
The 8088 and 8086 Microprocessors,Triebel and Singh 1

Chapter 5
8088/8086 Microprocessor
Programming

The 8088 and 8086 Microprocessors,Triebel and Singh 2

Introduction
5.1 Data-Transfer Instructions—

5.2 Arithmetic Instructions—

5.3 Logic Instructions—
5.4 Shift Instructions—
5.5 Rotate Instructions —

The 8088 and 8086 Microprocessors,Triebel and Singh 3

5.1 Data Transfer Instructions- Move
Instruction

• Move instruction
• Used to move (copy) data between:

• Registers
• Register and memory
• Immediate operand to a register or memory

• General format:
MOV D,S

• Operation: Copies the content of the source to the
destination

(S)  (D)
• Source contents unchanged
• Flags unaffected

• Allowed operands
Register
Memory
Accumulator (AH,AL,AX)
Immediate operand (Source only)
Segment register (Seg-reg)

• Examples:
MOV [SUM],AX
(AL)  (address SUM)
(AH)  (address SUM+1)

1. Is the destination in a register or
memory?
2. What is the addressing mode of the
source?
3. The destination?
4. What is SUM?

The 8088 and 8086 Microprocessors,Triebel and Singh 4

5.1 Data Transfer Instructions- Move
Instruction

• Example
MOV DX,CS

Source = CS  word data
Destination = DX  word data

 Operation: (CS)  (DX)
• State before fetch and execution

CS:IP = 0100:0100 = 01100H
Move instruction code = 8CCAH
(01100H) = 8CH
(01101H) = CAH

 (CS) = 0100H
(DX) = XXXX  don’t care state

The 8088 and 8086 Microprocessors,Triebel and Singh 5

5.1 Data Transfer Instructions- Move
Instruction

• Example (continued)
• State after execution

CS:IP = 0100:0102 = 01102H
01002H  points to next sequential

 instruction
(CS) = 0100H
(DX) = 0100H  Value in CS copied
 into DX
Value in CS unchanged

The 8088 and 8086 Microprocessors,Triebel and Singh 6

5.1 Data Transfer Instructions- Move
Instruction

• Debug execution example
MOV CX,[20]
DS = 1A00
(DS:20) = AA55H
(1A00:20)  (CX)

How could you verify loading of this data?

1. Where is the source operand located?

2. What is the addressing mode of the
source operand?

The 8088 and 8086 Microprocessors,Triebel and Singh 7

5.1 Data Transfer Instructions- Move
Instruction

• Example—Initialization of internal registers with
immediate data and address information
• DS, ES, and SS registers initialized from

immediate data via AX
IMM16  (AX)
(AX)  (DS) & (ES) = 2000H
IMM16  (AX)
(AX)  (SS) = 3000H

• Data registers initialized
IMM16  (AX) =0000H
(AX)  (BX) =0000H
IMM16  (CX) = 000AH and (DX) =

0100H
• Index register initialized from immediate

operations
IMM16  (SI) = 0200H and (DI) = 0300H

; init_seg_reg

; init_data_reg

; init_index_reg

1. What addressing modes are in use in
this program?

The 8088 and 8086 Microprocessors,Triebel and Singh 8

5.1 Data Transfer Instructions- Exchange
Instruction

• Exchange instruction
• Used to exchange the data between two

data registers or a data register and
memory

• General format:
XCHG D,S

• Operation: Swaps the content of the
source and destination

• Both source and destination change
(S)  (D)
(D)  (S)

• Flags unaffected
• Special accumulator destination version

executes faster
• Examples:

XCHG AX,DX
(Original value in AX)  (DX)
(Original value in DX)  (AX)

1. Why do you think this is known as a
“complex instruction?”

2. How else could this operation be
performed?

3. What is the benefit of using XCHG?

The 8088 and 8086 Microprocessors,Triebel and Singh 9

5.1 Data Transfer Instructions- Exchange
Instruction

• Example
XCHG [SUM],BX

Source = BX  word data
Destination = memory offset

 SUM  word data
 Operation: (SUM)  (BX)

 (BX)  (SUM)
What is the general logical address of the

destination operand?
• State before fetch and execution

CS:IP = 1100:0101 = 11101H
Move instruction code = 871E3412H
(01104H,01103H) = 1234H = SUM
(DS) = 1200H

 (BX) = 11AA
(DS:SUM) = (1200:1234) = 00FFH

What is this type data organization
called?

The 8088 and 8086 Microprocessors,Triebel and Singh 10

5.1 Data Transfer Instructions- Exchange
Instruction

• Example (continued)
• State after execution

CS:IP = 1100:0105 = 11105H
11005H  points to next sequential

 instruction
• Register updated

(BX) = 00FFH
• Memory updated

(1200:1234) = AAH
(1200:1235) = 11H

The 8088 and 8086 Microprocessors,Triebel and Singh 11

5.1 Data Transfer Instructions- Exchange
Instruction

• Debug execution of example

Write a dump command?

The 8088 and 8086 Microprocessors,Triebel and Singh 12

5.1 Data Transfer Instructions- Translate
Instruction

• Translate instruction
• Used to look up a byte-wide value in a table in memory and copy that

value in the AL register
• General format:

XLAT
• Operation: Copies the content of the element pointed to in the source

table in memory to the AL register
((AL)+(BX) +(DS)0)  (AL)
 Where:

(DS)0 = Points to the active data segment
(BX) = Offset to the first element in the table
(AL) = Displacement to the element of the table that is to be
accessed*
*8-bit value limits table size to 256 elements

The 8088 and 8086 Microprocessors,Triebel and Singh 13

5.1 Data Transfer Instructions- Translate
Instruction

• Application: ASCII to EBCDIC Translation
• Fixed EBCDIC table coded into memory

starting at offset in BX
• Individual EBCDIC codes placed in table at

displacement (AL) equal to the value of
their equivalent ASCII character

• A = 41H in ASCII, A = C1H in EBCDIC
• Place the value C1H in memory at

address (A1H+(BX) +(DS)0), etc.
• Example

XLAT
(DS) = 0300H
(BX) = 0100H
(AL) = 3FH  6FH = ? (Question
mark)

The 8088 and 8086 Microprocessors,Triebel and Singh 14

5.1 Data Transfer Instructions- Load Effective
Address and Load Full Pointer
Instructions • Load effective address instruction

• Used to load an address pointer
offset from memory into a register

• General format:
LEA Reg16,EA

• Operation:
(EA)  (Reg16)

• Source unaffected:
• Flags unaffected

• Load full pointer
• Used to load a full address pointer

from memory into a segment
register and a register

• Segment base address
• Offset

• General format and operation for
LDS

LDS Reg16,EA
(EA)  (Reg16)
(EA+2) (DS)

• LES operates the same, except
initializes ES

The 8088 and 8086 Microprocessors,Triebel and Singh 15

5.1 Data Transfer Instructions- Load Effective
Address and Load Full Pointer
Instructions

• Example
LDS SI,[200H]

Source = pointer to DS:200H 32 bits
Destination = SI  word pointer offset

 DS  word pointer SBA
 Operation: (DS:200H)  (SI)

 (DS:202H)  (DS)
• State before fetch and execution

CS:IP = 1100:0100 = 11100H
LDS instruction code = C5360002H
(11102H,11103H) = (EA) = 0200H
(DS) = 1200H
(SI) = XXXX  don’t care state
(DS:EA) = 12200H = 0020H = Offset
(DS:EA+2) = 12202H = 1300H = SBA

The 8088 and 8086 Microprocessors,Triebel and Singh 16

5.1 Data Transfer Instructions- Load Effective
Address and Load Full Pointer
Instructions

• Example (continued)
• State after execution

CS:IP = 1100:0104 = 11104H
01004H  points to next sequential

 instruction
(DS) = 1300H  defines a new data

 segment
(SI) = 0020H  defines new offset

 into DS

The 8088 and 8086 Microprocessors,Triebel and Singh 17

5.2 Data Transfer Instructions- Load Effective
Address and Load Full Pointer
Instructions

• Example—Initialization of internal registers from
memory with data and address information
• DS loaded via AX with immediate value using

move instructions
 DATA_SEG_ADDR  (AX)  (DS)

• Index register SI loaded with move from table
(INIT_TABLE,INIT_TABLE+1)  SI

• DI and ES are loaded with load full pointer
instruction
(INIT_TABLE+2,INIT_TABLE+3)  DI
(INIT_TABLE+4,INIT_TABLE+5)  ES

• SS loaded from table via AX using move
instructions
(INIT_TABLE+6,INIT_TABLE+7)  AX  (SS)

• Data registers loaded from table with move
instructions

 (INIT_TABLE+8,INIT_TABLE+9)  AX
(INIT_TABLE+A,INIT_TABLE+B)  BX
(INIT_TABLE+C,INIT_TABLE+D)  CX
(INIT_TABLE+E,INIT_TABLE+F)  DX

The 8088 and 8086 Microprocessors,Triebel and Singh 18

5.2 Arithmetic Instructions- Addition
Instructions

• Variety of arithmetic instruction provided to
support integer addition—core instructions
are
• ADD Addition
• ADC  Add with carry
• INC  Increment

• Addition Instruction—ADD
• ADD format and operation:

 ADD D,S
(S) +(D)  (D)
• Add values in two registers

ADD AX,BX
(AX) + (BX)  (AX)

• Add a value in memory and a value
in a register
ADD [DI],AX
(DS:DI) + (AX)  (DS:DI)

• Add an immediate operand to a value
in a register or memory
ADD AX,100H
(AX) + IMM16  (AX)

• Flags updated based on result
• CF, OF, SF, ZF, AF, PF

The 8088 and 8086 Microprocessors,Triebel and Singh 19

5.2 Arithmetic Instructions- Addition
Instructions

• Example
ADD AX,BX
(AX) + (BX)  (AX)
• Word-wide register to register add
• Half adder operation

• State before fetch and execution
CS:IP = 1100:0100 = 11100H
ADD machine code = 03C3H
(AX) = 1100H
(BX) = 0ABCH
(DS) = 1200H
(1200:0000) = 12000H = XXXX

The 8088 and 8086 Microprocessors,Triebel and Singh 20

5.2 Arithmetic Instructions- Addition
Instructions

• Example (continued)
• State after execution

CS:IP = 1100:0102 = 11102H
11102H  points to next sequential

 instruction
• Operation performed

(AX) + (BX)  (AX)
(1100H) + (0ABCH)  1BBCH

(AX) = 1BBCH
 = 00011011101111002

(BX) = unchanged
• Impact on flags

• CF = 0 (no carry resulted)
• ZF = 0 (not zero)
• SF = 0 (positive)
• PF = 0 (odd parity)—parity flag is

only based on the bits of the least
significant byte

The 8088 and 8086 Microprocessors,Triebel and Singh 21

5.2 Arithmetic Instructions- Addition
Instructions

• Add with carry instruction—ADC
• ADC format and operation:

 ADC D,S
(S) +(D) + (CF)  (D)
• Full-add operation
• Used for extended addition

• Add two registers with carry
ADC AX,BX
(AX) + (BX) + (CF)  (AX)

• Add register and memory with carry
ADC [DI],AX
(DS:DI) + (AX)+ (CF)  (DS:DI)

• Add immediate operand to a value in a
register or memory

ADC AX,100H
(AX) + IMM16 + (CF)  (AX)

• Same flags updated as ADD
• Increment instruction—INC

• INC format and operation
INC D
(D) + 1  (D)

• Used to increment pointers (addresses)

The 8088 and 8086 Microprocessors,Triebel and Singh 22

5.2 Arithmetic Instructions- Addition
Instructions

• Example—Arithmetic computations
• Initial state:

(AX) = 1234H
(BL) = ABH
(SUM) = 00CDH
(CF) = 0

• Operation of first instruction
(DS:SUM) + (AX)  (AX)
00CDH + 1234H = 1301H
(AX) = 1301H
(CF) = unchanged

• Operation of second instruction
(BL) + IMM8 +(CF)  BL
ABH + 05H + 0 = B0H
(BL) = B0H
(CF) = unchanged

• Operation of third instruction
 (DS:SUM) + 1  (DS:SUM)

00CDH + 1 = 00CEH
(SUM) = 00CEH
(CF) = unchanged

1. Does the column (SUM) stand for a
value in a register code memory, or a
storage location in memory?

2. Why is the operand of the INC
instruction preceded by WORD PTR?

The 8088 and 8086 Microprocessors,Triebel and Singh 23

5.2 Arithmetic Instructions- Addition
Instructions

• Example—Execution of the arithmetic computation sequence

Missing = sign

1. What is the value of SUM?

2. What is logical address is accessed
in memory?

The 8088 and 8086 Microprocessors,Triebel and Singh 24

5.2 Arithmetic Instructions- Subtraction
Instructions

• Variety of arithmetic instruction provided to
support integer subtraction—core instructions
are
• SUB  Subtract
• SBB  Subtract with borrow
• DEC  Decrement
• NEG  Negative

• Subtract Instruction—SUB
• SUB format and operation:

 SUB D,S
(D) - (S)  (D)
• Subtract values in two registers

 SUB AX,BX
(AX) - (BX)  (AX)

• Subtract a value in memory and a
value in a register
SUB [DI],AX
(DS:DI) - (AX)  (DS:DI)

• Subtract an immediate operand from
a value in a register or memory
SUB AX,100H
(AX) - IMM16  (AX)

• Flags updated based on result
• CF, OF, SF, ZF, AF, PF

The 8088 and 8086 Microprocessors,Triebel and Singh 25

5.2 Arithmetic Instructions- Subtraction
Instructions

• Subtract with borrow instruction—SBB
• SBB format and operation:

 SBB D,S
(D) - (S) - (CF)  (D)
• Used for extended subtractions

• Subtracts two registers and carry
(borrow)
SBB AX,BX

• Example:
SBB BX,CX
(BX) = 1234H
(CX) = 0123H
(CF) = 0
(BX) - (CX) - (CF)  (BX)
1234H - 0123H - 0H = 1111H
(BX) = 1111H
• What about CF?

The 8088 and 8086 Microprocessors,Triebel and Singh 26

5.2 Arithmetic Instructions- Subtraction
Instructions

• Negate instruction—NEG
• NEG format and operation

NEG D
(0) - (D)  (D)
(1) (CF)

• Example:
NEG BX
(BX) =003AH
(0) - (BX)  (BX)
0000H – 003AH=
0000H + FFC6H (2’s complement) =

FFC6H
(BX) =FFC6H; CF =1

• Decrement instruction—DEC
• DEC format and operation

DEC D
(D) - 1  (D)

• Used to decrement pointer—addresses
• Example

DEC SI
(SI) = 0FFFH
(SI) - 1  SI
0FFFH - 1 = 0FFEH
(DI) = 0FFEH

The 8088 and 8086 Microprocessors,Triebel and Singh 27

5.2 Arithmetic Instructions- Multiplication
Instructions

• Integer multiply instructions—MUL
and IMUL
• Multiply two unsigned or

signed byte or word operands
• General format and operation

MUL S = Unsigned integer
multiply

IMUL S = Signed integer
multiply
(AL) X (S8) (AX) 8-bit
product gives 16 bit result
(AX) X (S16)  (DX), (AX) 16-
bit product gives 32 bit result

• Source operand (S) can be
an 8-bit or 16-bit value in a
register or memory

• AX assumed to be
destination for 16 bit result

• DX,AX assumed destination
for 32 bit result

• Only CF and OF flags
updated; other undefined

The 8088 and 8086 Microprocessors,Triebel and Singh 28

5.2 Arithmetic Instructions- Multiplication
Instructions

• Example:
MUL CL
(AL) = -110

(CL) = -210
Expressing in 2’s complement
(AL) = -1 = 111111112 = FFH
(CL) = -2 = 111111102 = FEH
Operation:
(AL) X (CL)  (AX)

111111112 X 111111102 = 1111110100000010
(AX) = FD02H

The 8088 and 8086 Microprocessors,Triebel and Singh 29

5.2 Arithmetic Instructions- Division
Instructions

• Integer divide instructions—DIV and IDIV
• Divide unsigned– DIV S

• Operations:
(AX) / (S8)  (AL) =quotient

 (AH) = remainder
• 16 bit dividend in AX divided

by 8-bit divisor in a register or
memory,

• Quotient of result produced in
AL

• Remainder of result produced
in AH

(DX,AX) / (S16)  (AX) =quotient
 (DX) = remainder

• 32 bit dividend in DX,AX
divided by 16-bit divisor in a
register or memory

• Quotient of result produced in
AX

• Remainder of result produced
in DX

• Divide error (Type 0) interrupt may
occur

The 8088 and 8086 Microprocessors,Triebel and Singh 30

5.2 Arithmetic Instructions- Convert
Instructions

• Convert instructions
• Used to sign extension signed numbers

for division
• Operations

• CBW = convert byte to word
(MSB of AL)  (all bits of AH)

• CWD = convert word to double word
(MSB of AX)  (all bits of DX)

• Application:
• To divide two signed 8-bit numbers, the

value of the dividend must be sign
extended in AX

• Load into AL
• Use CBW to sign extend to 16 bits

• Example
A1H  AL
CBW sign extends to give
FFA1H  AX
CWD sign extends to give
FFFFH  DX

The 8088 and 8086 Microprocessors,Triebel and Singh 31

5.3 Logic Instructions- Available Instructions
and their Operation• Variety of logic instructions provided to support logical

computations
• AND  Logical AND
• OR  Logical inclusive-OR
• XOR  Logical exclusive-OR
• NOT  Logical NOT

• Logical AND Instruction—AND
• AND format and operation:

 AND D,S
(S) AND (D)  (D)
• Logical AND of values in two registers

 AND AX,BX
 (AX) AND (BX)  (AX)

• Logical AND of a value in memory and a value
in a register
 AND [DI],AX
 (DS:DI) AND (AX)  (DS:DI)

• Logical AND of an immediate operand with a
value in a register or memory
 AND AX,100H
 (AX) AND IMM16  (AX)

• Flags updated based on result
• CF, OF, SF, ZF, PF
• AF undefined

1. Describe the AND operations.

2. Describe the OR operations.

3. Describe the XOR operations.

4. Describe the NOT operations.

The 8088 and 8086 Microprocessors,Triebel and Singh 32

5.3 Logic Instructions- Example

The 8088 and 8086 Microprocessors,Triebel and Singh 33

5.3 Logic Instructions- Mask Application

• Application– Masking bits with the logic instructions
• Mask—to clear a bit or bits of a byte or word to 0

• AND operation can be used to perform the mask operation
• 1 AND 0  0; 0 and 0  0

• A bit or bits are masked by ANDing with 0
• 1 AND 1  1; 0 AND 1  0

• ANDing a bit or bits with 1 results in no change
• Example: Masking the upper 12 bits of a value in a register

AND AX,000FH
(AX) =FFFF
IMM16 AND (AX)  (AX)

000FH AND FFFFH = 00000000000011112 AND 11111111111111112
 = 00000000000011112
 = 000FH

1. Write an AND instruction to clear the 5th bit in
the AL.

 (AL) = b7b6b5b4b3b2b1b0?

The 8088 and 8086 Microprocessors,Triebel and Singh 34

5.3 Logic Instructions- Mask Application

• OR operation can be used to set a bit or bits of a byte or word to 1
• X OR 0  X; result is unchanged
• X or 1  1; result is always 1
• Example: Setting a control flag in a byte memory location to 1

MOV AL,[CONTROL_FLAGS]
OR AL, 10H ; 00010000 sets fifth bit –b4
MOV [CONTROL_FLAGS],AL

General Operation:
(AL) = XXXXXXXX2 OR 000100002 = XXX1XXXX2

1. What is CONTROL_FLAGS?

2, What is it relative to?

The 8088 and 8086 Microprocessors,Triebel and Singh 35

5.4 Shift Instructions- Available Instructions
• Variety of shift instructions provided

• SAL/SHL  Shift arithmetic left/shift
logical left

• SHR  Shift logical right
• SAR  Shift arithmetic right

• Perform a variety of shift left and shift right
operations on the bits of a destination data
operand

• Basic shift instructions—SAL/SHL, SHR,
SAR
• Destination may be in either a

register or a storage location in
memory

• Shift count may be:
1= one bit shift
CL = 1 to 255 bit shift

• Flags updated based on result
• CF, SF, ZF, PF
• AF undefined
• OF undefined if Count ≠ 1

The 8088 and 8086 Microprocessors,Triebel and Singh 36

5.4 Shift Instructions- Operation of the
SAL/SHL Instruction

• SAL/SHL instruction operation
• Typical instruction—count of 1

SHL AX,1
• Before execution

Dest = (AX) = 1234H
= 00010010001101002

Count = 1
CF = X

• Operation
• The value in all bits of AX are shifted left one

bit position
• Emptied LSB is filled with 0
• Value shifted out of MSB goes to carry flag

• After execution
Dest = (AX) = 2468H

= 00100100011010002
CF = 0

• Conclusion
• MSB has been isolated in CF and can be

acted upon by control flow instruction–
conditional jump

• Result has been multiplied by 2

Note: Signed or
unsigned data
answer is the same

The 8088 and 8086 Microprocessors,Triebel and Singh 37

5.4 Shift Instructions- Operation of the SHR
Instruction• SHR instruction operation

• Typical instruction—count in CL
SHR AX,CL

• Before execution
Dest = (AX) = 1234H = 466010

= 00010010001101002
Count = (CL) = 02H
CF = X

• Operation
• The value in all bits of AX are shifted right two

bit positions
• Emptied MSBs are filled with 0s
• Value shifted out of LSB goes to carry flag

• After execution
Dest = (AX) = 048DH = 116510

= 00000100100011012
CF = 0

• Conclusion
• Bit 1 has been isolated in CF and can be acted

upon by control flow instruction– conditional
jump

• Result has been divided by 4
• 4 X 1165 = 4660

Note: processes
unsigned data

The 8088 and 8086 Microprocessors,Triebel and Singh 38

5.4 Shift Instructions- Operation of the SAR
Instruction• SAR instruction operation

• Typical instruction—count in CL
SAR AX,CL

• Before execution—arithmetic implies signed numbers
Dest = (AX) = 091AH = 00001001000110102 = +2330

 Count = CL = 02H
CF = X

• Operation
• The value in all bits of AX are shifted right two bit

positions
• Emptied MSB is filled with the value of the sign bit
• Values shifted out of LSB go to carry flag

• After execution
Dest = (AX) = 0246H = 00000010010001102 = +582
CF = 1

• Conclusion
• Bit 1 has been isolated in CF and can be acted upon by

control flow instruction– conditional jump
• Result has been signed extended
• Result value has been divided by 4 and rounded to integer

• 4 X +582 = +2328
Note: processed
data treated as
signed number

The 8088 and 8086 Microprocessors,Triebel and Singh 39

5.4 Shift Instructions- SAR Instruction
Execution

• Debug execution of example

The 8088 and 8086 Microprocessors,Triebel and Singh 40

5.4 Shift Instructions- Application

• Application–Isolating a bit of a byte of data in memory in the carry flag
• Example:

• Instruction sequence
MOV AL,[CONTROL_FLAGS]
MOV CL, 04H
SHR AL,CL

• Before execution
(CONTROL_FLAGS) = B7B6B5B4B3B2B1B0

• After execution
 (AL) = 0000B7B6B5B4
 (CF) = B3

The 8088 and 8086 Microprocessors,Triebel and Singh 41

5.5 Rotate Instructions- Available
Instructions

• Variety of rotate instructions provided
• ROL  Rotate left
• ROR  Rotate right
• RCL  Rotate left through carry
• RCR  Rotate right through carry

• Perform a variety of rotate left and rotate right
operations on the bits of a destination data
operand

• Overview of function
• Destination may be in either a register

or a storage location in memory
• Rotate count may be:

1= one bit rotate
CL = 1 to 255 bit rotate

• Flags updated based on result
• CF
• OF undefined if Count ≠ 1

• Used to rearrange information

The 8088 and 8086 Microprocessors,Triebel and Singh 42

5.5 Rotate Instructions- Operation of the ROL
Instruction

• ROL instruction operation
• Typical instruction—count of 1

ROL AX,1
• Before execution

Dest = (AX) = 1234H
= 0001 0010 0011 01002

Count = 1
CF = 0

• Operation
• The value in all bits of AX are rotated

left one bit position
• Value rotated out of the MSB is

reloaded at LSB
• Value rotated out of MSB is copied to

carry flag
• After execution

Dest = (AX) = 2468H
= 0010 0100 0110 10002

CF = 0

The 8088 and 8086 Microprocessors,Triebel and Singh 43

5.5 Rotate Instructions- Operation of the ROR
Instruction

• ROR instruction operation
• Typical instruction—count in CL

ROR AX,CL
• Before execution

Dest = (AX) = 1234H = 00010010001101002
Count = 04H
CF = 0

• Operation
• The value in all bits of AX are rotated right four bit

positions
• Values rotated out of the LSB are reloaded at MSB
• Values rotated out of MSB copied to carry flag

• After execution
Dest = (AX) = 4123H = 01000001001000112
CF = 0

• Conclusion:
• Note that the position of hex characters in AX have

be rearranged

The 8088 and 8086 Microprocessors,Triebel and Singh 44

5.5 Rotate Instructions- Operation of the RCL
Instruction

• RCL instruction operation
• Typical instruction—count in CL

RCL BX,CL
• Before execution

Dest = (BX) = 1234H = 00010010001101002
 Count = (CL) = 04H

CF = 0
• Operation

• The value in all bits of AX are rotated left
four bit positions

• Emptied MSBs are rotated through the
carry bit back into the LSB

• First rotate loads prior value of CF at the
LSB

• Last value rotated out of MSB retained in
carry flag

• After execution
Dest = (BX) = 2340H = 00100011010000002
CF = 1

The 8088 and 8086 Microprocessors,Triebel and Singh 45

5.5 Rotate Instructions- RCR Example

• RCR instruction debug execution
example
• Instruction—count in CL

RCR BX,CL
• Before execution

Dest = (BX) = 1234H =
00010010001101002

 Count = 04H
CF = 0

• After execution
Dest = (BX) = 8123H =
10000001001000112
CF = 0

The 8088 and 8086 Microprocessors,Triebel and Singh 46

5.5 Rotate Instructions- Application

• Disassembling and adding 2 hex digits
1st Instruction  Loads AL with byte
 containing two hex digits
2nd Instruction Copies byte to BL
3rd Instruction  Loads rotate count
4th instruction  Aligns upper hex digit of BL
 with lower digit in AL
5th Instruction  Masks off upper hex digit in AL
6th Instruction  Masks off upper four bits of BL
7th Instruction  Adds two hex digits

