
1

16.480/552 Microprocessor II and
Embedded Systems Design

Lecture 2: 8088/8086
Assembly Language Programming

Revised based on “The 8088 and 8086 Microprocessors” by Triebel and Singh

216.480/552 Micro II

Outline

• Embedded systems overview
– What are they?

• Design challenge – optimizing design metrics
• Technologies

– Processor technologies
– IC technologies
– Design technologies

• Introduction to 8088/8086

316.480/552 Micro II

Internal Architecture of the 8088/8086 Microprocessor-
Parallel Processing

• Employs a multiprocessing
architecture- parallel processing

• Two processing units:
• Bus interface unit
• Execution unit

• Each unit has dedicated functions and
they both operate at the same time

• Parallel processing results in higher
performance

416.480/552 Micro II

Bus Interface Unit

• Interface to the outside world
• Key elements

• Segment registers
• Hold address information for accessing data

• Instruction pointer
• Holds address information for accessing code

• Address generation/control logic
• Creates address and external control signals

• Instruction queue
• Holds next instructions to be executed

• Responsibilities
• Performs address generation and bus control
• Fetching of instruction
• Reading and writing of data for memory
• Inputting and outputting of data for input/output peripherals
• Prioritizes bus accesses—data operands highest priority

516.480/552 Micro II

System Bus

• System Bus
• Interface between MPU and the memory and

I/O subsystems
• All code and data transfers take place over the

“system bus”
• Multiplexed address/data bus—address

and data carried over same lines but at
different times

• 8088—8-bit wide data bus, 20 bit address
bus, 1 byte/memory cycle

• 8086—16-bit wide data bus, 20 bit
address bus, 2 bytes/memory cycle

• 1M-byte physical memory address space

616.480/552 Micro II

Instruction Queue

• Instruction Queuing
• BIU implements a mechanism known as the “instruction queue”

• 8088 queue- 4 bytes
• 8086 queue- 6 bytes

• Whenever the queue is not full the BIU looks ahead in the program and
performs bus cycles to pre-fetch the next sequential instruction code
• FIFO instruction queue- Bytes loaded at the input end of the queue

automatically shift up to the empty location nearest the output
• Bytes of code are held until the execution unit is ready to accept them
• Code passed to the EU via instruction pipeline

• Result is that the time needed to fetch many of the instructions in a
microcomputer program is eliminated.

• If queue is full and the EU is not requesting access to data in memory, BIU does
not perform bus cycles (Idle states).

716.480/552 Micro II

Execution Unit
• Key elements of the EU

• Arithmetic/logic unit (ALU)
• Performs the operation identified by the instruction: ADD, SUB, AND, etc.

• Flags register
• Holds status and control information

• General-purpose registers
• Holds address or data information

• Responsible for decoding and execution of instructions
• Reads machine code instructions from the output side of the instruction queue
• Decodes the instructions to prepare them for execution
• Generates addresses and requests the BIU to perform read/write operations to

memory or I/O
• Performs the operation identified by the instruction on the operands
• Accesses data from the general purpose registers if necessary
• Tests the state of flags if necessary
• Updates the state of the flags based on the result produced by executing the

instruction.

816.480/552 Micro II

The Software Model

• Aid to the programmer in understanding the operation of the
microcomputer from a software point of view

• Elements of the software model
• Register set
• Memory address space
• Input/output address space

• What the programmer must know about the microprocessor
• Registers available within the device
• Purpose of each register
• Function of each register
• Operating capabilities of each register
• Limitations of each register
• Size of the memory and input/output address spaces
• Organization of the memory and input/output address spaces
• Types of data

916.480/552 Micro II

Register Set

• 13- 16-bit registers
• (4) Data registers- AX, BX, CX,

DX
• (2) Pointer registers- BP, SP
• (2) Index registers- SI, DI
• (1) Instruction pointer- IP
• (4) Segment registers- CS, DS, SS,

ES
• Status register (SR)-FLAG

1016.480/552 Micro II

Memory and Input/Output

• Architecture implements
independent memory and
input/output address spaces

• Memory address space-
1,048,576 bytes long (1M-byte)

• Input/output address space-
65,536 bytes long (64K-bytes)

1116.480/552 Micro II

Address Space

• Memory in the 8088/8086 microcomputer is organized
as individual bytes

• Memory address space corresponds to the 1M addresses
in the range 00000H to FFFFFH

00000H= 000000000000000000002
FFFFFH= 111111111111111111112

220= 1,048,576 = 1M
• Data organization:

• Double-word: contents of 4 contiguous byte
addresses

• Word: contents of two contiguous byte addresses
• Byte: content of any individual byte address

1216.480/552 Micro II

Aligned and Misaligned Words

• Words and double words of data can be
stored in memory at either an even or odd
address boundary
• Examples of even address boundaries: 0000016,

0000216, 0000416

• Examples of odd address boundaries: 0000116,
0000316, 0000516

• Words stored at an even address
boundary are said to be aligned words
• Examples are words 0, 2, 4, and 6

• Words stored at an odd address boundary are
said to be misaligned or unaligned words
• Examples are words 1 and 5

1316.480/552 Micro II

Aligned and Misaligned Double-Words

• Aligned double-words are stored at
even addresses that are a multiple of
4
• Examples are double-words 0

and 4
• Misaligned double-words are stored

at addresses that are not a multiple
of 4
• Examples are double words 1,

2, 3, and 5
• There is a performance impact for

accessing unaligned data in memory

1416.480/552 Micro II

Examples of Words of Data

Example [Fig. 2.4 (a)]
(0072516) = 0101 01012=55H= MS-byte
(0072416) = 0000 00102=02H= LS-byte
as a word they give

01010101000000102=5502H
Address in binary form
 0072416 = 000000000111001001002
Even address Aligned word
Example 2.1 [Fig. 2.4 (b)]
(0072C16) = 1111 11012=FDH= MS-byte
(0072B16) = 1010 10102= AAH= LS-byte
as a word they give

11111101101010102= FDAAH
Address in binary form
0072B16= 000000000111001010112
Odd address misaligned word

1516.480/552 Micro II

Example of Double Word Pointer

• Pointer consists of two 16 bit address
elements: Segment base address and offset
address

• LS-Byte:
 Address 00004H = 65H

• MS-Byte:
 Address 00007H = 3BH

• Arranging as double word gives the pointer
 Address= 00004H = 3B4C0065H
• Since address is a multiple of 4 aligned

double word
• Offset address = lower addressed word =

0065H
• Segment base address = higher addressed

word = 3B4CH

1616.480/552 Micro II

Active Segments of Memory

 Memory Segmentation
 Not all of the 8088/8086 address space is
active at one time
 Address value in a segment register points
to the lowest addressed byte in an active
segment
 Size of each segment is 64K contiguous
bytes
 Total active memory is 256k bytes

 64K-bytes for code
 64K-bytes for stack
 128K-bytes for data

 Four Segment Registers
 Code segment (CS) register- Code storage
 Stack segment (SS) register- Stack storage
 Data segment (DS) register- Data storage
 Extra segment (ES) register- Data storage

1716.480/552 Micro II

User access, Restrictions, and Orientation

 Segment registers are user accessible
 Programmer can change values under
software control
 Permits access to other parts of memory
 Example: a new data space can be activated
by replace the values in DS and ES

 Restriction on the address of a segment in
 memory

 Must reside on a 16 byte address boundary
 Examples: 00000H, 00010H, 00020H

 Orientation of segments:
 Contiguous—A&B or D,E&G or JK
 Adjacent
 Disjointed—C&F
 Overlapping—B&C or C&D

1816.480/552 Micro II

Memory Map
• Memory address space is partitioned into general

use and dedicated use areas
• Dedicated/Reserved:

• 0H → 7FH interrupt vector table
• 1st 128 bytes
• 32 4-byte pointers

• 16-bit segment base address—2 MSBytes
• 16-bit offset—2 LSBytes

• 0H → 13H dedicated to internal interrupts and
exceptions

• 14H → 7FH reserved for external user-defined
interrupts

• FFFF0H → FFFFBH dedicated to hardware reset
• FFFFCH → FFFFFH reserved for future products

• General use:
• 80H → FFFEFH
• Available for stack, code, and data

1916.480/552 Micro II

Accessing Code Storage Space

 Instruction pointer (IP): identifies the location of the next word of
instruction code to be fetched from the current code segment

 16-bit offset—address pointer
 CS:IP forms 20-bit physical address of next word of instruction code

 Instruction fetch sequence
 8088/8086 fetches a word of instruction code from code segment in
memory

 Increments value in IP by 2
 Word placed in the instruction queue to await execution
 8088 prefetches up to 4 bytes of code

 Instruction execution sequence
 Instruction is read from output of instruction queue and executed

 Operands read from data memory, internal registers, or the
instruction queue
 Operation specified by the instruction performed on operands
 Result written to data memory or internal register

2016.480/552 Micro II

Internal Storage of Data and Addresses

 Four general purpose data registers
 Accumulator (A) register
 Base (B) register
 Count (C) register
 Data (D) register

 Can hold 8-bit or 16-bit data
 AH/AL = high and low byte value
 AX = word value

 Uses:
 Hold data such as source or destination operands for most
operations—ADD, AND, SHL
 Hold address pointer for accessing memory

 Some also have dedicated special uses
 C—count for loop, repeat string, shift, and rotate operations
 B—Table look-up translations, base address
 D—indirect I/O and string I/O

2116.480/552 Micro II

Pointer and Index Registers- Accessing
Information in Memory

 Pointers are offset addresses used to access
information in a segment of memory
 Two pointer registers

 Stack pointer register
 SP = 16-bit stack pointer

 Base pointer register
 BP = 16-bit base pointer

 Access information in “stack segment” of
memory

 SP and BP are offsets from the current
value of the stack segment base address
 Select a specific storage location in the
current 64K-byte stack segment
 SS:SP—points to top of stack (TOS)
 SS:BP—points to an element of data in
stack

2216.480/552 Micro II

Pointer and Index Registers- Accessing
Information in Memory

 Value in an index register is also an address
pointer
 Two index registers

 Source index register
 SI = 16-bit source index register

 Destination index register
 DI = 16-bit destination index register

 Access source and destination operands in
data segment of memory

 DS:SI—points to source operand in
data segment
 DS:DI—points to destination operand in
data segment
 Also used to access information in the
extra segment (ES)

2316.480/552 Micro II

Status Register- Status and Control Flags

 FLAGS register: 16-bit register used to hold
single bit status and control information called
flags

 9 active flags in real mode
 Two categories

 Status Flags—indicate conditions that
are the result of executing an instruction

 Execution of most instructions
update status
 Used by control flow instructions
as test conditions

 Control Flags—control operating
functions of the processor

 Used by software to turn on/off
operating capabilities

2416.480/552 Micro II

Flags Register- Status Flags

 Examples of Status Flags—CF, PF, ZF, SF, OF, AF
 Carry flag (CF)

1 = carry-out or borrow-in from MSB of the
result during the execution of an arithmetic
instruction
 0 = no carry has occurred

 Parity flag (PF)
 1 = result produced has even parity
 0 = result produced has odd parity

 Zero flag (ZF)
 1 = result produced is zero
 0 = result produced is not zero

 Sign bit (SF)
 1 = result is negative
 0 = result is positive

 Others
 Overflow flag (OF)
 Auxiliary carry flag (AF)

2516.480/552 Micro II

Flags Register- Control Flags

 Examples of Control Flags—TF, IF, DF
Interrupt flag (IF)

 Used to enable/disable external maskable interrupt requests
 1 = enable external interrupts
 0 = disable external interrupts

 Trap flag (TF)
 1 = turns on single-step mode
 0 = turns off single step mode
 Mode useful for debugging
 Employed by monitor program to execute one instruction at at time
(single step execution)

Direction flag (DF)
 Used to determine the direction in which string operations occur
 1 = automatically decrement string address—proceed from high address
to low address
 0 = Automatically increment string address—proceed from low address
to high address

2616.480/552 Micro II

Generating a Memory Address- Logical and
Physical Addresses

 Logical address: real-mode architecture described by
a segment address and an offset

 Segment base address (CS, DS, ES, SS) are 16
bit quantities
 Offsets (IP, SI, DI, BX, DX, SP, BP, etc.) are 16
bit quantities
 Examples:

CS:IP 100H:100H Code access
DS:SI 2000H:1EFH Data access
ES:DI 3000H:0H Data access
SS:SP F000H:FFH Stack access

 Physical Address: actual address used for accessing
memory

 20-bits in length
 Formed by:

 Shifting the value of the 16-bit segment base
address left 4 bit positions
 Filling the vacated four LSBs with 0s
 Adding the 16-bit offset

2716.480/552 Micro II

Generating a Memory Address- Example

 Example:
Segment base address = 1234H
Offset = 0022H

1234H = 0001 0010 0011 01002
0022H = 0000 0000 0010 00102

Shifting base address,
 000100100011010000002 = 12340H

Adding segment address and offset
000100100011010000002 + 00000000001000102 =

= 000100100011011000102
= 12362H

2816.480/552 Micro II

Generating a Real-Mode Memory Address-
Boundaries of a Segment

 Four active segments CS, DS, ES, and SS
 Each 64-k bytes in size maximum
of 256K-bytes of active memory

 64K-bytes for code
 64K-bytes for stack
 128K-bytes for data

 Starting address of a data segment
DS:0H lowest addressed byte

 Ending address of a data segment
DS:FFFFH highest addressed
byte

 Address of an element of data in a data
segment

DS:BX address of byte, word, or
double word element of data in the
data segment

2916.480/552 Micro II

Relationship between Logical and Physical
Addresses

 Many different logical addresses map to
the same physical address

 Examples:

2BH:13H = 002B0H+0013H =
002C3H

2CH:3H = 002C0H + 0003H =
002C3H

 These logical addresses are called
“aliases”

3016.480/552 Micro II

The Stack

 Stack—temporary storage area for information such as
data and addresses

 Located in stack segment of memory
 Real mode—64K bytes long
 Organized as 32k words
 Information saved as words, not bytes

 Organization of stack
 SS:0000H end of stack (lowest addressed word)
 SS:FFFEH bottom of stack (highest addressed word)
 SS:SP top of stack (last stack location to which data
was pushed
 Stack grows down from higher to lower address

 Used by call, push, pop, and return operations
 Examples

PUSH SI causes the current content of the SI
register to be pushed onto the “top of the stack”
POP SI causes the value at the “top of the stack”
to be popped back into the SI register

3116.480/552 Micro II

Push Stack Operation

 Status of the stack prior to execution of the
instruction

PUSH AX
AX = 1234H
SS = 0105H
AEOS = SS:00 01050H = end of stack
SP = 0008H
ABOS = SS:FFFEH 1104EH
ATOS = SS:SP 01058H = current top of
stack
BBAAH = Last value pushed to stack

 Addresses < 01058H = invalid stack data
Addresses >= 01058H = valid stack data

 In response to the execution of PUSH AX instruction
1. SP 0006H decremented by 2
 ATOP 01056H
2. Memory write to stack segment
 AL = 34H 01056H
 AH = 12H 01057H

3216.480/552 Micro II

Pop Stack Operation

 Status of the stack prior to execution of the instruction POP AX:
AX = XXXXH
SS = 0105H
SP = 0006H

ATOS = SS:SP 01056H = current top of stack
1234H = Last value pushed to stack

 Addresses < 01056H = invalid stack data
Addresses >= 01056H = valid stack data

 In response to the execution of POP AX instruction
1. Memory read to AX
 01056H = 34H AL
 01057H = 12H AH
2. SP 0008H incremented by 2
 ATOP 01058H

 In response to the execution of POP BX instruction
1. Memory read to BX
 01058H = AAH BL
 01059H = BBH BH
2. SP 000AH incremented by 2: ATOP 0105AH

3316.480/552 Micro II

Organization of the I/O Address Space

 Input/output address space
 Place where I/O devices are normally
implemented
 I/O addresses are only 16-bits in length
 Independent 64K-byte address space
 Address range 0000H through FFFFH

 Page 0
 First 256 byte addresses 0000H -
00FFH
 Can be accessed with direct or variable
I/O instructions
 Ports F8H through FF reserved

3416.480/552 Micro II

Organization of the I/O Data

 Input/output data organization
 Supports byte or word I/O ports

 64K independent byte-wide I/O ports
 32K independent aligned word-wide I/O
ports

 Examples:
Byte ports 0,1, 2 addresses 0000H, 0001H,
and 0002H
Aligned word ports 0,1, 2 addresses 0000H,
0002H, 0004H

 Advantages of Isolated I/O
 Complete memory address space available for
use by memory devices
 I/O instructions tailored to maximize
performance

 Disadvantage of Isolated I/O
 All inputs/output must take place between I/O
port and accumulator register

3516.480/552 Micro II

8088/8086 Instruction Groups and Assembly
Notation

• Instructions are organized into groups of functionally related instructions
• Data Transfer instructions
• Input/output instructions
• Arithmetic instructions
• Logic instructions
• String Instructions
• Control transfer instructions

• In assembly language each instruction is represented by a “mnemonic” that describes its
operation and is called its “operation code (opcode)”
• MOV = move data transfer
• ADD = add arithmetic
• JMP = unconditional jump control transfer

• Operands: Identify whether the elements of data to be processed are in registers or
memory

• Source operand– location of one operand to be processed
• Destination operand—location of the other operand to be processed and the

location of the result

3616.480/552 Micro II

8088/8086 Machine Language

• Native language of the 8088/8086 (PC) is “machine language (code)”
• One to one correspondence to assembly language statements
• Instructions are encoded with 0’s and 1’s
• Machine instructions can take up from 1 to 6 bytes
• Example: Move=MOV

• The wide choice of register operands, memory operands, and addressing
mode available to access operands in memory expands the move instruction
to 28 different forms

• Ranges in size from 3 to 6 bytes

3716.480/552 Micro II

Structure of an Assembly Language Statement

• General structure of an assembly language statement
LABEL: INSTRUCTION ;COMMENT

• Label—address identifier for the statement
• Instruction—the operation to be performed
• Comment—documents the purpose of the statement
• Example:

START: MOV AX, BX ; COPY BX into AX
• Other examples:

 INC SI ;Update pointer
ADD AX, BX

• Few instructions have a label—usually marks a jump to point
• Not all instructions need a comment

What is the “MOV part of the instruction called?
What is the BX part of the instruction called?
What is the AX part of the instruction called?

3816.480/552 Micro II

Assembler and the Source Program
• Assembly language program

• Assembly language program (.asm) file—known as
“source code”

• Converted to machine code by a process called
“assembling”

• Assembling performed by a software program — an
“8088/8086 assembler”

• “Machine (object) code” that can be run on a PC is
output in the executable (.exe) file

• “Source listing” output in (.lst) file—printed and used
during execution and debugging of program

• DEBUG—part of “disk operating system (DOS)” of the PC
• Permits programs to be assembled and disassembled
• Line-by-line assembler
• Also permits program to be run and tested

• MASM—Microsoft 80x86 macroassembler
• Allows a complete program to be assembled in one step

3916.480/552 Micro II

Reading the Listing File
• Instruction statements—operations to be performed

by the program
• Example—line 53

0013 8A 24 NXTPT: MOV AH, [SI] ;Move a byte
Where:
0013 = offset address (IP) of first byte of code in
the CS
8A24 = machine code of the instruction
NXTPT: = Label
MOV = instruction mnemonic
AH = destination operand
[SI] = source operand in memory
;Move xxxxx = comment

• Directives—provides directions to the assembler
program
• Example—line 20
0000 0040 DB 64 DUP(?)

Defines and leaves un-initialized a block of 64
bytes in memory for use as a stack

4016.480/552 Micro II

More Information in the Listing

• Other information provided in the listing
• Size of code segment and stack

• What is the size of the code segment?
• At what offset address does it begin? End?

• Names, types, and values of constants and
variables
• At what line of the program is the symbol

“N” define?
• What value is it assigned?
• What is the offset address of the instruction

that uses N?
• # lines and symbols used in the program

• Why is the value of N given as 0010?
• # errors that occurred during assembly

4116.480/552 Micro II

Converting Assembly Language to Machine Code

• Part of the 80x86 instruction set architecture (ISA)
• What is the machine instruction length (fixed, variable, hybrid)?
• What are the sizes of the fields—varying sizes?
• What are the functions of the fields?

• 80x86’s register-memory architectures is hybrid length
• Multiple instruction sizes, but all have byte wide lengths—

• 1 to 6 bytes in length for 8088/8086
• Up to 17 bytes for 80386, 80486, and Pentium

• Advantages of hybrid length
• Allows for many addressing modes
• Allows full size (32-bit) immediate data and addresses

• Disadvantage of variable length
• Requires more complicated decoding hardware—speed of decoding is critical in modern

uP
• Load-store architectures normally fixed length—PowerPC (32-bit), SPARC (32-bit), MIP (32-bit),

Itanium (128-bits, 3 instructions)

4216.480/552 Micro II

General Instruction Format

• Information that must be coded into the instruction
• Operation code--opcode
• Source(s) and destination registers
• Size of data-W
• Addressing mode for the source or destination
• Registers used in address computation
• Immediate address displacement: How many bytes?
• Immediate data: How many bytes?

4316.480/552 Micro II

3.3 Converting Assembly Language to Machine Code- General
Instruction Format

• Byte 1 information:
• Opcode field (6-bits)—specifies the operation to be

performed by the instruction
• Move immediate to registers/memory = 1100011
• Move memory to accumulator = 1010000
• Move segment register to register/memory = 10001100

• REG (3-bit)—selects a first operand as a register
• Move immediate to register = 1011(w)(reg)—only requires

one register which is the destination
• Accumulator register= 000
• Count register = 001
• Data Register = 010

• W (1-bit)—data size word/byte for all registers
• Byte = 0
• Word =1

• D (1-bit)—register direction: tells whether the register
which is selected by the REG field in the second byte is
the source or destination

• Add register to register = 000000(d)(w)
• D = 0 source operand
• D= 1 destination operand

4416.480/552 Micro II

Binary Instruction Format: Example

• One Byte Example:
• Encode the instruction in machine code

INC CX
• Solution:

• Use “INC register” instruction
format—special short form for 16-bit
register

01000 (REG)
• CX is destination register

CX = 001
• Machine code is

01000 (001) = 01000001 = 41H one
byte instruction
 INC CX = 41H

4516.480/552 Micro II

3.3 Converting Assembly Language to Machine Code- General
Instruction Format

• Byte 2 information:
• MOD (2-bit mode field)—specifies the type of

the second operand
• Memory mode: 00, 01,10—Register to

memory move operation
• 00 = no immediate displacement

(register used for addressing)
• 01 = 8-bit displacement (imm8) follows

(8-bit offset address)
• 10 = 16-bit displacement (imm16)

follows (16-bit offset address)
• Register mode: 11—register to register move

operation
• 11 = register specified as the second

operand

4616.480/552 Micro II

3.3 Converting Assembly Language to Machine Code- General
Instruction Format

• Byte 2 information (continued):
• REG (3-bit register field)—selects the

register for a first operand, which may be
the source or destination

• Accumulator register= 000
• Count register = 001
• Data Register = 010
• Move register/memory to/from register

• Byte 1= 100010(d)(w)
• Byte 2 = (mod) (reg) (r/m)

• Affected by byte 1 information:
• W (1-bit)—data size word/byte for all

registers
• Byte = 0
• Word =1

4716.480/552 Micro II

3.3 Converting Assembly Language to Machine Code- General
Instruction Format

• Byte 2 information (continued):
• R/M (3-bit register/memory field)—specifies the

second operand as a register or a storage location
in memory

• Dependent on MOD field
• Mod = 11 R/M selects a register

• R/M = 000 Accumulator register
• R/M= 001 = Count register
• R/M = 010 = Data Register

• Move register/memory to/from register
• Byte 1= 100010(d)(w)
• Byte 2 = (mod) (reg) (r/m)

• Affected by byte 1 information:
• W (1-bit)—data size word/byte for all registers

• Byte = 0
• Word =1

• D (1-bit)—register direction for first operand in
byte 2 (reg)

• D = 0 source operand
• D= 1 destination operand

4816.480/552 Micro II

3.3 Converting Assembly Language to Machine Code- General
Instruction Format

• Byte 2 information (continued):
• MOD = 00,10, or 10 selects an addressing

mode for the second operand that is a
storage location in memory, which may
be the source or destination

• Dependent on MOD field
• Mod = 00 R/M

• R/M = 100 effective
address computed as
 EA = (SI)

• R/M= 000 = effective
address computed as
 EA = (BX)+(SI)

• R/M = 110 = effective
address is coded in the
instruction as a direct
address

EA = direct address = imm8
or imm16

4916.480/552 Micro II

3.3 Converting Assembly Language to Machine Code- General
Instruction Format

• Move register/memory to/from register
• Byte 1= 100010(d)(w)
• Byte 2 = (mod) (reg) (r/m)

• Affected of byte 1 information:
• W (1-bit)—data size word/byte for all

registers
• Byte = 0
• Word =1

• D (1-bit)—register direction for first
operand in byte 2 (reg)

• D = 0 source operand
• D= 1 destination operand

5016.480/552 Micro II

3.3 Converting Assembly Language to Machine Code- General
Instruction Format

• Two Byte example using R/M field for a register:
• Encode the instruction in machine code

INC CL
• Solution:

• Use “INC register/memory” instruction format—general form
for 8-bit or 16-bit register/memory

• Byte 1
1111111(W)

• CL= byte wide register W = 0
11111110 =FEH

5116.480/552 Micro II

3.3 Converting Assembly Language to Machine Code- General
Instruction Format

• Two Byte example using R/M field for a register (continued):
• Byte 2

(MOD) 000(R/M)
• Destination is register register CL

• MOD = 11
• R/M = 001
(11)000(001) = 11000001 =C1H

• Machine code is
(Byte 1)(Byte 2) = 11111110 11000001 = FEC1H two byte
instruction

INC CL = FEC1H

5216.480/552 Micro II

3.3 Converting Assembly Language to Machine Code- General
Instruction Format

• Two Byte example using R/M field for a register:
• Encode the instruction in machine code

MOV BL,AL
• Solution:

• Use “register/memory to/from register” instruction format—most
general form of move instruction

• Byte 1
100010(D)(W)

• Assuming AL (source operand) is the register encoded in the
REG field of byte 2 (1st register)

• D = 0 = source
• Both registers are byte wide

• W = 0 = byte wide
• Byte 1 = 100010(0)(0) = 10001000 =88H

5316.480/552 Micro II

3.3 Converting Assembly Language to Machine Code- General
Instruction Format

• Two Byte Example (continued):
• Byte 2

(MOD)(REG)(R/M)
• Both operands are registers

• MOD = 11
• 2nd register is destination register BL

• R/M = 011
• 1st register is source register AL

• REG = 000
(11)000(011) = 11000011 = C3H

• Machine code is
(Byte 1)(Byte 2) = 10001000 11000011 = 88C3H two byte instruction

MOV BL,AL = 88C3H

5416.480/552 Micro II

3.3 Converting Assembly Language to Machine Code- General
Instruction Format

• Two Byte example using R/M field for memory:
• Encode the instruction in machine code

ADD AX,[SI]
• Solution:

• Use “register/memory with register to either” instruction format
• Most general form of add instruction
• No displacement needed—register indirect addressing

• Byte 1
000000(D)(W)

• AX (destination operand) is the register encoded in the REG field of byte 2 (1st register)
• D = 1 = destination

• Addition is of word wide data
• W = 1 = word wide

• Byte 1 = 000000(1)(1) = 00000011 =03H

5516.480/552 Micro II

3.3 Converting Assembly Language to Machine Code- General
Instruction Format

• Two Byte example using R/M field for memory
(continued):

• Byte 2
(MOD)(REG)(R/M)

• Second operand is in memory and pointed to
by address is SI

• MOD = 00 [SI]
• R/M specifies the addressing mode

• R/M = 100 [SI]
• 1st register is destination register AX

• REG = 000
(00)000(100) = 00000100 = 04H

• Machine code is
(Byte 1)(Byte 2) = 00000011 00000100

 = 0304H two byte instruction
ADD AX,[SI] = 0304H

5616.480/552 Micro II

3.3 Converting Assembly Language to Machine Code- General
Instruction Format

• Multi-Byte Example using R/M field with memory displacement:
• Encode the instruction in machine code

XOR CL,[1234H]
• Solution:

• Use “register/memory and register to either” instruction format
• Most general form of XOR instruction
• Displacement needed—direct addressing

• Byte 1
001100(D)(W)

• CL (destination operand) is the register encoded in the REG field of byte 2 (1st register)
• D = 1 = destination

• XOR is of byte wide data
• W = 0 = byte wide

• Byte 1 = 001100(1)(0) = 00110010 =32H

5716.480/552 Micro II

3.3 Converting Assembly Language to Machine Code- General
Instruction Format

• Multi-Byte Example using R/M field with memory
displacement (continued):

• Byte 2
(MOD)(REG)(R/M)

• Second operand is in memory and pointed
to by a direct address

• MOD = 00 direct address
• R/M specifies the addressing mode

• R/M = 110 direct address
• 1st register is destination register CL

• REG = 001
(00)001(110) = 00001110 = 0EH

5816.480/552 Micro II

3.3 Converting Assembly Language to Machine Code- General
Instruction Format

• Multi-Byte Example using R/M field with memory displacement (continued):
• Bytes 3 & 4

(LOW DISP) (HIGH DISP)
• Indirect address is the displacement from the current data segment address

(DS)
• [1234H] = [12 34]
• Byte 3 = LOW DISP = 34H =
• Byte 4 = HIGH DISP =12H
•

• Machine code is:
(Byte 1)(Byte 2)(Byte 3(Byte 4) = 320E3412H two byte instruction

XOR CL,[1234H] = 320E3412H

5916.480/552 Micro II

3.3 Converting Assembly Language to Machine Code- General
Instruction Format

• Some other special fields for instructions
• SR (2-bit segment register field)—used in formats of instructions to specify a segment

register
• SR = 11 DS = data segment register
• SR = 00 ES = extra segment register

• 1-bit special purpose fields
• V = shift count for shift and rotate instructions

• V = 0 = shift count is 1
• V =1 = shift count is in CL register

• Z = repeat condition for REP string instruction
• Z = 0 repeat while ZF =0
• Z = 1 repeat while ZF =1

6016.480/552 Micro II

Translating Assembly Langauge to Machine Code

Displacement for
jump to NXTPT:

6116.480/552 Micro II

Storing The Machine Code Program in Memory

Displacement

6216.480/552 Micro II

Addressing Modes of the 8088/808 Microprocessor-
Addressing Modes

• Addressing mode
• Instructions perform their specified operation on elements of data that are called its

operand
• Types of operands

• Source operand
• Destination operand
• Content of source operand combined with content of destination operand

Result saved in destination operand location
• Operands may be

• Part of the instruction—source operand only
• Held in one of the internal registers—both source and destination operands
• Stored at an address in memory—either the source or destination operand
• Held in an input/output port—either the source or destination operand

• Types of addressing modes
• Register addressing modes
• Immediate operand addressing
• Memory operand addressing
• Each operand can use a different addressing mode

6316.480/552 Micro II

Register Operand Addressing Mode

• Register addressing mode operands
• Source operand and destination operands

are both held in internal registers of the
8088/8086

• Only the data registers can be accessed as
bytes or words

Ex. AL,AH bytes
 AX word

• Index and pointer registers as words
Ex. SI word pointer

• Segment registers only as words
Ex. DS word pointer

6416.480/552 Micro II

Register Operand Addressing Mode

• Example
MOV AX,BX

Source = BX word data
Destination = AX word data

 Operation: (BX) (AX)
• State before fetch and execution

CS:IP = 0100:0000 = 01000H
Move instruction code = 8BC3H
(01000H) = 8BH
(01001H) = C3H

 (BX) = ABCDH
(AX) = XXXX don’t care state

6516.480/552 Micro II

• Example (continued)
• State after execution

CS:IP = 0100:0002 = 01002H
01002H points to next sequential
 instruction
(BX) = ABCDH
(AX) = ABCDH Value in BX copied
 into AX

Register Operand Addressing Mode

6616.480/552 Micro II

• Immediate operand
• Operand is coded as part of the instruction
• Applies only to the source operand
• Destination operand uses register

addressing mode
• Types

• Imm8 = 8-bit immediate operand
• Imm16 = 16-bit immediate operand

• General instruction structure and operation
MOV Rx,ImmX
ImmX (Rx)

Immediate Operand Addressing Mode

6716.480/552 Micro II

• Example
MOV AL,15H

Source = Imm8 immediate byte
 data

Destination = AL Byte of data
 Operation: (Imm8) (AL)

• State before fetch and execution
CS:IP = 0100:0000 = 01000H
Move instruction code = B015H
(01000H) = B0H
(01001H) = 15H Immediate data

 (AL) = XX don’t care state

Immediate data

Immediate Operand Addressing Mode
Example

6816.480/552 Micro II

• Accessing operands in memory
• Only one operand can reside in memory—either the

source or destination
• Calculate the 20-bit physical address (PA) at which

the operand in stored in memory
• Perform a read or write to this memory location

• Physical address computation
• Given in general as

PA = SBA:EA
SBA = Segment base address
EA = Effective address (offset)

• Components of a effective address
• Base base registers BX or BP
• Index index register SI or DI
• Displacement 8 or 16-bit displacement
• Not all elements are used in all

computations—results in a variety of addressing
modes

Memory Operand Addressing Mode

6916.480/552 Micro II

• Direct addressing mode
• Similar to immediate addressing in that

information coded directly into the
instruction

• Immediate information is the effective
address called the direct address

• Physical address computation
PA = SBA:EA 20-bit address
PA = SBA:[DA] immediate 8-bit or

16 bit displacement
• Segment base address is DS by default

PA = DS:[DA]
• Segment override prefix (SEG) is required to

enable use of another segment register
PA = SEG:ES:[DA]

Direct Addressing Mode

7016.480/552 Micro II

• Example
MOV CX,[1234H]

• State before fetch and execution
• Instruction

CS = 0100H
IP = 0000H
CS:IP = 0100:0000H = 01000H
(01000H,01001H) = Opcode = 8B0E
(01003H,01002) = DA = 1234H

• Source operand—direct addressing
DS = 0200H
DA = 1234H
PA = DS:DA = 0200H:1234H

 = 02000H+1234H
 = 03234H

(03235H,03234H) = BEEDH
• Destination operand--register addressing

(CX) = XXXX don’t care state

Direct address

Direct Addressing Mode Example

7116.480/552 Micro II

• Example (continued)
• State after execution

• Instruction
CS:IP = 0100:0004 = 01004H
01004H points to next

sequential
instruction

• Source operand
(03235H,03234H) = BEEDH
unchanged

• Destination operand
(CX) = BEED

Direct Addressing Mode Example

7216.480/552 Micro II

Register Indirect Addressing Mode

• Register indirect addressing mode
• Similar to direct addressing in that the affective

address is combined with the contents of DS to
obtain the physical address

• Effective address resides in either a base or index
register

• Physical address computation
PA = SBA:EA 20-bit address
PA = SBA:[Rx] 16-bit offset

• Segment base address is DS by default for BX, SI,
and DI

PA = DS:[Rx]
• Segment override prefix (SEG) is required to enable

use of another segment register
PA = SEG:ES:[Rx]

• What about BP?

7316.480/552 Micro II

• Example
MOV AX,[SI]

• State before fetch and execution
• Instruction

CS = 0100H
IP = 0000H
CS:IP = 0100:0000H = 01000H
(01000H,01001H) = Opcode = 8B04H

• Source operand—register indirect addressing
DS = 0200H
SI = 1234H
PA = DS:SI = 0200H:1234H

 = 02000H + 1234H
 = 03234H

(03235H,03234H) = BEEDH
• Destination operand—register operand addressing

(AX) = XXXX don’t care state

Register Indirect Addressing Mode

7416.480/552 Micro II

Register Indirect Addressing Mode

• Example (continued)
• State after execution

• Instruction
CS:IP = 0100:0002 = 01002H
01002H points to next sequential
 instruction

• Source operand
(03235H,03234H) = BEEDH unchanged

• Destination operand
(AX) = BEED

7516.480/552 Micro II

Base Addressing Mode

• Based addressing mode
• Effective address formed from contents of a base

register and a displacement
• Base register is either BX or BP (stack)

• Direct/indirect displacement is 8-bit or 16bit
• Physical address computation

PA = SBA:EA 20-bit address
PA = SBA:[BX or BP] + DA

• Accessing a data structure
• Based addressing makes it easy to access elements

of data in an array
• Address in base register points to start of the array
• Displacement selects the element within the array
• Value of the displacement is simply changed to

access another element in the array
• Program changes value in base register to select

another array

7616.480/552 Micro II

Base Addressing Mode

• Example
MOV [BX] +1234H,AL

• State before fetch and execution
• Instruction

CS = 0100H, IP = 0000H
CS:IP = 0100:0000H = 01000H
(01000H,01001H) = Opcode = 8887H
(01002H,01003H) = Direct displacement = 1234H

• Destination operand—based addressing
DS = 0200H, BX = 1000H, DA = 1234H
PA = DS:DS+DA = 0200H:1000H+1234H

 = 02000H+1000H+1234H
 = 04234H

(04234H) = XXH
• Source operand—register operand addressing

(AL) = ED

7716.480/552 Micro II

Base Addressing Mode

• Example (continued)
• State after execution

• Instruction
CS:IP = 0100:0004 = 01004H
01004H points to next sequential

 instruction
• Destination operand

(04234H) = EDH
• Source operand

(AL) = EDH unchanged

7816.480/552 Micro II

Indexed Addressing Mode
• Indexed addressing mode

• Similar to based addressing, it makes accessing
elements of data in an array easy

• Displacement points to the beginning of array in
memory

• Index register selects element in the array
• Program simply changes the value of the

displacement to access another array
• Program changes (recomputes) value in index

register to select another element in the array
• Effective address formed from direct displacement

and contents of an index register
• Direct displacement is 8-bit or 16-bit
• Index register is either SI source operand or DI

 destination operand
• Physical address computation

PA = SBA:EA 20-bit address
PA = SBA: DA + [SI or DI]

7916.480/552 Micro II

Indexed Addressing Mode

• Example
MOV AL,[SI] +1234H,

• State before fetch and execution
• Instruction

CS = 0100H
IP = 0000H
CS:IP = 0100:0000H = 01000H
(01000H,01001H) = Opcode = 8A84H
(01002H,01003H) = Direct displacement = 1234H

• Source operand—indexed addressing
DS = 0200H
SI = 2000H
DA = 1234H
PA = DS:SI+DA = 0200H:2000H+1234H

 = 02000H+2000H+1234H
 = 05234H

(05234H) = BEH
• Destination operand—register operand addressing

(AL) = XX don’t care state

8016.480/552 Micro II

Indexed Addressing Mode

• Example (continued)
• State after execution

• Instruction
CS:IP = 0100:0004 = 01004H
01004H points to next sequential

instruction
• Source operand

(05234H) = BEH unchanged
• Destination operand

(AL) = BEH

8116.480/552 Micro II

Based-Indexed Addressing Mode
• Based-indexed addressing mode

• Combines the functions of based and indexed addressing modes
• Enables easy access to two-dimensional arrays of data
• Displacement points to the beginning of array in memory
• Base register selects the row (m) of elements
• Index register selects element in a column (n)
• Program simply changes the value of the displacement to access

another array
• Program changes (re-computes) value in base register to select another

row of elements
• Program changes (re-computes) the value of the index register to select

the element in another column
• Effective address formed from direct displacement and contents of a base

register and an index register
• Direct displacement is 8-bit or 16bit
• Base register either BX or BP (stack)
• Index register is either SI source operand or DI destination

operand
• Physical address computation

PA = SBA:EA 20-bit address
PA = SBA:DA + [BX or BP] + [SI or DI]

8216.480/552 Micro II

Based- Indexed Addressing Mode: Example
MOV AH,[BX][SI] +1234H,
• State before fetch and execution

• Instruction
CS = 0100H, IP = 0000H
CS:IP = 0100:0000H = 01000H
(01000H,01001H) = Opcode = 8AA0H
(01002H,01003H) = Direct displacement = 1234H

• Source operand—based-indexed addressing
DA = 1234H, DS = 0200H, BX = 1000H,SI = 2000H
PA = DS:DA +BX +SI
 = 0200H:1234H + 1000H + 2000H

 = 02000H+1234H +1000H + 2000H
 = 06234H

(06234H) = BEH
• Destination operand—register operand addressing

(AH) = XX don’t care state

8316.480/552 Micro II

Based- Indexed Addressing Mode

• Example (continued)
• State after execution

• Instruction
CS:IP = 0100:0004 = 01004H
01004H points to next sequential

 instruction
• Source operand

(06234H) = BEH unchanged
• Destination operand

(AH) = BEH

