = 06234H

(06234H) = BEH
• Destination operand—register operand addressing

(AH) = XX  don’t care state

8316.480/552 Micro II

Based- Indexed Addressing Mode

• Example (continued)
• State after execution

• Instruction
CS:IP = 0100:0004 = 01004H
01004H  points to next sequential

 instruction
• Source operand

(06234H) = BEH  unchanged
• Destination operand

(AH) = BEH

