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Chapter 5
8088/8086 Microprocessor
Programming
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Introduction
5.1  Data-Transfer  Instructions—

5.2  Arithmetic Instructions—

5.3  Logic Instructions—
5.4  Shift Instructions—
5.5  Rotate Instructions —
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5.1   Data Transfer Instructions- Move
Instruction

• Move instruction
• Used to move (copy) data between:

• Registers
• Register and memory
• Immediate operand to a register or memory

• General format:
MOV D,S

• Operation: Copies the content of the source to the
destination

(S)  (D)
• Source contents unchanged
• Flags unaffected

• Allowed operands
Register
Memory
Accumulator (AH,AL,AX)
Immediate operand (Source only)
Segment register (Seg-reg)

• Examples:
MOV  [SUM],AX
(AL)  (address SUM)
(AH)  (address SUM+1)

1. Is the destination in a register or
memory?
2. What is the addressing mode of the
source?
3. The destination?
4. What is SUM?
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5.1   Data Transfer Instructions- Move
Instruction

• Example
MOV DX,CS

Source = CS  word data
Destination = DX  word data

  Operation: (CS)  (DX)
•  State before fetch and execution

CS:IP = 0100:0100 = 01100H
Move instruction code = 8CCAH
(01100H) = 8CH
(01101H) = CAH

 (CS) = 0100H
(DX) = XXXX  don’t care state
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5.1   Data Transfer Instructions- Move
Instruction

• Example (continued)
• State after execution

CS:IP = 0100:0102 = 01102H
01002H  points to next sequential

    instruction
(CS) = 0100H
(DX) = 0100H  Value in CS copied
 into DX
Value in CS unchanged
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5.1   Data Transfer Instructions- Move
Instruction

• Debug execution example
MOV CX,[20]
DS = 1A00
(DS:20) = AA55H
(1A00:20)  (CX)

How could you verify loading of this data?

1. Where is the source operand located?

2. What is the addressing mode of the
source operand?
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5.1   Data Transfer Instructions- Move
Instruction

• Example—Initialization of internal registers with
immediate data and address information
• DS, ES, and SS registers initialized from

immediate data via AX
IMM16  (AX)
(AX)  (DS) & (ES) = 2000H
IMM16  (AX)
(AX)  (SS) = 3000H

• Data registers initialized
IMM16  (AX) =0000H
(AX)  (BX) =0000H
IMM16  (CX) = 000AH and (DX) =

0100H
• Index register initialized from immediate

operations
IMM16  (SI) = 0200H and (DI) = 0300H

; init_seg_reg

; init_data_reg

; init_index_reg

1. What addressing modes are in use in
this program?
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5.1   Data Transfer Instructions- Exchange
Instruction

• Exchange instruction
• Used to exchange the data between two

data registers or a data register and
memory

• General format:
XCHG  D,S

• Operation: Swaps the content of the
source and  destination

• Both source and destination change
(S)  (D)
(D)  (S)

• Flags unaffected
• Special accumulator destination version

executes faster
•  Examples:

XCHG AX,DX
(Original value in AX)  (DX)
(Original value in DX)  (AX)

1. Why do you think this is known as a
“complex instruction?”

2. How else could this operation be
performed?

3. What is the benefit of using XCHG?
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5.1   Data Transfer Instructions- Exchange
Instruction

• Example
XCHG [SUM],BX

Source = BX  word data
Destination = memory offset

       SUM  word data
  Operation: (SUM)  (BX)

    (BX)  (SUM)
What is the general logical address of the

destination operand?
•  State before fetch and execution

CS:IP = 1100:0101 = 11101H
Move instruction code = 871E3412H
(01104H,01103H) = 1234H = SUM
(DS) = 1200H

   (BX) = 11AA
(DS:SUM) = (1200:1234) = 00FFH

What is this type data organization
called?
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5.1   Data Transfer Instructions- Exchange
Instruction

• Example (continued)
• State after execution

CS:IP = 1100:0105 = 11105H
11005H  points to next sequential

    instruction
• Register updated

(BX) = 00FFH
• Memory updated

(1200:1234) = AAH
(1200:1235) = 11H
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5.1  Data Transfer Instructions- Exchange
Instruction

• Debug execution of example

Write a dump command?
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5.1   Data Transfer Instructions- Translate
Instruction

• Translate instruction
• Used to look up a byte-wide value in a table in memory and copy that

value in the AL register
• General format:

XLAT
• Operation: Copies the content of the element pointed to in the source

table in memory to the AL register
((AL)+(BX) +(DS)0)  (AL)
 Where:

(DS)0 = Points to the active data segment
(BX) = Offset to the first element in the table
(AL) = Displacement to the element of the table that is to be
accessed*
*8-bit value limits table size to 256 elements
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5.1   Data Transfer Instructions- Translate
Instruction

• Application: ASCII to EBCDIC Translation
• Fixed EBCDIC table coded into memory

starting at offset in BX
• Individual EBCDIC codes placed in table at

displacement (AL) equal to the value of
their equivalent ASCII character

• A = 41H in ASCII, A = C1H in EBCDIC
• Place the value C1H in memory at

address (A1H+(BX) +(DS)0), etc.
• Example

XLAT
(DS) = 0300H
(BX) = 0100H
(AL) = 3FH  6FH = ? (Question
mark)
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5.1   Data Transfer Instructions- Load Effective
Address and Load Full Pointer
Instructions • Load effective address instruction

• Used to load an address pointer
offset from memory into a register

• General format:
LEA Reg16,EA

• Operation:
(EA)  (Reg16)

• Source unaffected:
• Flags unaffected

• Load full pointer
• Used to load a full address pointer

from memory into a segment
register and a register

• Segment base address
• Offset

• General format and operation for
LDS

LDS Reg16,EA
(EA)  (Reg16)
(EA+2) (DS)

• LES operates the same, except
initializes ES
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5.1   Data Transfer Instructions- Load Effective
Address and Load Full Pointer
Instructions

• Example
LDS SI,[200H]

Source = pointer to DS:200H 32 bits
Destination = SI  word pointer offset

        DS  word pointer SBA
  Operation: (DS:200H)  (SI)

     (DS:202H)  (DS)
•  State before fetch and execution

CS:IP = 1100:0100 = 11100H
LDS instruction code = C5360002H
(11102H,11103H) = (EA) = 0200H
(DS) = 1200H
(SI) = XXXX  don’t care state
(DS:EA) = 12200H = 0020H = Offset
(DS:EA+2) = 12202H = 1300H = SBA
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5.1   Data Transfer Instructions- Load Effective
Address and Load Full Pointer
Instructions

• Example (continued)
• State after execution

CS:IP = 1100:0104 = 11104H
01004H  points to next sequential

    instruction
(DS) = 1300H  defines a new data

                                   segment
(SI) = 0020H  defines new offset

            into DS



The 8088 and 8086 Microprocessors,Triebel and Singh 17

5.2   Data Transfer Instructions- Load Effective
Address and Load Full Pointer
Instructions

• Example—Initialization of internal registers from
memory with data and address information
• DS loaded via AX with immediate value using

move instructions
 DATA_SEG_ADDR  (AX)  (DS)

• Index register SI loaded with move from table
(INIT_TABLE,INIT_TABLE+1)  SI

• DI and ES are loaded with load full pointer
instruction
(INIT_TABLE+2,INIT_TABLE+3)  DI
(INIT_TABLE+4,INIT_TABLE+5)  ES

• SS loaded from table via AX using move
instructions
(INIT_TABLE+6,INIT_TABLE+7)  AX  (SS)

• Data registers loaded from table with move
instructions

 (INIT_TABLE+8,INIT_TABLE+9)  AX
(INIT_TABLE+A,INIT_TABLE+B)  BX
(INIT_TABLE+C,INIT_TABLE+D)  CX
(INIT_TABLE+E,INIT_TABLE+F)  DX
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5.2  Arithmetic Instructions- Addition
Instructions

• Variety of arithmetic instruction provided to
support integer addition—core instructions
are
• ADD Addition
• ADC  Add with carry
• INC  Increment

• Addition Instruction—ADD
• ADD format and operation:

 ADD D,S
(S) +(D)  (D)
• Add values in two registers

ADD AX,BX
(AX) + (BX)  (AX)

• Add a value in memory and a value
in a register
ADD  [DI],AX
(DS:DI) + (AX)  (DS:DI)

• Add an immediate operand to a value
in a register or memory
ADD AX,100H
(AX) + IMM16  (AX)

• Flags updated based on result
• CF, OF, SF, ZF, AF, PF
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5.2  Arithmetic Instructions- Addition
Instructions

• Example
ADD AX,BX
(AX) + (BX)  (AX)
• Word-wide register to register add
• Half adder operation

• State before fetch and execution
CS:IP = 1100:0100 = 11100H
ADD machine code = 03C3H
(AX) = 1100H
(BX) = 0ABCH
(DS) = 1200H
(1200:0000) = 12000H = XXXX
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5.2  Arithmetic Instructions- Addition
Instructions

• Example (continued)
• State after execution

CS:IP = 1100:0102 = 11102H
11102H  points to next sequential

    instruction
• Operation performed

(AX) + (BX)  (AX)
(1100H) + (0ABCH)  1BBCH

(AX) = 1BBCH
          = 00011011101111002

(BX) = unchanged
• Impact on flags

• CF = 0  (no carry resulted)
• ZF = 0  (not zero)
• SF = 0  (positive)
• PF = 0  (odd parity)—parity flag is

only based on the bits of the least
significant byte
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5.2  Arithmetic Instructions- Addition
Instructions

• Add with carry instruction—ADC
• ADC format and operation:

 ADC D,S
(S) +(D) + (CF)  (D)
• Full-add operation
• Used for extended addition

• Add two registers with carry
ADC AX,BX 
(AX) + (BX) + (CF)  (AX)

• Add  register and memory with carry
ADC  [DI],AX
(DS:DI) + (AX)+ (CF)  (DS:DI)

• Add immediate operand to a value in a
register or memory

ADC AX,100H
(AX) + IMM16 + (CF)  (AX)

• Same flags updated as ADD
• Increment instruction—INC

• INC format and operation
INC D
(D) + 1  (D)

• Used to increment pointers (addresses)
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5.2  Arithmetic Instructions- Addition
Instructions

• Example—Arithmetic computations
•  Initial state:

(AX) = 1234H
(BL) = ABH
(SUM) = 00CDH
(CF) = 0

• Operation of first instruction
(DS:SUM) + (AX)  (AX)
00CDH + 1234H = 1301H
(AX) = 1301H
(CF) = unchanged

• Operation of second instruction
(BL) + IMM8 +(CF)  BL
ABH + 05H + 0 = B0H
(BL) = B0H
(CF) = unchanged

• Operation of third instruction
 (DS:SUM) + 1  (DS:SUM)

00CDH + 1 = 00CEH
(SUM) = 00CEH
(CF) = unchanged

1. Does the column (SUM) stand for a
value in a register code memory, or a
storage location in memory?

2. Why is the operand of the INC
instruction preceded by WORD PTR?
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5.2  Arithmetic Instructions- Addition
Instructions

• Example—Execution of the arithmetic computation sequence

Missing = sign

1. What is the value of SUM?

2. What is logical address is accessed
in memory?
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5.2  Arithmetic Instructions- Subtraction
Instructions

• Variety of arithmetic instruction provided to
support integer subtraction—core instructions
are
• SUB  Subtract
• SBB  Subtract with borrow
• DEC  Decrement
• NEG  Negative

• Subtract Instruction—SUB
• SUB format and operation:

 SUB D,S
(D) - (S)  (D)
• Subtract values in two registers

 SUB AX,BX
(AX) - (BX)  (AX)

• Subtract a value in memory and a
value in a register
SUB  [DI],AX
(DS:DI) - (AX)  (DS:DI)

• Subtract an immediate operand from
a value in a register or memory
SUB AX,100H
(AX) - IMM16  (AX)

• Flags updated based on result
• CF, OF, SF, ZF, AF, PF
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5.2  Arithmetic Instructions- Subtraction
Instructions

• Subtract  with borrow instruction—SBB
• SBB format and operation:

 SBB D,S
(D) - (S) - (CF)  (D)
• Used for extended subtractions

• Subtracts two registers and carry
(borrow)
SBB AX,BX 

• Example:
SBB BX,CX
(BX) = 1234H
(CX) = 0123H
(CF) = 0
(BX) - (CX) - (CF)  (BX)
1234H - 0123H - 0H = 1111H
(BX) = 1111H
• What about CF?
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5.2  Arithmetic Instructions- Subtraction
Instructions

• Negate instruction—NEG
• NEG format and operation

NEG D
(0) - (D)  (D)
(1) (CF)

• Example:
NEG BX
(BX) =003AH
(0) - (BX)  (BX)
0000H – 003AH=
0000H + FFC6H (2’s complement) =

FFC6H
(BX) =FFC6H; CF =1

• Decrement instruction—DEC
• DEC format and operation

DEC D
(D) - 1  (D)

• Used to decrement pointer—addresses
• Example

DEC SI
(SI) = 0FFFH
(SI) - 1  SI
0FFFH - 1 = 0FFEH
(DI) = 0FFEH
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5.2  Arithmetic Instructions- Multiplication
Instructions

• Integer multiply instructions—MUL
and IMUL
• Multiply two unsigned or

signed byte or word operands
• General format and operation

MUL S = Unsigned integer
multiply

IMUL S = Signed integer
multiply
(AL) X (S8) (AX)   8-bit
product gives 16 bit result
(AX) X (S16)  (DX), (AX)  16-
bit product gives 32 bit result

• Source operand (S) can be
an 8-bit or 16-bit value in a
register or memory

• AX assumed to be
destination for 16 bit result

• DX,AX assumed destination
for 32 bit result

• Only CF and OF flags
updated; other undefined
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5.2  Arithmetic Instructions- Multiplication
Instructions

• Example:
MUL CL
(AL) = -110

(CL) = -210
Expressing in 2’s complement
(AL) = -1 = 111111112 = FFH
(CL) = -2 = 111111102 = FEH
Operation:
(AL) X (CL)  (AX)

111111112 X 111111102 = 1111110100000010
(AX) = FD02H
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5.2  Arithmetic Instructions- Division
Instructions

•  Integer divide instructions—DIV and IDIV
• Divide unsigned– DIV S

• Operations:
(AX) / (S8)  (AL) =quotient

    (AH) = remainder
• 16 bit dividend in AX divided

by 8-bit divisor in a register or
memory,

• Quotient of result produced  in
AL

• Remainder of result produced
in AH

(DX,AX) / (S16)  (AX) =quotient
            (DX) = remainder

• 32 bit dividend in DX,AX
divided by 16-bit divisor in a
register or memory

• Quotient of result produced in
AX

• Remainder of result produced
in DX

• Divide error (Type 0) interrupt may
occur
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5.2  Arithmetic Instructions- Convert
Instructions

• Convert instructions
• Used to sign extension signed numbers

for division
• Operations

• CBW = convert byte to word
(MSB of AL)  (all bits of AH)

• CWD =  convert word to double word
(MSB of AX)  (all bits of DX)

• Application:
• To divide two signed 8-bit numbers, the

value of the dividend must be sign
extended in AX

• Load into AL
• Use CBW to sign extend to 16 bits

• Example
A1H  AL
CBW sign extends to give
FFA1H  AX
CWD sign extends to give
FFFFH  DX
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5.3  Logic Instructions- Available Instructions
and their Operation• Variety of logic instructions provided to support logical

computations
• AND  Logical AND
• OR   Logical inclusive-OR
• XOR  Logical exclusive-OR
• NOT   Logical NOT

• Logical AND Instruction—AND
• AND format and operation:

 AND D,S
(S) AND (D)  (D)
• Logical AND of values in two registers

   AND AX,BX
   (AX) AND (BX)  (AX)

• Logical AND of a value in memory and a value
in a register
   AND  [DI],AX
   (DS:DI) AND (AX)  (DS:DI)

• Logical AND of an immediate operand with a
value in a register or memory
   AND AX,100H
   (AX) AND IMM16  (AX)

• Flags updated based on result
• CF, OF, SF, ZF, PF
• AF undefined

1. Describe the AND operations.

2. Describe the OR operations.

3. Describe the XOR operations.

4. Describe the NOT operations.
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5.3  Logic Instructions- Example
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5.3  Logic Instructions- Mask Application

• Application– Masking bits with the logic instructions
•  Mask—to clear a bit or bits of a byte or word to 0

• AND operation can be used to perform the mask operation
• 1 AND 0  0; 0 and 0  0

• A bit or bits are masked by ANDing with 0
• 1 AND 1  1; 0 AND 1  0

• ANDing a bit or bits with 1 results in no change
• Example: Masking the upper 12 bits of a value in a register

AND AX,000FH
(AX) =FFFF
IMM16 AND (AX)   (AX)

000FH AND FFFFH = 00000000000011112  AND 11111111111111112
            = 00000000000011112
            = 000FH

1. Write an AND instruction to clear the 5th bit in
the AL.

               (AL) = b7b6b5b4b3b2b1b0?
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5.3  Logic Instructions- Mask Application

• OR operation can be used to set a bit or bits of a byte or word to 1
• X OR 0  X;  result is unchanged
• X or 1  1;  result is always 1
• Example: Setting a control flag in a byte memory location to 1

MOV AL,[CONTROL_FLAGS]
OR   AL, 10H ; 00010000 sets fifth bit –b4
MOV [CONTROL_FLAGS],AL

General Operation:
(AL) = XXXXXXXX2 OR 000100002 = XXX1XXXX2

1. What is CONTROL_FLAGS?

2, What is it relative to?
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5.4  Shift Instructions- Available Instructions
• Variety of shift instructions provided

• SAL/SHL  Shift arithmetic left/shift
logical left

• SHR  Shift logical right
• SAR  Shift arithmetic right

• Perform a variety of shift left and shift right
operations on the bits of a destination data
operand

• Basic shift instructions—SAL/SHL, SHR,
SAR
• Destination may be in either a

register or a storage location in
memory

• Shift count may be:
1= one bit shift
CL =  1 to 255 bit shift

• Flags updated based on result
• CF, SF, ZF, PF
• AF undefined
• OF undefined if Count ≠ 1
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5.4  Shift Instructions- Operation of the
SAL/SHL Instruction

• SAL/SHL instruction operation
• Typical instruction—count of 1

SHL AX,1
• Before execution

Dest  = (AX) = 1234H
=  00010010001101002

Count = 1
CF = X

• Operation
• The value in all bits of AX are shifted left one

bit position
• Emptied LSB is filled with 0
• Value shifted out of MSB goes to carry flag

• After execution
Dest  = (AX) = 2468H

=  00100100011010002
CF = 0

• Conclusion
• MSB has been isolated in CF and can be

acted upon by control flow instruction–
conditional jump

• Result has been multiplied by 2

Note: Signed or
unsigned data
answer is the same
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5.4  Shift Instructions- Operation of the SHR
Instruction• SHR instruction operation

• Typical instruction—count in CL
SHR AX,CL

• Before execution
Dest  = (AX) = 1234H = 466010

=  00010010001101002
Count = (CL) = 02H
CF = X

• Operation
• The value in all bits of AX are shifted right two

bit positions
• Emptied MSBs are filled with 0s
• Value shifted out of LSB goes to carry flag

• After execution
Dest  = (AX) = 048DH = 116510

=  00000100100011012
CF = 0

• Conclusion
• Bit 1 has been isolated in CF and can be acted

upon by control flow instruction– conditional
jump

• Result has been divided by 4
• 4 X 1165 = 4660

Note: processes
unsigned data
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5.4  Shift Instructions- Operation of the SAR
Instruction• SAR instruction operation

• Typical instruction—count in CL
SAR AX,CL

• Before execution—arithmetic implies signed numbers
Dest  = (AX) = 091AH = 00001001000110102 = +2330

 Count = CL = 02H
CF = X

• Operation
• The value in all bits of AX are shifted right two bit

positions
• Emptied MSB is filled with the value of the sign bit
• Values shifted out of LSB go to carry flag

• After execution
Dest  = (AX) = 0246H =  00000010010001102 = +582
CF = 1

• Conclusion
• Bit 1 has been isolated in CF and can be acted upon by

control flow instruction– conditional jump
• Result has been signed extended
• Result value has been divided by 4 and rounded to integer

• 4 X +582 = +2328
Note: processed
data treated as
signed number
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5.4   Shift Instructions- SAR Instruction
Execution

• Debug execution of example
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5.4  Shift Instructions-  Application

• Application–Isolating a bit of a byte of data in memory in the carry flag
• Example:

• Instruction sequence
MOV AL,[CONTROL_FLAGS]
MOV CL, 04H
SHR AL,CL

• Before execution
(CONTROL_FLAGS) = B7B6B5B4B3B2B1B0

• After execution
     (AL) = 0000B7B6B5B4
     (CF) = B3
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5.5  Rotate Instructions- Available
Instructions

• Variety of rotate instructions provided
• ROL  Rotate left
• ROR  Rotate right
• RCL  Rotate left through carry
• RCR  Rotate right through carry

• Perform a variety of rotate left and rotate right
operations on the bits of a destination data
operand

• Overview of function
• Destination may be in either a register

or a storage location in memory
• Rotate count may be:

1= one bit rotate
CL =  1 to 255 bit rotate

• Flags updated based on result
• CF
• OF undefined if Count ≠ 1

• Used to rearrange information
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5.5  Rotate Instructions- Operation of the ROL
Instruction

• ROL instruction operation
• Typical instruction—count of 1

ROL AX,1
• Before execution

Dest  = (AX) = 1234H
=  0001 0010 0011 01002

Count = 1
CF = 0

• Operation
• The value in all bits of AX are rotated

left one bit position
• Value rotated out of the MSB is

reloaded at LSB
• Value rotated out of MSB is copied to

carry flag
• After execution

Dest  = (AX) = 2468H
=  0010 0100 0110 10002

CF = 0
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5.5  Rotate Instructions- Operation of the ROR
Instruction

• ROR instruction operation
• Typical instruction—count in CL

ROR AX,CL
• Before execution

Dest  = (AX) = 1234H = 00010010001101002
Count = 04H
CF = 0

• Operation
• The value in all bits of AX are rotated right four bit

positions
• Values rotated out of the LSB are reloaded at MSB
• Values rotated out of MSB copied to carry flag

• After execution
Dest  = (AX) = 4123H = 01000001001000112
CF = 0

• Conclusion:
• Note that the position of hex characters in AX have

be rearranged
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5.5  Rotate Instructions- Operation of the RCL
Instruction

• RCL instruction operation
• Typical instruction—count in CL

RCL BX,CL
• Before execution

Dest  = (BX) = 1234H = 00010010001101002
 Count = (CL) = 04H

CF = 0
• Operation

• The value in all bits of AX are rotated left
four bit positions

• Emptied MSBs are rotated through the
carry bit back into the LSB

• First rotate loads prior value of CF at the
LSB

• Last value rotated out of MSB retained in
carry flag

• After execution
Dest  = (BX) = 2340H =  00100011010000002
CF = 1
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5.5  Rotate Instructions- RCR Example

• RCR instruction debug execution
example
• Instruction—count in CL

RCR BX,CL
• Before execution

Dest  = (BX) = 1234H =
00010010001101002

 Count = 04H
CF = 0

• After execution
Dest  = (BX) = 8123H =
10000001001000112
CF = 0
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5.5  Rotate Instructions- Application

• Disassembling and adding 2 hex digits
1st Instruction  Loads AL with byte
       containing two hex digits
2nd Instruction Copies byte to BL
3rd Instruction  Loads rotate count
4th instruction  Aligns upper hex digit of BL
                             with lower digit in AL
5th Instruction  Masks off upper hex digit in AL
6th Instruction  Masks off upper four bits of BL
7th Instruction  Adds two hex digits


