16.480/552 Microprocessor II and
Embedded Systems Design

Lecture 2: 8088/8086
Assembly Language Programming

Revised based on “The 8088 and 8086 Microprocessors” by Triebel and Singh

Outline

-]
 Embedded systems overview
— What are they?

* Design challenge — optimizing design metrics
e Technologies
— Processor technologies

— IC technologies

— Design technologies

e Introduction to 808&/8086

16.480/552 Micro 11 D)

Internal Architecture of the 8088/8086 Microprocessor-
Parallel Processing

 Employs a multiprocessing
architecture- parallel processing

EEEEEEEEEEEEEEEEE

* Two processing units:

EEEEEEE
RRRRRRRRR

B ® Bus interface unit
I ® Execution unit

alionEsSy | muLmieiexen evs

AAAAAA
OOOOOOO

® FEach unit has dedicated functions and
they both operate at the same time

! » Parallel processing results in higher
performance

16.480/552 Micro 11 3

Bus Interface Unit

* Interface to the outside world

Koy ¢ oments EHEGTON I NBIBHGHISN | rgiFhce
® Segment registers | UNIT
® Hold address information for accessing data
¢ Instruction pointer
® Holds address information for accessing code :
SYSTEM BUS

® Address generation/control logic
® Creates address and external control signals
¢ Instruction queue
¢ Holds next instructions to be executed
» Responsibilities
® Performs address generation and bus control
® Fetching of instruction
¢ Reading and writing of data for memory
¢ Inputting and outputting of data for input/output peripherals
® Prioritizes bus accesses—data operands highest priority

e |
16.480/552 Micro 11 4

System Bus

® System Bus

® Interface between MPU and the memory and
I/O subsystems

® All code and data transfers take place over the

“system bus” | ™
. EXECUTION INSTRUCTION
® Multiplexed address/data bus—address UNIT <:£E__LLNE“ NToRIT O
and data carried over same lines butat U

different times

* 8088—8-bit wide data bus, 20 bit address
bus, 1 byte/memory cycle

® 8086—16-bit wide data bus, 20 bit
address bus, 2 bytes/memory cycle

SYSTEM BUS

® 1M-byte physical memory address space

16.480/552 Micro 11 5

Instruction Queue
- 000000000000000000000_0__00000000___"]

* Instruction Queuing
® BIU implements a mechanism known as the “instruction queue”
¢ 8088 queue- 4 bytes
® 8086 queue- 6 bytes

® Whenever the queue is not full the BIU looks ahead in the program and
performs bus cycles to pre-fetch the next sequential instruction code

® FIFO instruction queue- Bytes loaded at the input end of the queue
automatically shift up to the empty location nearest the output

® Bytes of code are held until the execution unit is ready to accept them
® Code passed to the EU via instruction pipeline

® Result is that the time needed to fetch many of the instructions in a
microcomputer program is eliminated.

® If queue 1s full and the EU is not requesting access to data in memory, BIU does
not perform bus cycles (Idle states).

e |
16.480/552 Micro 11 6

Execution Unit

* Key elements of the EU

Arithmetic/logic unit (ALU)
¢ Performs the operation identified by the instruction: ADD, SUB, AND, etc.

Flags register
® Holds status and control information " JexecuTioNl” INSTRUCTION INTEBF'iJI'-'sA CE
. ~ UNIT PIPELINE ONIT
General-purpose registers

® Holds address or data information

¢ Responsible for decoding and execution of instructions

Reads machine code instructions from the output side of the instruction queue
Decodes the instructions to prepare them for execution SYSTEM BUS

Generates addresses and requests the BIU to perform réad/write operations to
memory or 1/O

Performs the operation identified by the instruction on the operands
Accesses data from the general purpose registers if necessary
Tests the state of flags if necessary

Updates the state of the flags based on the result produced by executing the
instruction.

16.480/552 Micro 11 7

The Software Model

——— 0
* Aid to the programmer in understanding the operation of the
microcomputer from a software point of view

* Elements of the software model
® Register set
® Memory address space
® Input/output address space

* What the programmer must know about the microprocessor

® Registers available within the device

® Purpose of each register

® Function of each register

® Operating capabilities of each register

® Limitations of each register

® Size of the memory and input/output address spaces

Organization of the memory and input/output address spaces

b

16.480/552 Micro 11

Register Set

» 13- 16-bit registers

St oy ® (4) Data registers- AX, BX, CX,
80863085 DX
[:::: e ® (2) Pointer registers- BP, SP

00000,

ST “"® (2) Index registers- SI, DI

ES {64 K bytes) ~= ~

o~

(

® (1) Instruction pointer- IP

AH AL | AX

o lex| | input ot ® (4) Segment registers- CS, DS, SS,
CH CL CcX ES

DH DL | DX (Sé:c'lé wglse)nt
o * | Status register (SR)-FLAG
BP FFFF,q
st
DI >
Extra segment
(64 K bytes)

—

FFFFFoq

16.480/552 Micro 11

Memory and Input/Output

input / output
address space

0000,

FFFFy5

Architecture implements
independent memory and
input/output address spaces

Memory address space-
1,048,576 bytes long (1M-byte)

Input/output address space-
65,536 bytes long (64K-bytes)

00000,¢
External memory
address space
8088/8086
MPU
P Code segment
[::] {64 K bytes)
cs
DS L
SS
Data segment
ES (64 K bytes)
AH AL | AX
BH BL |BX
CH CL |CcX
DL DX Stack segment
DH (64 K bytes)
sP
BP
SI
DI >
Extra segment
. {64 K bytes)
[Js
FFFFF g
16.480/552 Micro 11

10

Address Space

1]
 Memory in the 8088/8086 microcomputer 1s organized
—— as 1ndividual bytes

ARanS * Memory address space corresponds to the 1M addresses

FFFFC in the range 00000H to FFFFFH
00000H= 00000000000000000000,
FFFFFH=11111111111111111111,

220=1,048,576 = 1M

« Data organization:

® Double-word: contents of 4 contiguous byte
addresses

® Word: contents of two contiguous byte addresses

. the: content of any individual bzte address

16.480/552 Micro 11 11

O|==|N|WAiO

Aligned and Misaligned Words

i
® Words and double words of data can be

i | stored 1n memory at either an even or odd
Address ysical Aligned
memory | words address boundary
00008H | Byte 8 ® Examples of even address boundaries: 00000,
00007H Byte 7 Word 00002169 0000416 .
00006H | Byte 6 8 ;lr . ® Examples of odd address boundaries: 00001,
ovos | Byes || __T 00003, 00005
or
00004H | Byte4 4 ® Words stored at an even address
oo003H | Byes | boundary are said to be aligned words
Word
00002H | Byte2 2 T ® Examples are words 0, 2, 4, and 6
Word
ooooth | Byet | | 1 Words stored at an odd address boundary are
or . ° ° o
00000H | Bye0 | 9 said to be misaligned or unaligned words
Misaligned
words ® Examples are words 1 and 5

16.480/552 Micro 11 12

Aligned and Misaligned Double-Words

Physical

® Aligned double-words are stored at

even addresses that are a multiple of

Aligned

Address memory double 4
' words
00008H | Byte® _‘ ® Examples are double-words 0
00007H | Byte7 —l Double and 4
: word . .

00006H | Byte6 | Double * Misaligned double-words are stored

word .
00005H | Byte5 Double at addresses that are not a multiple

word Of 4
00004H Byte 4 Double
word
00003H | Byte3 ‘{ Double 2 ® Examples are double words 1
- word

00002H | Byte2 Double | 2, 3, and 5

word . .
00001H | Byte 1 0 » There is a performance impact for
00000H | Byte 0 J Mnsahgned accessing unaligned data in memory

double words
16.480/552 Micro 11

13

Examples of Words of Data

Example [Fig. 2.4 (a)]
(00725,¢) = 0101 0101,=55H= MS-byte
(00724,,) = 0000 0010,=02H= LS-byte

Address Memory Memory Address Memory as a word they give
{binary) {hexadecimal) {binary)
0101010100000010,=5502H
00725,5 | 0101 0101 65 5 0072C,g | 11111101 Address in binary form
00724, | 0000 0010 0 2 00728,5 | 10101010 00724,,= 00000000011100100100,

Even address = Aligned word
Example 2.1 [Fig. 2.4 (b)]

(0072C,¢) = 1111 1101,=FDH= MS-byte
(0072B,¢) = 1010 1010,= AAH= LS-byte
as a word they give

1111110110101010,= FDAAH
Address in binary form

0072B,,~= 00000000011100101011,
Odd address = misaligned word

e |
16.480/552 Micro 11 14

Example of Double Word Pointer

Address

00007,
00006, ;
00005,
00004,

Memory
{binary)

0011 1011

0100 1100

Memory
(hexadecimal)

0000 0000

0110 0101

Pointer consists of two 16 bit address
elements: Segment base address and offset
address
LS-Byte:

Address 00004H = 65H
MS-Byte:

Address 00007H = 3BH
Arranging as double word gives the pointer

Address= 00004H = 3B4C0065H

® Since address is a multiple of 4 = aligned
double word

® Offset address = lower addressed word =
0065H

¢ Segment base address = higher addressed
word = 3B4CH

16.480/552 Micro 11

15

Active Segments of Memory

1]
= Memory Segmentation

[= Not all of the 8088/8086 address space is
active at one time

m Address value in a segment register points
to the lowest addressed byte in an active

Code

seoment segment
] segment » Size of each segment is 64K contiguous
emn il | bytes
e N I = Total active memory is 256k bytes
s = 64K-bytes for code
sossiaoss | = 64K-bytes for stack
segmen = 128K-bytes for data

= Four Segment Registers
a Code segment (CS) register- Code storage
» Stack segment (SS) register- Stack storage
00000H a Data segment (DS) register- Data storage
w

16.480/552 Micro 11 16

User access, Restrictions, and Orientation

]
= Segment registers are user accessible

s Programmer can change values under
, software control
m Permits access to other parts of memory
s Example: a new data space can be activated
orn o[+ F——1— E] by replace the values in DS and ES
r—_:]"’“l = Restriction on the address of a segment in
wes e[2 J=1 memory
i SN o R N EI = Must reside on a 16 byte address boundary
= Examples: 00000H, 00010H, 00020H

3 = Orientation of segments:

a Contiguous—A&B or D,E&G or JK
= Adjacent
m Disjointed—C&F
a Overlapping—B&C or C&D

16.480/552 Micro 11 17

= >]

m I Uj

———=
. {
I
a1

r————
|
I
{

B

Memory Map
e Memory aggress space 18 partltloneg nto general

use and dedicated use areas

rerern © Dedicated/Reserved:

® OH — 7FH interrupt vector table

FFEFoN * Ist 128 bytes

DEDICATED ¢ 32 4-byte pointers

{EEFERN ® 16-bit segment base address—2 MSBytes
| ® 16-bit offset—2 LSBytes

® OH — 13H dedicated to internal interrupts and
exceptions

® 14H — 7FH reserved for external user-defined
interrupts
® FFFFOH — FFFFBH dedicated to hardware reset
RESEAVED ® FFFFCH — FFFFFH reserved for future products
* (General use:
¢* 80H — FFFEFH
| ® Available for stack, code, and data
16.480/552 Micro 11 18

RESERVED

DEDICATED

Accessing Code Storage Space

- 000—0—0—0—0—0—00———/7]
= Instruction pointer (IP): identifies the location of the next word of
instruction code to be fetched from the current code segment

» 16-bit offset—address pointer
a CS:IP forms 20-bit physical address of next word of instruction code
= Instruction fetch sequence
= 8088/8086 fetches a word of instruction code from code segment in
memory
= Increments value in IP by 2
= Word placed in the instruction queue to await execution
= 8088 prefetches up to 4 bytes of code
= Instruction execution sequence
m Instruction is read from output of instruction queue and executed
= Operands read from data memory, internal registers, or the
instruction queue
= Operation specified by the instruction performed on operands
= Result written to data memory or internal register

e |
16.480/552 Micro 11 19

Internal Storage of Data and Addresses

= Four general purpose data registers s " Y Py oo
s Accumulator (A) register '"Z}I"AT)'(“KE"‘ Accumulator AX. | Word muliply, word ivide,
= Base (B) register X A | i il vkt
. __’-B_H—--: —_EE__- Base AH Byte multiply, byte divide
= Count (C) register [T R P & | suing opeations,loops
. CH T CL oun CcL Variable shift am‘i rotate
| Data (D) reg|Ster ____'___D')_(__' _____ Data DX i\’;g:’i{r‘t\;l/gply,word divide,
= Can hold 8-bit or 16-bit data S

(a) (b)

s AH/AL = high and low byte value
s AX = word value
= Uses:
» Hold data such as source or destination operands for most
operations—ADD, AND, SHL
» Hold address pointer for accessing memory
= Some also have dedicated special uses
s C—count for loop, repeat string, shift, and rotate operations
m B—Table look-up translations, base address
s D—indirect I/O and string 1/O

e |
16.480/552 Micro 11 20

Pointer and Index Registers- Accessing
Information in Memory

- 000__0000__00_0__0_0_0__00_____"]
= Pointers are offset addresses used to access
information in a segment of memory
= Two pointer registers

s 0 » Stack pointer register
= SP = 16-bit stack pointer

SP Stack pointer‘ . .
| m Base pointer register
BP | Base pointer = BP = 16-bit base pOinter
‘ m Access information in “stack segment” of
S1 Source index
memory
DI Destination index = SP and BP are offsets from the current

value of the stack segment base address
= Select a specific storage location in the
current 64K-byte stack segment

= SS:SP—-points to top of stack (TOS)

= SS:BP—points to an element of data in
stack

16.480/552 Micro 11 71

Pointer and Index Registers- Accessing

Information in Memory
1]

= Value in an index register is also an address
pointer
= Two index registers

m Source index register

= S| = 16-bit source index register

BP Base pointer = Destination index register
' = DI = 16-bit destination index register
m Access source and destination operands in
DI Destination index data segment of memory
= DS:Sl—points to source operand in
data segment
= DS:DIl—points to destination operand in
data segment
= Also used to access information in the
extra segment (ES)

5 0

SP Stack pointer‘

SI Source index

e |
16.480/552 Micro 11 27

Status Register- Status and Control Flags

=« FLAGS register: 16-bit register used to hold
single bit status and control information called

flags
m 9 active flags in real mode
R Paas = Two categories
I.'—'_l El E] ™ B = Status Flags—indicate conditions that
() are the result of executing an instruction
PARITY (2) a Execution of most instructions
AUXILIARY CARRY (4)
o (0 update status
! [l .
overLow (11) » Used by control flow instructions
l\N‘IEMWPT-EN&OLE (g) t t d t
1:::5::7«();) (10) as test condaitions .
= Control Flags—control operating
functions of the processor
a Used by software to turn on/off
operating capabilities
16.480/552 Micro 11

23

Flags Register- Status Flags

= Examples of Status Flags—CF, PF, ZF, SF, OF, AF
a Carry flag (CF)

=1 = carry-out or borrow-in from MSB of the

result during the execution of an arithmetic

| et il ‘ instruction
El El Iﬂ E H @- i 0 = no carry has occurred
o) = Parity flag (PF)
PARITY (2) = 1 = result produced has even parity
-y @ = 0 = result produced has odd parity
sion (7) - uZero flag (ZF)
;::E.:\:.;:-en(:l)e ©) = 1 =result produced is zero
g O = 0 = result produced is not zero
= Sign bit (SF)
= 1 = result is negative
= 0 = result is positive
= Others
= Overflow flag (OF)
= Auxiliary carry flag (AF)
16.480/552 Micro 11

24

Flags Register- Control Flags

= Examples of Control Flags—TF, IF, DF
alnterrupt flag (IF)
= Used to enable/disable external maskable interrupt requests

CONTROL STATUS

= 1 = enable external interrupts e ruacs

= 0 = disable external interrupts |_‘_| D o e E:I‘ |
= Trap flag (TF) Li:::i s
AUXILIARY CARRY (4)

= 1 = turns on single-step mode w0 (0

sigh (7)

= 0 = turns off single step mode ‘ ———
= Mode useful for debugging @
= Employed by monitor program to execute one instruction at at time
(single step execution)

sDirection flag (DF)
= Used to determine the direction in which string operations occur
= 1 = automatically decrement string address—proceed from high address
to low address

= 0 = Automatically increment string address—proceed from low address

16.480/552 Micro 11 75

Generating a Memory Address- Logical and
Physical Addresses

15

0

Offset address

\ -

- 1

Logical
address

15 0

L Segmerit base address 0‘ 0 0 0

o/

20-bit
Physical memory address

= Logical address: real-mode architecture described by
a segment address and an offset
m Segment base address (CS, DS, ES, SS) are 16
bit quantities
» Offsets (IP, SI, DI, BX, DX, SP, BP, etc.) are 16
bit quantities
as Examples:
CS:IP 100H:100H Code access
DS:SI 2000H:1EFH Data access
ES:DI 3000H:0H Data access
SS:SP FOOOH:FFH Stack access
= Physical Address: actual address used for accessing
memory
» 20-bits in length
= Formed by:
= Shifting the value of the 16-bit segment base
address left 4 bit positions
= Filling the vacated four LSBs with Os

$

16.480/552 Micro 11

26

Generating a Memory Address- Example

= Example:
Segment base address = 1234H
Offset = 0022H

s BRI |G 1234H = 0001 0010 0011 0100
: : BASE LOGICAL 2
Y 2 3 410 - — }wmss 0022H = 0000 0000 0010 0010,
’ 0 0'2 2 <—Ll
S B Shifting base address,
ENENENCNE] B 00010010001101000000,, = 12340H

TO MEMORY

Adding segment address and offset
00010010001101000000, + 0000000000100010,, =
= 00010010001101100010,,
= 12362H

16.480/552 Micro 11 27

Generating a Real-Mode Memory Address-

Boundaries of a Segment

= Four active segments CS, DS, ES, and SS

m Each 64-k bytes in size 2 maximum
of 256K-bytes of active memory

Memory = 64K-bytes for code

DS:FFFFH | Highest addressed byte = 64K-bytes for stack

8088/8086 I = 128K-bytes for data

[| ' 556 | = Starting address of a data segment

[os]

Y

: DS:0H - lowest addressed byte
sogmont = Ending address of a data segment
P DS:FFFFH - highest addressed

DS:0000H | Lowest addressed byte byte

DS

\

= Address of an element of data in a data
segment
DS:BX - address of byte, word, or
double word element of data in the
data segment

16.480/552 Micro 11 28

Relationship between Logical and Physical

Addresses
i

PHYSICAL
ADDRESS

LOGICAL
ADDRESSES

r [

OFJ;ET
(3H)

SEGMENT -l
BASE

OFFSET
(13H)

2C4H
2C3H
2C2H
2C1H
2C0H
2BFH
2BEH
2BDH
2BCH
288H
2BAH
2B9H
2B8H
2B7H
286H
2B5H
2B84H
2B3H
282H
2B1H
2B0H

= Many different logical addresses map to
the same physical address

s Examples:

2BH:13H = 002BOH+0013H =
002C3H

2CH:3H = 002COH + 0003H =
002C3H

= These logical addresses are called
“aliases”

e |
16.480/552 Micro 11

29

The Stack

= Stack—temporary storage area for information such as
-ata and addresses

Memory | = Located in stack segment of memory
forchwide) = Real mode—64K bytes long

SSFFFER | Bottom of stack = Organized as 32k words
: = Information saved as words, not bytes
[sp }— —> SS:SP | Tpofstack , Qrganization of stack
o 3 o L R a SS:0000H-> end of stack (lowest addressed word)
s] | - i;c:r'mfent N a SS:FFFEH-> bottom of stack (highest addressed word)
. : S n SS:SP-> top of stack (last stack location to which data
> SS:0000H | End of stack was pushed

» Stack grows down from higher to lower address
 Used by call, push, pop, and return operations
s Examples
PUSH S| - causes the current content of the Sl
register to be pushed onto the “top of the stack”
POP Sl - causes the value at the “top of the stack”
to be popped back into the Sl register

16.480/552 Micro 11 30

Existing

stack

P

1062

00

1

=4
—_—

1060

22

33

105€

44

55

106C

77

Bottom
of stack

105A

88

T0S
——> 1058

AA

1058

01

23

1054

45

87

1052

AB

CD

EF

Not presently
on the stack

E 1050

01

05

E 1050 CD| EF
01] 0§

00

08

(a)

Push Stack Operation

PUSH AX
axf12 | 34

1062] 00 | 11
1060¢ 22 | 33
10SE] 44 | 55
106C| 66 | 77
105A(88 | 99
1058 | AA | BB

> 1056] 34 | 12 =

1054 45 | 67
1052) 89 | AB

00 | 08

(b)

¥ N

b o c— c— —— —

= Status of the stack prior to execution of the
instruction

PUSH AX
AX = 1234H
SS = 0105H

Azos = SS:00 - 01050H = end of stack
SP = 0008H

Agos = SS:FFFEH - 1104EH

Atos = SS:SP = 01058H = current top of
stack

BBAAH = Last value pushed to stack
Addresses < 01058H = invalid stack data
Addresses >= 01058H = valid stack data

= In response to the execution of PUSH AX instruction

1. SP-> 0006H decremented by 2
A;op 2 01056H

2. Memory write to stack segment
AL = 34H - 01056H
AH =12H - 01057H

16.480/552 Micro 11

31

Pop Stack Operation

.//TTTTss--
= Status of the stack prior to execution of the instruction POP AX:

AX = XXXXH .
SS =0105H | POP BX
SP = 0006H o i Lu e
A7os = SS:SP > 01056H = current top of stack Ax"; B"w:
1234H = Last value pushed to stack T | e |
Addresses < 01056H = invalid stack data oo [22 | 33 | oso [22 33| ||
Addresses >= 01056H = valid stack data Ep LB ose | 4 | o5 |
= In response to the execution of POP AX instruction o Fe e | N o R
1. Memory read to AX L e | 1058 | AA | 88 |- i
01056H = 34H > AL C e e 10%0| 0 | 12 Fo--
01057H = 12H > AH e oy B s

2. SP-> 0008H incremented by2 1050 | CD | EF 100 | cO | EF
ATOP 9 01 058H sS SS
= In response to the execution of POP BX instruction L [wTe)s — .
1. Memory read to BX EIEX [[on
01058H = AAH - BL el ()
01059H = BBH - BH
%

16.480/552 Micro 11

32

Organization of the I/O Address Space

|

WS

OPEN

OPEN

RESERVED

PAGE O {
»

FFFFH

100H
FFH

F8H
FTH

oM

= Input/output address space

= Place where |/O devices are normally
implemented

m |/O addresses are only 16-bits in length
» Independent 64K-byte address space

m Address range 0000H through FFFFH

= Page O

m First 256 byte addresses—> 0000H -
OOFFH

m Can be accessed with direct or variable
|/O instructions

m Ports F8H through FF reserved

16.480/552 Micro 11

33

Organization of the I/O Data

= Input/output data organization
FFFFy| Port 85635 » Supports byte or word 1/O ports
: - = 64K independent byte-wide 1/O ports
= 32K independent aligned word-wide 1/O

1/0 address

space ports
: = Examples:
: : i Byte ports 0,1, 2 > addresses 0000H, 0001H,
[00FFsq Port255 and 0002H

00FEs Port 254 Aligned word ports 0,1, 2 - addresses 0000H,
. 0002H, 0004H
= Advantages of Isolated I/O

s Complete memory address space available for

Page 0 4

0004+ Port 4 B use by memory devices
0003+ Port 3 porlﬂ (18-bit port) = I/O instructions tailored to maximize
000216 Port 2 «—] performance
00018 port” om0 185itpor) = Disadvantage of Isolated 1/0
L 000016 Pt 1| = All inputs/output must take place between 1/0
port and accumulator register
|
16.480/552 Micro 11

34

8088/8086 Instruction Groups and Assembly
Notation

l Instructions are organlzeg Into groups 0! !unctlona”y relateg 1nstructions

Data Transfer instructions
Input/output instructions
Arithmetic instructions
Logic instructions

String Instructions

Control transfer instructions

® In assembly language each instruction is represented by a “mnemonic” that describes its
operation and is called its “operation code (opcode)”

MOV = move = data transfer
ADD = add = arithmetic
JMP = unconditional jump => control transfer

® Operands: Identify whether the elements of data to be processed are in registers or
memory

® Source operand— location of one operand to be processed

® Destination operand—Ilocation of the other operand to be processed and the
%&a 10N Of the resu

16.480/552 Micro 11 35

8088/8086 Machine Language

OATA TRANSFER

MOV = Move:

Register/ y ol trom regist
Immediate to register/ memory
Immediate (0 register

Memory to accumulator
Accumuiator 10 memory

Register/ memory to segment register

Segment register 10 register/memory

® Native language of the 8088/8086 (PC) is “machine language (code)”

765423210

76543210

76543210

768423210

76543210

76543210

1000100w]| mod reg rm {DISP-LO) (DISP-HN

1170090t 1w | mod 000 rim DISP-LO} (DISP-HI) data dataitw =t
1011 wreg data dataitw=1

1010000 w addr-lo addr-hi

1010001t w addr-lo addr-h

10001110|moa 0 SR /m (OISP-LO) {DISP-HI)

10001100 | mod 0 SR rim (DISP-LO) (DISP-H1)

® One to one correspondence to assembly language statements
® Instructions are encoded with 0’s and 1’s
® Machine instructions can take up from 1 to 6 bytes
® Example: Move=MOV

® The wide choice of register operands, memory operands, and addressing

mode available to access operands in memory expands the move instruction
to 28 different forms

W

nges 1 S1z¢ 1Irom

16.480/552 Micro 11

36

Structure of an Assembly Language Statement

® General structure of an assembly language statement
LABEL: INSTRUCTION ;COMMENT
® Label—address identifier for the statement
® Instruction—the operation to be performed
® Comment—documents the purpose of the statement
¢ Example:
START: MOV AX, BX ; COPY BXinto AX
® Other examples:
INC SI ;Update pointer
ADD AX, BX
® Few instructions have a label—usually marks a jump to point
® Not all instructions need a comment
What is the “MOYV part of the instruction called?
What is the BX part of the instruction called?
What is the AX part of the instruction called?

e |
16.480/552 Micro 11 37

Assembler and the Source Program

TITLE PLoGerove PO « Assemblylanguageprogram]
PAGE 4132
ComenT +This prosran soves & block of seecivies maver ot e @ Aggembly language program (.asm) file—known as
“source code”

;Define constants used in this program

No= ~ sBytes to be soved ® Converted to machine code by a process called
BLK1ADDR= 100H ,Soun;e b!.nck offset address .
DATASEBADDR= 1020W Data segeent siart sdaress | -assembling”
smocses s sTecx -sTack: ® Assembling performed by a software program — an
sTAck.ses |ws “8088/8086 assembler”
Mok e ® “Machine (object) code” that can be run on a PC 1s
;To return to DEBUG program put return address on the stack Output in the executable (.GXC) ﬁle
v a0 ® “Source listing” output in (.Ist) file—printed and used
iSet up the data segacnt address during execution and debugging of program
o ® DEBUG—ypart of “disk operating system (DOS)” of the PC
Pt up the soures and sestination orimet s ® Permits programs to be assembled and disassembled
xvv g:, BLK1ADDR
! BkzaooR . 1 .
oet w the count of bytes to be soved Line-by-line assembler
v o N ® Also permits program to be run and tested
;Copy source block to destination block .
WPt oy o, cor3 meeane ® MASM-—Microsoft 80x86 macroassembler
INC S ¥ jUpdate pointers Y .
ve ot ate byte couter Allows a complete program to be assembled in one step
Nz NXTPT ;Repeat for next byte |
RET sReturn to DEBUG programs
CODE_SEB ENDS

END BLOCK 3End of prograa

Microsoft (R) Macro Assembler Version 5.10

BLOCK-MOVE PROGRAM

1

2

3

4

5

7

8

9

10

11
‘12

13 = 0010
14 = 0100
15 = 0120
16 = 1020
17

18

19 0000
20 0000 0040(
21 2??
22
23
24 0040
25
26
27 0000
28 0000
29
30
31
32
33 0000 1E
34 0001 B8 0000
35 0004 50
36
37
38

39 0005 B8 1020
40 0008 8E D8

Reading the Listing File

5/17/92 18:10:04
Page 1-1

TITLE BLOCK-MOVE PROGRAM

PAGE ,132

COMMENT *This program moves a block of specified number of bytes

from one plade to another place*

;Define constants used in this program

N= 16
BLK1ADDR= : 100H
BLK2ADDR= 120H

;Bytes to be moved
;Source block offset address
;Destination block offset addr

DATASEGADDR=1020H ;Data segment start address
STACK_SEG SEGMENT STACK ‘STACK'
. DB 64 DUP(?)

STACK_SEG ENDS

CODE_SEG SEGMENT ‘*CODE’
BLOCK PROC FAR
ASSUME CS:CODE_SEG, SS: STACK_SEG

;To return to DEBUG program put return address on the stack
PUSH DS
MOV 2X, 0
PUSH AX

iSetup the data segment address

MOV AX, DATASEGADDR
MOV DS, AX

41 o il e

42 ;Setup -the source and destination offget adresses

43 R L iz R

44 000A BE 0100 MOV SI, BLK1ADDR

45 000D BF 0120 MOV DI, BLK2ADDR

46

47 ;Setup the count of bytes to be moved

48

49 0010 B9 0010 MOV CX, N

50

51 iCopy source block to. destination block

52

53 0013 .- 8a 24 'NXTPT:MOV =~ AH, [SI]: .. . ‘1Move & byte

54 0015 88 25 MoV [DI], AH

55 0017 46 INC SI ;Update pointers

56 0018 47 INC DI o E

57 0019 ‘49 DEC CX . ;Update hyte counter

58 ‘001A 75 F7 JNZ = NXTPT B . ;Repeat for. next. byte

59 001C cCB RET ;jReturn to DEBUG program

60 Q01D BLOCK ENDP : . . .

61 001D CODE_SEG ENDS ‘

62 D BLOCK ;End of program
16.480/552 Micro 11

In 10n ments—

¢ Example—Iine 53

0013 8A 24 NXTPT: MOV AH, [SI] ;Move a byte

Where:

0013 = offset address (IP) of first byte of code in
the CS

8 A24 = machine code of the instruction
NXTPT: = Label

MOV = instruction mnemonic

AH = destination operand

[SI] = source operand in memory
;Move xxxxx = comment

Directives—provides directions to the assembler
program

¢ Example—Iine 20
0000 0040 DB 64 DUP(?)

Defines and leaves un-initialized a block of 64
bytes in memory for use as a stack

39

More Information in the Listing
1]

® Other information provided in the listing
® Size of code segment and stack
Segments and Groups: - i RS TorDdifes 1 O ’“.,f‘“ff]'rﬂég{ . .
Name tength align Combine Class ® What is the size of the code segment?

CODE_SEG . . + « « + v v v « o« 001D PARA NONE ‘CODE’

z:::;j‘f‘; Pt SODRRS TN TR SRS ® At what offset address does it begin? End?
C Nameo . e vawe A Names, types, and values of constants and
9
Eiﬁ%‘“’“ NUMBER 0100 (: .
MemTL L DlIIIUT iR SR conneno Lengen = 00 Variables
DATASEGADBR . . . v i . NUMBER 130207 A . .
R e o ® At what line of the program is the symbol
NXTPT . v © v v v v v o o o o o W L CODE_SEG b
@CPU i i . PEXT: 0101h o I “N” deﬁne?
GvemsToN. . | Lol U ek e

59 Source Lines
59 Total Lines
15 Symbols
47222 + 347542 Bytes symbol space free

0 Warning Errors
0 Severe ‘Exrors -

(b)

® What value is it assigned?

® What is the offset address of the instruction
that uses N?

lines and symbols used in the program
® Why is the value of N given as 00107?
® # errors that occurred during assembly

16.480/552 Micro 11

40

Converting Assembly Language to Machine Code
)

¢ Part of the 80x86 instruction set architecture (ISA)

® What is the machine instruction length (fixed, variable, hybrid)?

® What are the sizes of the fields—varying sizes?
® What are the functions of the fields?
¢ 80x86’s register-memory architectures is hybrid length

¢ Multiple instruction sizes, but all have byte wide lengths—

® 1 to 6 bytes in length for 8088/8086

¢ Up to 17 bytes for 80386, 80486, and Pentium
® Advantages of hybrid length

¢ Allows for many addressing modes

BYTE1

L

OPCODE 10

wron' REG | R/M

|
LOW DISP/DATA | HIGHDISP/DATA| LOWDATA
|

¢ Allows full size (32-bit) immediate data and addresses

¢ Disadvantage of variable length

REGISTER OPERAND/EXTENSION OF OPCODE

WORD/BYTE OPERATION

|
HIGHDATA |
|

___________ U U R S S U |
L REGISTER OPERAND/REGISTERS TO USE IN EA CALCULATION

e REGISTER MODE/MEMORY MODE WITH DISPLACEMENT LENGTH

DIRECTION IS TO REGISTER/DIRECTION IS FROM REGISTER

OPERATION (INSTRUCTION) CODE

¢ Requires more complicated decoding hardware—speed of decoding is critical in modern

uP

® Load-store architectures normally fixed length—PowerPC (32-bit), SPARC (32-bit), MIP (32-bit),

[tanium (128-bits, 3 instructions)

16.480/552 Micro 11

41

General Instruction Format

BYTE 1 BYTE 2 BYTE3 BYTE4 BYTES BYTES

LOW DISP/DATA : HIGH DISP/DATA| LOWDATA

0PCODE [o[wiMoD) REG | A/M | |
T - === — e 3

L REGISTER OPERAND/REGISTERS TO USE IN EA CALCULATION
REGISTER OPERAND/EXTENSION OF OPCODE
REGISTER MODE/MEMORY MODE WITH DISPLACEMENT LENGTH

WORD/BYTE OPERATION
DIRECTION IS TO REGISTER/DIRECTION iS FROM REGISTER
OPERATION (INSTRUCTION) CODE

® Information that must be coded into the instruction
® Operation code--opcode
® Source(s) and destination registers
® Size of data-W
® Addressing mode for the source or destination
® Registers used in address computation
® Immediate address displacement: How many bytes?

® Immediate data: How many bytes?

e |
16.480/552 Micro 11 42

3.3 Converting Assembly Language to Machine Code- General
Instruction Format

® Byte 1 information:
“- lo_u: 765643210 !!lll! “!Il ll !lm l!!!m!l III! l!!I!IIIII ll l!

, A performed by the instruction

Register/memory to/trom register 1000100 w ®* Move immediate to registers/memory = 1100011

® Move memory to accumulator = 1010000

, ® Move segment register to register/memory = 10001100

immediste toreguater [rortwres | ®* REG (3-bit)}—selects a first operand as a register

® Move immediate to register = 1011(w)(reg)—only requires
one register which is the destination

Accumulatorto memory i jrer000tw ¢ Accumulator register= 000

o ‘ y . ¢ Count register = 001
Register/memory t0 segmentregister - {10001 110 | .

Immediate 10 register/memory 1106009171 w

Memory to sccumuiator . 1010000 w |

, Data Register = 010
Segment register to register/memory rocofroo] ® W (1-bit)—data size word/byte for all registers
® Byte=0
® Word=1
REG W=0 W=1 ¢ D (1-bit)—register direction: tells whether the register
which is selected by the REG field in the second byte is
000 AL AX the source or destination
ot c g;(‘ * Add register to register = 000000(d)(w)
011 BL BX ®* D=0 -> source operand
100 AH SP ® D=1 - destination operand
101 CH BP
110 DH Sl
mn BH DI

16.480/552 Micro 11 43

Binary Instruction Format: Example

INC = Increment:

Register/memory B IR R B | ‘1 1 1. 1w | mod 0‘ 00 tim - {DISP-LO) (DISP-H.I)

Register bo 1l- oA 00 reg a | ,

AAA = ASCH adjust for add 00t10111 ® One Byte Example:

DAA = Decimal adjust for add 80190111 ® Encode the instruction in machine code
INC CX

® Solution:

® Use “INC register” instruction
format—special short form for 16-bit

register
REG W=0 W=1
01000 (REG)
000 AL AX
001 cL cX ® CXis destination register
010 oL DX
0 —
wo | oMo | w X =001
o cH o ® Machine code is
Il BH ol 01000 (001) = 01000001 =41H - one
byte instruction
16.480/552 Micro 11 INC CX =41H

44

3.3 Converting Assembly Language to Machine Code- General
Instruction Format

Register/memory to/from register 1000100 w mod reg tim ® MOD (2-bit mode field)—specifies the type of
Immediate to register/memory 1100911 w]|mod 000 r/m the second operand
Immediate to reQistér 1011 wreg dsta * Memory mode: 00’ 01’10_RegiSter to
] o F N memory move operation
Memory 1o decumulator o tereeeow] o wmaele | ® 00 = no immediate displacement
Accumulmtortomemery < - 1010003 w |~ agorio (register used for addressing)
Registerimemory to segment regidter -~ |'1-0-0°04 110 ---moﬂ--fo:'s& m ¢ 01 = 8-bit displacement (immg8) follows
Segment register o register’memory 10001100 'méﬂ- 0 sn---'fnm i (S-blt offset address)
‘ ® 10 =16-bit displacement (imm16)
follows (16-bit offset address)
® Register mode: 11—register to register move
CODE EXPLANATION operation
00 Memory Mode, no displacement ® 11 =register specified as the second
follows* operand

01 Memory Mode, 8-bit
displacement follows

10 Memory Mode, 16-bit
displacement follows

11 Register Mode (no
displacement)

*Except when R/M = 110, then 16-bit
| displacement follows
. |
16.480/552 Micro 11 45

3.3 Converting Assembly Language to Machine Code- General
Instruction Format

Regrster memory to/trom register 100010aw|moa reg im ® REG (3-bit register field)}—selects the
Immediate (0 register/memory 1100011 w|mod 000 m register for a first operand, which may be
lmm“mo 10 reQistér 1011 wreg data the source or deStlIlathll
. R S St L S PSR WA NI IS b ° . _
Memory 1o sccumutator Cfrereesow| wmure | Accumulator register= 000
Accomiiioria L Eeee—— ® Count register = 001
Accumulstortomemory <+ < S [101 0003w] caddrio T
T o - ' ; ® Data Register = 010

RegQisterimemory to segment register - 110001 1 40| med--0- SR Tim | .

: y ot ; ® Move register/memory to/from register
Segment register to register/ memory : 10001100 | mod 0 SR rm

. ¢ Byte 1=100010(d)(w)

¢ Byte 2 = (mod) (reg) (r/m)

REG W=0 W=1 ¢ Affected by byte 1 information:

000 AL AX ® W (1-bit)—data size word/byte for all
001 CL CX registers

010 DL DX . B

011 BL BX Byte =0

100 AH SP * Word =1

101 CH BP

110 DOH S|

11 BH DI

16.480/552 Micro 11 46

MOV = Move:

Register/memory to/trom register

Immaediate to register/memory

Immediate to registér

Memory 10 &cCumulaior

Accumulatortomemery < - ¢

Registerimemory 10 segment regigter ~ - -

Segment register to register’memory

70842210

3.3 Converting Assembly Language to Machine Code- General

76843210

Instruction Format

1000100 w

mod reg tim

® R/M (3-bit register/memory field)}—specifies the

1106091 v w

mod 0 0 0 r/m

second operand as a register or a storage location

in memory

® Dependent on MOD field
® Mod =11 R/M selects a register

1011 wreg dsta
" ittt s i Tt
Jrovoooow| s
{roro00rw | -acario -

® R/M =000 Accumulator register

10°0°071 110

mod-0- SR Tim |

¢® R/M=001 = Count register

10001100

‘mod 0 SR rim |

¢® R/M =010 = Data Register
® Move register/memory to/from register

MOD =11
R/M W=0 W=1
000 AL AX
001 CL CX
010 OL DX
o BL BX
100 AH SP
101 CH 8P
110 DH Si
m BH DI

* Byte 1= 100010(d)(W)
¢ Byte 2 = (mod) (reg) (r/m)
¢ Affected by byte 1 information:
® W (1-bit)—data size word/byte for all registers
® Byte=0
® Word=1
¢ D (1-bit)—register direction for first operand in
byte 2 (reg)
® D=0 - source operand
® D=1 - destination operand

16.480/552 Micro 11

47

3.3 Converting Assembly Language to Machine Code- General

Instruction Format

MOD = 00,10, or 10 selects an addressing
mode for the second operand that is a
storage location in memory, which may
be the source or destination

® Dependent on MOD field

® Mod=00R/M

MOV = Move:

Register:memory lolirom register
Immediate to roglllotn;momoty
lmmiduyu lg f?g‘mdr ‘

Memory to i;:cﬁn;unotév |

Accumylstor to memory -

Register/memory 1o segment regigter ~ - -

Segment register to register’memory

76842210

76843210

1000100d w

mod reg tim

110091 V' w

mod 0 0 0 r/im

1011 wreg

= - o

data
e i o

11 oro000w
R

o wgre |

Caddrdo o

-y 0-0-0°1 ¥ 40

10001100

‘mod- 0 SR--rim |

EFFECTIVE ADDRESS CALCULATION

R/M MOD=00 MOD =01 MOD=10
000 | (BX)+(S!) (BX)+(S!)+ D8 (BX) +(Sh) + D16
001 | (BX)+(Dl) (BX)+(Dl)+ D8 {BX)+(Dl)+ D16
010 | (BP)+(Sl) (BP)+(Sl)+ D8 (BP)+(Sl)+ D18
011 | (BP)+(DI) (BP) +(Dl)+ D8 (BP)+ (DI)+ D16
100 | (SI) (S1)+ D8 (S1)+ D16

101 | (D) (DI) + D8 (Dl)+ D16

110 | DIRECT ADDRESS {BP)+ D8 (BP)+ D16

111 | (BX) (BX)+ D8 (BX)+ D16

R/M =100 - effective

address computed as
EA = (SI)

R/M= 000 = - effective

address computed as
EA = (BX)+(SI)

R/M =110 = = effective

address is coded in the

instruction as a direct

address

EA = direct address = imm$§

or imml6

16.480/552 Micro 11

48

3.3 Converting Assembly Language to Machine Code- General
Instruction Format

rﬂ'GVTHou:

Register:memory to/trom register

Immediate (o register/memory

768423210

76843210

1000100d w

mod reg tim

110091 tw

mod 0 0 0 r/im

¢ Byte 1=100010(d)(w)
¢ Byte 2 = (mod) (reg) (r/m)

Immedue wregmsr AAARA R ¢ Affected of byte 1 information:
Memory to sccumutator N 010000 w| —moee | ® W (1-bit)—data size word/byte for all
Accomulator to memory - Cofrereeesw] o aamo registers
Register/memory 1& nﬁmor;t register . 10001 v 0 moﬂ o SR ';'rlm' i ° Byt e=0
Segment register to register’memory 10001100 ‘mo'd’bo'sn-*%fm 1 [) Word =1
¢ D (1-bit)—register direction for first
operand in byte 2 (reg)
EFFECTIVE ADDRESS CALCULATION * D=0 -> source operand

R/M MOD =00 MOD =01 MOD =10 ® D=1 -> destination operand

000 | (BX)+(S1) (BX) +(S!) + D8 (BX) +(S) +D18

001 | (BX)+ (D) (BX)+(D)+D8 | (BX)+(D))+D18

010 | (BP)+(Sl) (BP) +(SI)+ D8 (BP) +(SI) + D16

011 | (BP)+(DI) (BP) +(DI) + D8 (BP)+(DI) + D18

100 | (S)) (SI)+D8 (SI) + D16

101 | (DY (DI) + D8 (D) + D16

110 | DIRECT ADDRESS | (BP)+D8 (BP)+D16

111 | (BX) (BX)+D8 (BX)+D16

e |
16.480/552 Micro 11 49

3.3 Converting Assembly Language to Machine Code- General
Instruction Format

[e —
Register/memory Clr11 1_ Tw|mod 00 O r/m © {OISP-LO) (DISP-MI)
Register 01000 reg
AAA = ASCH adjust for add 060t1011
DAA = Decimal adjust tor add 6019011

® Two Byte example using R/M field for a register:

MOD=11 ® Encode the instruction in machine code

R'M | W=0 | W= INC CL
® Solution:

000 AL AX . .)
001 CL CX ¢ Use “INC register/memory” instruction format—general form
010 oL DX for 8-bit or 16-bit register/memory
o BL BX * Bytel
100 AH SP
101 CH BP 1111111(W)
110 OH St ® CL= byte wide register > W =0
m BH D! 11111110 =FEH

16.480/552 Micro 11 50

3.3 Converting Assembly Language to Machine Code- General
Instruction Format

[e B
Register/memory Clr11 1_ Tw|mod 00 O r/m © {OISP-LO) (DISP-MI)
Register 01000 reg
AAA = ASCH adjust for add 060t1011
DAA = Decimal adjust tor add 6019011

® Two Byte example using R/M field for a register (continued):

MOD = 11 ® Byte2
(MOD) 000(R/M)

R/M W=0 w=1 ® Destination is register register CL
000 AL AX * MOD=11
001 CL CX * R'M=001
010 oL DX
011 BL BX (11)000(001) = 11000001 =C1H
100 AH SP ® Machine code is
101 CH BP (Byte 1)(Byte 2) = 11111110 11000001 = FEC1H -> two byte
110 DH Si instruction
" BH DI INC CL =FECIH

16.480/552 Micro 11 51

3.3 Converting Assembly Language to Machine Code- General
Instruction Format

- ANTHMETIC : | , -
ADD = Ada: 76643210 7868543210 1li43210J 70843210 76543210 76843210
Reg/memory with register to either 000000d w | moa reg rim {DISP-LO) ({DISP-HI)
immediate t0 register/ memory 100000sw] med 000 rim (DISF-LOi ioasa-m; data » dataif 5: w=0
Immediate to accumuiator 0000010 w data data it w=1

® Two Byte example using R/M field for a register:

MOD =11 ¢® Encode the instruction in machine code
MOV BL,AL
R/M w=0 W=1 ¢ Solution:
000 AL AX ¢ Use “register/memory to/from register” instruction format—maost
001 CL CX . ii::rfl form of move instruction
010 OL DX
011 BL BX 100010(D)(W)
100 AH SP ® Assuming AL (source operand) is the register encoded in the
101 CH B8P REG field of byte 2 (1st register)
110 DH Si ®* D=0=source
m BH DI - ® Both registers are byte wide
® W =0 =byte wide

* Byte 1 = 100010(0)(0) = 10001000 =88H

16.480/552 Micro 11 59

3.3 Converting Assembly Language to Machine Code- General
Instruction Format

OATA TRANSFER
IHOV:HQVQ: 76543210 786543210 76543210 76543210 76543210 76543210 I -
REG wW=0 W=1
Register;memory to!from register 1000100w)| mod reg ¢/m {DISP-LO) (DISP-H)
Immedtate to register/memory 110001+ w|{mod 000 rm (DISP-LOY (DISP-HI) data I dataifw =1] 000 AL AX
Immediate to reQistér 1t01 1 wreg data dataifw=1 001 CL CX
010 DL DX
Memory 10 accumulator 1010000 w agdr-io agdr-hi
011 BL BX
Accumuiator to memory 1010001 w addr-1o addrhi 100 AH SP
Register/memory to segment reQister 10001110 |mod 0 SR r/m (DISP-LO) (DISP-H1) 101 CH BP
S t ter/ 10001100 d 0 SR r/ DISP-LO) (DISP-HI) 110 DH SI
egment register 10 register/memory mo rim [i - g .
1 BH DI

® Two Byte Example (continued):

® Byte2
(MOD)(REG)(R/M)
MOD =11 ® Both operands are registers
R/M | W=0 | W=1 * MOD=11
000 AL AX ® 2nd register is destination register BL
001 CL CX * RM=011
g}? gt g; ® Istregister is source register AL
100 AH SP * REG =000
101 CH BP
110 DH S| (11)000(011) =11000011 = C3H
m BH oI ® Machine code is

(Byte 1)(Byte 2) = 10001000 11000011 = 88C3H -> two byte instruction
MOV BL,AL = 88C3H

e |
16.480/552 Micro 11 53

3.3 Converting Assembly Language to Machine Code- General
Instruction Format

B anitumernc =

706843210 786643210 76843210 70843210 76543210 76843210

ADD = Ada:

Reg/memory with register 1o either 000000d w | mod reg rim {DISP-LO) {DISP-HI)

immediate t0 register/ memory 100000sw] med 000 rim (DISF-LOi ioasa-m; data » dataif 5: w=0
Immediate to accumuiator 0000010 w data data it w=1

® Two Byte example using R/M field for memory:
¢ Encode the instruction in machine code
ADD AX, [SI]

¢ Solution:
® Use “register/memory with register to either” instruction format

® Most general form of add instruction
® No displacement needed—register indirect addressing
® Bytel
000000(D)(W)
® AX (destination operand) is the register encoded in the REG field of byte 2 (1st register)

® D=1 = destination
® Addition is of word wide data
® W=1=word wide
¢ Byte 1=000000(1)(1) = 00000011 =03H

16.480/552 Micro 11 54

3.3 Converting Assembly Language to Machine Code- General

Instruction Format

: |WO Eyte example using E,H !1eI5 !or memory

REG W=0 W=1
000 AL AX
001 CL CX
010 oL DX
011 8L BX
100 AH SP
101 CH BP
110 OH S|
m 8H DI

(continued):
¢ Byte2
(MOD)(REG)(R/M)

® Second operand is in memory and pointed to
by address is SI

® MOD =00 -> [SI]
® R/M specifies the addressing mode
®* RM=100-> [SI]
® Istregister is destination register AX
®* REG=000
(00)000(100) = 00000100 = 04H

® Machine code is

(Byte 1)(Byte 2) = 00000011 00000100

EFFECTIVE ADDRESS CALCULATION
R/M MOD=00 MOD =01 MOD=10
000 | (BX)+(S!) (BX)+(S!)+ D8 (BX) +(Sh) + D16
001 | (BX)+(Dl) (BX)+(Dl)+ D8 {BX)+(Dl)+ D16
010 | (BP)+(Sl) (BP)+(SI)+ D8 (BP)+(Sl)+ D18
011 | (BP)+(DI) (BP) +(Dl)+ D8 (BP)+(DI)+ D16
100 | (SI) (S1)+ D8 (S1)+ D16
101 | (D) (DI) + D8 (Dl)+ D16
110 | DIRECT ADDRESS {BP)+ D8 (BP)+ D16
111 | (BX) (BX)+ D8 (BX)+ D16

= 0304H - two byte instruction
ADD AX, [SI] = 0304H

P ———
16.480/552 Micro 11

55

3.3 Converting Assembly Language to Machine Code- General
Instruction Format

[[eE—]

Reg/memory and register to gither 001100dw |[mod reg r/m (DISP-LO) {DISP-HI)
Immediate to register/memory 0011010w data (DISP-LO) (DISP-HY) data data it we1
immaediate to accumulator 0011010w date data it w=1

® Multi-Byte Example using R/M field with memory displacement:

¢ Encode the instruction in machine code
XOR CL,[1234H]
¢ Solution:
® Use “register/memory and register to either” instruction format
® Most general form of XOR instruction
¢ Displacement needed—direct addressing
® Bytel
001100(D)(W)
® CL (destination operand) is the register encoded in the REG field of byte 2 (1st register)
® D=1 =destination
® XORis of byte wide data
® W =0=byte wide
¢ Byte1=001100(1)(0) =00110010 =32H

16.480/552 Micro 11 56

3.3 Converting Assembly Language to Machine Code- General
Instruction Format
— , ;
REG W=0 W=1 displacement (continued):
[]
000 AL AX Byte 2
001 CL CX (MOD)(REG)(R/M)
010 oL DX
011 BL BX ® Second operand is in memory and pointed
100 AH SP .
101 CH BP to by a direct address
::? g: , S| ® MOD =00 > direct address
DI
® R/M specifies the addressing mode
® R/M =110 -> direct address
® Istregister is destination register CL
EFFECTIVE ADDRESS CALCULATION e REG =001
R/M MOD =00 MOD =01 MOD =10
(00)001(110) = 00001110 =0EH
000 | (BX)+(S!) (BX) +(S!) + D8 (BX) +(Sh) + D16
001 | (BX)+(DI) (BX)+(D)+D8 | (BX)+(DI)+D16
010 | (BP)+(SI) (BP) +(SI)+ D8 (BP)+(SI)+ D16
011 | (BP)+(DI) (BP) +(DI) + D8 (BP) +(DI) + D16
100 | (SI) (SN + 08 (S1)+ D16
101 | (D) (D) + D8 (D) + D16
110 | DIRECT ADDRESS | (BP)+D8 (BP)+D16
111 [(8X) (BX)+D8 (BX)+D16

e |
16.480/552 Micro 11

57

3.3 Converting Assembly Language to Machine Code- General
Instruction Format

_ XOR = Exclusive or: _
Reg/memory and register to gither 001100dw |[mod reg r/m {DISP-LO) {DISP-HI}
Immediate to register/memory 0011010w data {DISP-LO} {DISP-H1) data data it w=1
immediate to accumulator 0011010 w data data if w=1

® Multi-Byte Example using R/M field with memory displacement (continued):
® Bytes3 &4
(LOW DISP) (HIGH DISP)
® Indirect address is the displacement from the current data segment address
(DS)
¢ [1234H] =[12 34]
® Byte3=LOW DISP=34H =
®* Byte 4 = HIGH DISP =12H
[]
® Machine code is:
(Byte 1)(Byte 2)(Byte 3(Byte 4) = 320E3412H -> two byte instruction
XOR CL,[1234H] = 320E3412H

e |
16.480/552 Micro 11 58

3.3 Converting Assembly Language to Machine Code- General
Instruction Format

Field Value Function
s 0 No sign extension
1 Sign extend 8-bit immediate data to 16 bits if W=1
Vv 0 Shift/rotate count is one
1 Shift/rotate count is specified in CL register
z 0 Repeat/loop while zero flag is clear
« 1 Repeat/loop while zero flag is set

® SR (2-bit segment register field)—used in formats of instructions to specify a segment

register

® SR =11 - DS = data segment register

Register SR
ES 00
CS 01
SS 10
0S 1"

ES = extra segment register
rpose fields
yunt for shift and rotate instructions
) = shift count is 1
= shift count is in CL register
condition for REP string instruction
J = repeat while ZF =0
® Z =1 - repeat while ZF =1

16.480/552 Micro 11

59

Translating Assembly Langauge to Machine Code
-

MOV AX,2000H

MOV DS,AX

MOV SI,100H

MOV DI, 120H

MOV CX,10H
NXTPT: MOV AH, (S]]

MOV [DI),AH

INC SI

INC DI

DEC CX

JINZ NXTPT

NOP

;LOAD AX REGISTER

.LOAD DATA SEGMENT ADDRESS

;LOAD SOURCE BLOCK POINTER

;LOAD DESTINATION BLOCK POINTER
;LOAD REPEAT COUNTER

;MOVE SOURCE BLOCK ELEMENT TO AH
;MOVE ELEMENT FROM AH TO DESTINATION BLOCK
;INCREMENT SOURCE BLOCK POINTER
;INCREMENT DESTINATION BLOCK POINTER
;DECREMENT REPEAT COUNTER

JUMP TO NXTPT IF CX NOT EQUAL TO ZERO
;NO OPERATION

Instruction

Type of instruction

Machine code

MOV AX,2000H
MOV DS,AX
MOV S1,100H
MOV DI, 120H
MOV CX, 10H
MOV AH, [SI]
MOV [DI],AH

INC SI

INC DI
DEC CX
JNZ NXTPT

NOP

Move immediate data
to register

Move register to
segment register

Move immediate data
to register

Move immediate data
to register

Move immediate data
to register

Move memory data
to register

Move register data
to memory

Increment register
Increment register
Decrement register

Jump on not equal
to zero

No operation

101110000000000000100000, = B80020,,
1000111011011000, = 8ED8,
101111100000000000000001, = BEOOO1
101111110010000000000001, = BF2001 ¢
101110010001000000000000, = B91000,
1000101000100100,, = 8A24,,
1000100000100101, = 8825,

01000110, = 46,
01000111, = 47,4
01001001, = 49,
0110101111101, = 75F7,¢

1001000, = 80,4

Displacement for
jump to NXTPT:

16.480/552 Micro 11

60

Storing The Machine Code Program in Memory
1]

Instruction

Instruction

Type of instruction

Machine code

MOV AX,2000H
MOV DS,AX
MOV S1,100H
MOV DI, 120H
MOV CX, 10H
MOV AH, [SI]
MOV [DI],AH

INC SI

INC DI
DEC CX
JNZ NXTPT

NOP

Move immediate data

~ to register

Move register to
segment register

Move immediate data
to register

Move immediate data
to register

Move immediate data
to register

Move memory data
to register

Move register data
to memory

Increment register
Increment register
Decrement register

Jump on not equal
to zero

No operation

101110000000000000100000, = B80020,,
1000111011011000, = 8ED8,
101111100000000000000001, = BEOOO1
101111110010000000000001, = BF2001 ¢
101110010001000000000000, = B91000,
1000101000100100,, = 8A24,,
1000100000100101, = 8825,

01000110, = 46,
01000111, = 47,4
01001001, = 49,
0110101111101, = 75F 7,

1001000, = 80,4

#

16.480/552 Micro 11

Memory address Contents
200H B8H MOV AX,2000H
201H 00H
202H 20H
203H 8EH MOV DS,AX
204H D8H
205H BEH MOV SI,100H
206H O0H
207H 01H
208H BFH MOV DI,120H
209H 20H
20AH 01H
208H B9H MOV CX,10H
20CH 10H
20DH 00H
20EH 8AH MOV AH, (S]]
20FH 24H
210H 88H MOV [DI},AH
211H 25H
212H 46H INC SI
213H 47H INC DI
214H 49H DECCX
215H 75H JN\Z $-9
216H F7H
217H 90T N9/

Displacement

61

Addressing Modes of the 8088/808 Microprocessor-
Addressing Modes
——

¢ Instructions perform their specified operation on elements of data that are called its
operand

® Types of operands
¢ Source operand
¢ Destination operand

® Content of source operand combined with content of destination operand =
Result saved in destination operand location

® Operands may be
® Part of the instruction—source operand only
Held in one of the internal registers—both source and destination operands

Stored at an address in memory—either the source or destination operand

Held in an input/output port—either the source or destination operand
® Types of addressing modes

® Register addressing modes

® Immediate operand addressing

® Memory operand addressing

® FEach ogerand can use a different addressing mode

16.480/552 Micro 11 62

Register Operand Addressing Mode
1]

® Register addressing mode operands
® Source operand and destination operands
i Operand sizes are both held in internal registers of the
Ister
> Byte (Reg 8) | Word (Reg 16) 8088/8086

Accumulator AL AH | AX ® Only the data registers can be accessed as
Base BL, BH BX bytes or words
Count CL, CH CcX
Data DL, DH bX Ex. AL,AH - bytes
Stack pointer - SP AX = word
::z‘:c‘:’l':;:; - :r ® Index and pointer registers as words
Destination index . | ol Ex. SI = word pointer
Code segment - cs ® Segment registers only as words
Data segment - DS .
Stack segment _ ss Ex. DS = word pointer
Extra segment — ES

e |
16.480/552 Micro 11 63

Register Operand Addressing Mode

Address | Memory
content

01000 88
01001 c3
8088 01002 XX
MPU
(3
l 0000 } ‘
0100 s
DS
SS
ES
XXXX AX
ABCD BX

(a)

Instruction

wvaxex ® Example

Next instruction MOV AX,BX
Source = BX - word data
Destination = AX -> word data
Operation: (BX) =2 (AX)

¢ State before fetch and execution

CS:IP =0100:0000 = 01000H
Move instruction code = 8BC3H
(01000H) = 8BH
(01001H) = C3H
(BX) = ABCDH
(AX) = XXXX = don’t care state

16.480/552 Micro 11

64

Register Operand Addressing Mode

8088
MPU

l 0002 I 1P

0100

CS

ABCD

ABCD

DS
SS
ES

AX
BX
CX
DX

“1sp

B8P
sl

or

(b)

Address

01000
01001
01002

Memory
content
88
c3
XX

Instruction [Example (Contlnued)

MOV AX,BX

® State after execution
CS:IP=0100:0002 =01002H

01002H -> points to next sequential
instruction

(BX) = ABCDH
(AX) = ABCDH - Value in BX copied
into AX

Next instruction

16.480/552 Micro 11

65

Immediate Operand Addressing Mode
- 0 0000000_/1

® Immediate operand
® Operand is coded as part of the instruction
® Applies only to the source operand

® Destination operand uses register
addressing mode

Opcode Immediate operand

® Types
® Immg& = 8-bit immediate operand
® Imml6 = 16-bit immediate operand

® General instruction structure and operation

MOV Rx,ImmX
ImmX - (Rx)

e |
16.480/552 Micro 11 66

Immediate Operand Addressing Mode
Example

| ® Example
Address Mm: Instruction
01000 80 MOV AL,15H MOV AL,15H
5068 01002 ;fx'\ Next instrlction Source = Imm8 - immediate byte
MPU 01003 XX
[om0 }* data
o 1S Destination = AL —> Byte of data
> | Immediate data Operation: (Imm8) = (AL)
& ® State before fetch and execution
XX | Ax CS:IP =0100:0000 = 01000H
' :: Move instruction code = BO15H
ox (01000H) = BOH
s (01001H) = 15H - Immediate data
:: (AL) = XX -> don’t care state
DI

(a)

e |
16.480/552 Micro 11 67

Memory Operand Addressing Mode

. . L
Accessing operands in memory

® Only one operand can reside in memory—either the
PA = Segment base : Base + Index + Displacement source or destination

cs ¢ Calculate the. 20-bit ph.ysical address (PA) at which
pa=d SSL.)Bx{ [si| | ebitdisplacement the operand in stored in memory
Eg BP DI 16-bit displacement { ® Perform a read or write to this memory location
'hysical address computation
® Given in general as
PA =SBA:EA
SBA = Segment base address
EA = Effective address (offset)
¢ Components of a effective address
® Base - base registers BX or BP
® Index -> index register SI or DI
® Displacement - 8 or 16-bit displacement

® Not all elements are used in all
computations—results in a variety of addressing
modes

PA=SBA: EA

e |
16.480/552 Micro 11 68

Direct Addressing Mode

® Direct addressing mode

® Similar to immediate addressing in that
information coded directly into the

PA = Segment base: Direct address instruction
- N B ¢ Immediate information is the effective
gg | address called the direct address
PA = SS » : { Direct address ® Physical address computation
h__Es_, _ - PA = SBA:EA = 20-bit address

PA = SBA:[DA] - immediate 8-bit or
16 bit displacement

® Segment base address is DS by default
PA =DS:[DA]
® Segment override prefix (SEG) is required to
enable use of another segment register

PA = SEG:ES:[DA]
|
16.480/552 Micro 11 69

Direct Addressing Mode Example

MPU

11P

0100

CS

0200

DS

ES

AX

BX

XXXX

CcX

DX

SP

BP

SI

DI

Address

01000
01001
01002
01003
01004

02000
02001

03234
03235

Memory
content

XX

ED
BE

Instruction

MOV CX, [1234H]
°

Next instruction

Direct address

Source operand

xXample
MOV CX,[1234H]
State before fetch and execution

Instruction
CS =0100H
IP = 0000H
CS:1P = 0100:0000H = 01000H
(01000H,01001H) = Opcode = 8BOE
(01003H,01002) = DA = 1234H
Source operand—direct addressing
DS = 0200H
DA =1234H
PA = DS:DA = 0200H:1234H
= 02000H+1234H
=03234H
(03235H,03234H) = BEEDH
Destination operand--register addressing
(CX) = XXXX -> don’t care state

16.480/552 Micro 11

70

Direct Addressing Mode Example

o | & s © Example (continued)
I g% %: _ % State after execution
EECS ¢ Instruction
o CS:IP = 0100:0004 = 01004H
€s 01004H - points to next
AX o200 | xx sequential
— ‘ instruction
> Sl ® Source operand
o R (03235H,03234H) = BEEDH =
9 unchanged
® Destination operand
v (CX)=BEED
16.480/552 Micro 11

71

PA

Register Indirect Addressing Mode
- 0 _0000_/1]

L]
-

BX

BP

Sl
DI

® Register indirect addressing mode

¢ Similar to direct addressing in that the affective
address 1s combined with the contents of DS to
obtain the physical address

® Effective address resides in either a base or index
register
® Physical address computation
PA = SBA:EA - 20-bit address
PA = SBA:[Rx] = 16-bit offset

® Segment base address is DS by default for BX, SI,
and DI

PA = DS:[Rx]
¢ Segment override prefix (SEG) is required to enable
use of another segment register
PA = SEG:ES:[Rx]
® What about BP?

e |
16.480/552 Micro 11

72

Register Indirect Addressing Mode

Address l:l:::::‘\t/ Instruction 4 Example
g:gg? gg‘ MOV AX,[SI] MOV AX,[SI]
WP ooz | e | Meemme®) State before fetch and execution
0000 P
[o] ® [Instruction
0100 cs ’
e os CS=0100H
ss || IP = 0000H
ES 02000 XX
Tl CS:IP =0100:0000H = 01000H
XXXX___ | AX) (01000H,01001H) = Opcode = 8B04H
BX . p
E: P R I ® Source operand—register indirect addressing
0523 | BE DS = 0200H
sp SI=1234H
' 8P
1234 st PA =DS:SI =0200H:1234H
o = (02000H + 1234H

=03234H
(03235H,03234H) = BEEDH
Destination operand—register operand addressing

‘AX' = XXXX > an’E care ﬁﬁﬁﬁﬁ

16.480/552 Micro 11 73

(a)

Register Indirect Addressing Mode

Address l:!:rr:::'r‘: Instruction ° Example (con tlnue d)
01000 8B MOV AX,[SI) .
8088 g:gg; ?(:(Next instruction y State after executlon
o ® Instruction
| 0002 I“’ ns
o CS:IP =0100:0002 = 01002H
z;z e | 01002H —> points to next sequential
ss instruction
8 o001 | xx ® Source operand
BEED AX : : (03235H,03234H) = BEEDH > unchanged
BX . PY . .
o . Destination operand
ox o | e (AX) = BEED
sP
BP
1234 SI
DI

(b)

e |
16.480/552 Micro 11 74

cs
_JDS{.
PA = ss ('
ES

el

(a)

“Displacement

!

+

Base register

(b}

Base Addressing Mode

Based addressing mode

-

8-bit displacement |
6-bit displacement

-’

Memory

Element n

Element n — 1

.
Data structure

]
[]

Element 2

Element 1

Element 0

Effective address formed from contents of a base
register and a displacement

Base register is either BX or BP (stack)
¢ Direct/indirect displacement is 8-bit or 16bit

Physical address computation

PA = SBA:EA - 20-bit address
PA = SBA:[BX or BP] + DA

Accessing a data structure

Based addressing makes it easy to access elements
of data in an array

Address in base register points to start of the array
Displacement selects the element within the array

Value of the displacement is simply changed to
access another element in the array

Program changes value in base register to select

—anotheramay

16.480/552 Micro 11

75

Address

01000

01001

et —C oo
0100 cs
0200 ps
ss

Es 02000

02001

BE [ED |AX '
1000 BX
cx
DX
sp

BP)

sI 04234

o1 04235

(a)

Base Addressing Mode

Memory
content

88
87
34
12
XX

XX
XX

XX
XX

Instruction

MOV [BX] +1234H,AL

Next instruction

Destination operand

Example
MOV [BX] +1234H,AL
State before fetch and execution

Instruction
CS =0100H, IP = 0000H
CS:IP =0100:0000H = 01000H
(01000H,01001H) = Opcode = 8887H
(01002H,01003H) = Direct displacement = 1234H
Destination operand—based addressing
DS = 0200H, BX = 1000H, DA = 1234H
PA = DS:DS+DA = 0200H:1000H+1234H

= (02000H+1000H+1234H

= 04234H
(04234H) = XXH
Source operand—register operand addressing
(AL) = ED

16.480/552 Micro 11

76

Base Addressing Mode

Address | Memory | tnstruction ¢ Example (continued)
content
o0 | 88 | Mov(exitizaHAL @ Qtate after execution
01001 87
002 34 1
Bog8] el % . ¢ Instruction
0004 M e e inseton CS:1IP =0100:0004 = 01004H
——cs 01004H - points to next sequential
0200 DS instruction
ss ¢ Destination operand
ES
2001 X (04234H) = EDH
BE | ED |AX : ¢ Source operand
1000 Zi . (AL) = EDH - unchanged
DX
SP
BP .
s 04234 ED
04235 XX
DI
(b}
I
16.480/552 Micro 11

77

Indexed Addressing Mode
I—W

Memory ® Similar to based addressing, it makes accessing
elements of data in an array easy
Element n + 1]] R)
o FElementn ® Displacement points to the beginning of array in
. memory
Index register Array of data ® Index register selects element in the array
T : | ® Program simply changes the value of the
+ = displacement to access another array
ement 2 o
Element 1 ® Program changes (recomputes) value in index
Displacement ——————| Element 0 register to select another element in the array
| ® Effective address formed from direct displacement
(a) and contents of an index register
PA = Segment base: Index + Displacement ® Direct displacement is 8-bit or 16-bit
cs ® Index register is either SI=> source operand or DI
PA < {DS}:{SI] + {S-bit displacement} —> destination operand
SS DI 16-bit displacement . .
ES ® Physical address computation
(b) PA = SBA:EA - 20-bit address

PA = SBA-DA +[SIor DI

16.480/552 Micro 11 78

Indexed Addressing Mode

Address | Memory Instruction
content
01000 8A MOV AL, [SI] +1234H
01001 84
8088 01002 34
MPY 01003 12
| 0000 } 1P 01004 XX Next instruction °
0100 cs
0200 bs
sS
ES
02000 XX
xx | xx |ax 02001 XX
BX .
cX . []
DX)
sP
BP
2000 sl :
DI 05234 BE Source operand

(a)

Example
MOV AL,[SI] +1234H,
State before fetch and execution

Instruction

CS=0100H

IP = 0000H

CS:1P =0100:0000H = 01000H

(01000H,01001H) = Opcode = 8A84H
(01002H,01003H) = Direct displacement = 1234H
Source operand—indexed addressing

DS = 0200H

SI=2000H

DA =1234H

PA = DS:SI+DA = 0200H:2000H+1234H
=02000H+2000H+1234H
= 05234H

(05234H) = BEH
Destination operand—register operand addressing

m

16.480/552 Micro 11

79

Indexed Addressing Mode
- _____________00_0___"]

Ao | Memry | insscrin ® Example (continued)
oot | g | MOVAVEITER @ GQtate after execution
%I? E% i’; Next instruction ® Instruction
. CS:IP = 0100:0004 = 01004H
oo 01004H - points to next sequential
* instruction
02000 | XX ® Source operand
=t o | (05234H) = BEH = unchanged
- ' ® Destination operand
) (AL) = BEH
s ,
or | os2aa | e

{b)

e |
16.480/552 Micro 11 30

Based-Indexed Addressing Mode

Memory
-
Element (m,n)
Element (m,1)
Element (m,0)
Element (I,n)
+
\ Two dimensional
| array of data
5 o | —»1 Element {1,1)
236 regiter Element (1,0)
»1 Element (0,n)
+ .
Element (0,1)
Element (0,0 | |

(a)

PA = Segment base: Base + Index + Displacement

cs
_JDS\./BX SI 8-bit displacement
PA= {ss} '{BP} + {DI} + {1s-bit displacement}
ES

(b)

® Combines the functions of based and indexed addressing modes
® Enables easy access to two-dimensional arrays of data

¢ Displacement points to the beginning of array in memory

® Base register selects the row (m) of elements

® Index register selects element in a column (n)

® Program simply changes the value of the displacement to access
another array

® Program changes (re-computes) value in base register to select another
row of elements

® Program changes (re-computes) the value of the index register to select
the element in another column

Effective address formed from direct displacement and contents of a base
register and an index register

¢ Direct displacement is 8-bit or 16bit
® Base register either BX or BP (stack)

® Index register is either SI = source operand or DI = destination
operand

Physical address computation

PA = SBA:EA - 20-bit address
PA =SBA:DA + [BX or BP] + [SI or DI]

16.480/552 Micro 11

81

Based- Indexed Addressing Mode: Example

e
MOV AH,[BX][SI] +1234H,

Instruction State before fetch and execution

Address

01000
01001

8088) 01002

MPU " 01003

I 0000 } 01004
0100 cs

oS 02000

0200 02001

06234

(a)

Memory
content
8A
AO
34
12
XX

XX
XX

BE

MOV AH,[BX] [SI} +1234H []

Next instruction

Source operand

Instruction
CS = 0100H, IP = 0000H
CS:IP = 0100:0000H = 01000H
(01000H,01001H) = Opcode = 8AAOH
(01002H,01003H) = Direct displacement = 1234H
Source operand—based-indexed addressing
DA = 1234H, DS = 0200H, BX = 1000H,SI = 2000H
PA =DS:DA +BX +SI

= (0200H:1234H + 1000H + 2000H

= 02000H+1234H +1000H + 2000H

= (06234H
(06234H) = BEH
Destination operand—register operand addressing
(AH) = XX = don’t care state

16.480/552 Micro 11

82

Based- Indexed Addressing Mode

o | e @ Example (continued)
—— iR ® State after execution
oo oo | ® Instruction
22 f CS:IP =0100:0004 = 01004H
IR i | ‘ 01004H - points to next sequential
o ; instruction
‘ an ® Source operand
| (06234H) = BEH - unchanged
o ® Destination operand
(AH) = BEH

16.480/552 Micro 11 33

