Chapter 8

The 8088 and 8086 Microprocessors—Their Memory Interface
Introduction

8.1 8088 and 8086 Microprocessors—✓
8.2 Minimum-Mode and Maximum-Mode Systems—✓
8.3 Minimum-Mode Interface—✓
8.4 Maximum-Mode Interface—✓
8.5 Electrical Characteristics—✓
8.6 System Clock—✓
8.7 Bus Cycles and Time States—✓
8.8 Hardware Organization of the Memory Address Space
8.9 Memory Bus Status Codes
8.10 Memory Control Signals
8.11 Read and Write Bus Cycles
8.12 Memory Interface Circuits
8.13 Programmable Logic Arrays
8.1 8088 and 8086 Microprocessors—Introduction

- First generation 16-bit microprocessor from Intel Corporation
 - 8086 Microprocessor—1979
 - Full 16-bit architecture
 - Internally processed 16-bit data
 - Externally accessed 16-bit wide data memory
 - 8088 Microprocessor—1980
 - Processed 16-bit data internally/accessed 8-bit wide data memory externally
 - Permitted lower cost system solution
 - Resulted in lower performance
- Common characteristics
 - Manufactured on high-performance metal-oxide process (HMOS)
 - Circuitry equivalent to 29000 transistors
 - 40 pin dual-in-line (DIP) package
8.1 8088 and 8086 Microprocessors—Pin Functions

- Pin functions
 - Most pins are independent and serve a single function
 - Examples:
 - CLK—clock
 - INTR—interrupt request
 - READY—bus ready
 - Some multi-functions pins—different times/different mode
 - Examples:
 - AD0-AD15—multiplexed address/data lines at different times
 - A16/S3—multiplexed address and status line at different times
 - IO/M* or S2* Control line in one mode or bus status line in other mode
8.2 Minimum-Mode and Maximum-Mode Systems—Selecting the Mode and Types of Signals

- Two operating modes of 8088/8086
 - Minimum mode—small system/single processor configuration
 - Maximum mode—large system/single-multi-processor configuration
- Hardware connection at MN/MX* pin 33 selects mode
 - 1 = +Vcc = Minimum mode
 - 0 = GND = Maximum mode
- 8088 signals/pins categorized as
 - Common—same function both modes
 Examples: Pin 9 (AD7)- pin 16 (AD0)
 - Minimum Mode—special minimum mode operations
 Examples: pins 26-28 are DEN*, DT/R*, and IO/M*
 - Maximum Mode—special maximum mode operations
 Example: pins 26-28 are S0*, S1*, and S2*
8.3 Minimum-Mode Interfaces—8088 Interface

- Minimum Mode Interface
 - MPU provides all of the interface signals
 - Address/data bus
 - Status
 - Control
 - Interrupt
 - DMA

Multiplexed address/data bus
- 20-bit address (A19-A0) → 1MByte address space
- 8-bit data bus (D7-D0)
- Signals of the address/data bus
 - AD0-AD7—bi-directional, tri-state
 - Lower 8 address output lines
 - 8 bi-directional data bus lines
 - A8-A15—output, tri-state
 - Next 8 address lines
 - A16/S3-A19/S6—output, tri-state
 - Four most significant address lines
 - S3–S6 status outputs
8.3 Minimum-Mode Interfaces—8088 Interface

- Memory/IO Control Signals
 - Support signals for controlling the memory and I/O interface circuitry
 - All but READY are outputs
 - ALE = address latch enable
 - Signals external circuitry that a valid address is on the address bus and it should be latched
 - IO/M* = IO/memory
 - Identifies type of data transfer taking place over the data bus; used to enable/disable memory and/or I/O interface
 - IO/M* = 1 = input/output data
 - IO/M* = 0 = memory data
 - DT/R* = data transmit/receive
 - Tells external circuitry which way data is to be transferred over the bus; used to set direction of data bus interface circuits
 - DT/R* = 1 = transmit mode (write/output)
 - DT/R* = 0 = read mode (read/input)
8.3 Minimum-Mode Interfaces – **8088 Interface**

- **Memory/IO Control Signals (continued)**
 - **RD* = read \(\rightarrow \) active 0**
 - Signals that a read/input bus cycle is in progress
 - **WR* = write \(\rightarrow \) active 0**
 - Signals that a write/output bus cycle is in progress
 - **DEN* = data enable \(\rightarrow \) active 0**
 - Signal when the data bus should be enabled
 - **READY = ready**
 - 1= Acknowledges that the memory subsystem is ready to complete the bus cycle
 - 0= Memory subsystem is not ready; insert wait states to extend the bus cycle
 - **SSO* = status**
 - 0= instruction code read
 - 1= data access
8.3 Minimum-Mode Interfaces – 8088 Interface

- **Interrupt Interface**
 - Support signals for implementing an interrupt driven I/O interface
 - **Maskable interrupt interface**—INTR and INTA*
 - **Nonmaskable interrupt interface**—NMI
 - **Reset interface**—RESET
 - **INTR = interrupt request input** → active 1 (level triggered)
 - External device signals the MPU that it needs maskable interrupt service
 - **INTA* = interrupt acknowledge output** → active 0
 - MPU acknowledges to an external device that its maskable interrupt request is being serviced
 - **NMI = nonmaskable interrupt input**
 - External device initiates NMI request with 0 to 1 transition (edge triggered)
 - **RESET = reset input** → active 1
 - Logic 1 initiates hardware reset of MPU
 - **Initializes internal registers and reset service routine**
8.3 Minimum-Mode Interfaces – 8088 Interface

- Direct Memory Access Interface
 - Support signals for implemented a direct memory access interface
 - Permits direct transfer of information between parts of memory or between memory and I/O devices
 - External devices, such as a DMA controller, perform these operations independent of MPU
 - \(\text{HOLD} = \text{Hold request input} \rightarrow \text{active 1 (level triggered)} \)
 - External device request the MPU give it control of the system bus
 - \(\text{HOLDA}^* = \text{Hold acknowledge output} \rightarrow \text{active 1} \)
 - MPU tri-states its bus lines
 - Acknowledges to an external devices that the MPU bus is in the hold state
8.3 Minimum-Mode Interfaces—8086 Interface Differences

- **Data bus**
 - 16-bit wide
 - D15-D0
 - Multiplexed with A15 through A0
 - Allows 3 types of data transfers
 - Word—over D15-D0
 - Low byte—over D7-D0
 - High byte—over D15-D8

- **Memory/IO Controls**
 - SSO* → BHE* (bank high enable)
 - Used to signal external circuitry whether or not a byte transfer is taking place over the upper 8 data bus lines
 - A0 now does the same for a byte transfer over the lower 8 data bus line
8.4 Maximum-Mode Interfaces—8088 Interface

- Intended for use in multi-processor applications
 - Multiple 8088/8086 MPU
 - Floating point coprocessor
 - Global versus local resources
 - Local resource (memory, IO, etc.) only accessible by a specific processor
 - Global resources are shared by all processors
 - Global resources can only be accessed by one MPU at a time; access requires bus locking
 - New signal LOCK* is used by MPU to lock other processors off the bus during an access of a global resource
 - Maximum-mode configuration
 - MN/MX* pin = 0 → GND
 - Most memory, IO, and interrupt interface outputs produced by an external 8288 bus controller
8.4 Maximum-Mode Interfaces—8088 Interface

- 8288 bus controller connection
 - Inputs are codes from the 3-bit bus status lines
 \[S2*S1*S0* = \text{bus status code} \]
 - Outputs produced by 8288 instead of 8088
 - Based on bus status code \(\rightarrow \) active 0
 - MRDC*= Memory read command
 - MWTC*= Memory write command
 - AMWC*= Advanced memory write command
 - IORC*= I/O read command
 - IOWC*= I/O write command
 - AIOWC*= advanced I/O write command
 - Produced for all bus cycles
 - ALE= Address latch enable
 - DT/R*= Data transmit/receive
 - DEN= Data enable (complement)
 - INTA*= Interrupt acknowledge
8.4 Maximum-Mode Interfaces—8088 Interface

- Bus status codes, associated cycles, and outputs
 - 8088 outputs a bus status code associated with the type of bus cycle to be performed
 - Memory read
 - Memory write
 - Instruction fetch
 - Read I/O port (Input)
 - Write I/O port (Output)
 - Interrupt acknowledge
 - Halt
 - One or two command outputs become active
 - 101 = Memory read → MRDC*
 - 010 = Output → IOWC* and AIOWC*
 - Appropriate signals are connected to drive external memory, IO, and interrupt circuitry
8.4 Maximum-Mode Interfaces—8086 Interface

- Differences from 8088 maximum-mode interface
 - 16-bit multiplexed data bus
 - BHE* output
8.5 Electrical Characteristics—Power Supply Ratings and Input/Output Logic Levels

- **Power supply voltages**
 - Applied between +Vcc and GND
 - Vcc = +5V ± 10%
 - Icc = 340mA @ 25°C Output logic levels
- **Input logic levels—min/max**
 - -0.5V ≤ VIL ≤ +0.8V
 - +2.0V ≤ VIH ≤ Vcc+.05V
- **Output logic levels**
 - \(V_{OH\text{min}} = +2.4V \) @ IOH = -400uA
 - \(V_{OL\text{max}} = +0.45V \) @ IOL = 2.0mA*
 - * Measured at 2.5mA for 8086

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Meaning</th>
<th>Minimum</th>
<th>Maximum</th>
<th>Test condition</th>
</tr>
</thead>
<tbody>
<tr>
<td>VIL</td>
<td>Input low voltage</td>
<td>-0.5 V</td>
<td>+0.8 V</td>
<td></td>
</tr>
<tr>
<td>VIH</td>
<td>Input high voltage</td>
<td>+2.0 V</td>
<td>Vcc + 0.5 V</td>
<td></td>
</tr>
<tr>
<td>VOL</td>
<td>Output low voltage</td>
<td>+2.4 V</td>
<td>+0.45 V</td>
<td>IOL = 2.0mA</td>
</tr>
<tr>
<td>VOH</td>
<td>Output high voltage</td>
<td></td>
<td>IOH = -400uA</td>
<td></td>
</tr>
</tbody>
</table>
8.6 System Clock—8284 Clock Generator and CLK

- CLK is used as the time base for synchronization of internal and external operations of the microprocessor and microcomputer.

- Standard Clock (CLK) rates of 8008/8086
 - 8088 → 5MHz
 - 8088-2 → 8MHz
 - 8086 → 5MHz
 - 8086-2 → 8MHz
 - 8086-1 → 10MHz

- Other clock outputs
 - PCLK = peripheral clock = \(\frac{1}{2} \times \text{CLK} \)
 - OSC = oscillator clock = 3 \times \text{CLK}

- Other functions of 8284
 - Reset synchronization
 - Ready synchronization
8.6 System Clock—8284 to 8088 Connection

- Crystal between X1 and X2 pins of 8284
 - Fundamental frequency is 3X CLK
 15MHz for 5MHz 8088
 24MHz for 8 MHz 8088
- F/C* selects the clock source
 0 = crystal attached to X1 and X1
 1 = external clock at EFI input
- CLK output is at MOS levels, but attaches directly to CLK input of 8088
8.7 Bus Cycles and Time States – Types of Bus Cycles

- Bus cycle is the operation performed by the microprocessor to access an external device
 - Memory read bus cycle
 - Memory write bus cycle
 - IO read (input) bus cycle
 - IO write (output) bus cycle

- Duration and states of the bus cycle
 - 4 clock cycles per bus cycle
 - Time states called T1, T2, T3, T4
 - At 8MHz T state = 125ns and bus cycle duration is 500ns

- Multiplexed address/data transfer operation
 - Address output during T1
 - Bus lines in high-Z state in T2
 - Data transfer takes place during states T3 and T4
8.7 Bus Cycles and Time States—Idle and Wait States

- Bus cycle with idle
 - If no bus activity is necessary, microprocessor inserts idle states between bus cycles
 - Identified as Ti
 - May be due to the fact that the instruction queue is already full so no instructions need to be fetched

- Bus cycle with wait states
 - If the memory or I/O device is not able to respond in the duration of a bus cycle (500ns @8MHz), it must make READY 0 during T3 to extend the bus cycle
 - Wait states (Tw) are inserted to extend the bus cycle until READY returns to 1
 - 8MHz bus cycle with 2 wait state = 750ns
Introduction

8.1 8088 and 8086 Microprocessors
8.2 Minimum-Mode and Maximum-Mode Systems
8.3 Minimum-Mode Interface
8.4 Maximum-Mode Interface
8.5 Electrical Characteristics
8.6 System Clock
8.7 Bus Cycles and Time States
8.8 Hardware Organization of the Memory Address Space
8.9 Memory Bus Status Codes
8.10 Memory Control Signals
8.11 Read and Write Bus Cycles
8.12 Memory Interface Circuits
8.13 Programmable Logic Arrays
8.8 Hardware Organization of the Memory Address Space—8088 Microprocessor

- 8088 memory hardware is organized as a single byte-wide memory bank
 - Size—1M X 8 bits
 - Physical address range—0H–FFFFFH
 - Address/data bus demultiplexed in external hardware
 - Input:
 - 20-bit address bus—A19 through A0
 - Input/Output:
 - 8-bit data bus—D7 Through D0
8.8 Hardware Organization of the Memory Address Space—**8088 Memory Accesses**

- **Byte access bus cycle**
 - MPU applies address of storage location to be accessed over address lines A19-A0
 - A19—most significant bit
 - A0—least significant bit
 - Byte of data written into or read from address X transferred over data lines D0 through D7
 - D7—most significant bit
 - D0—least significant bit
 - Byte access takes a minimum of one bus cycle of duration
 - @5MHz—800ns
 - @8MHz—500ns

- **Word access bus cycles**
 - MPU must access two consecutive storage locations in memory—X and X+1
 - Requires two bus cycles
 - Address X accessed during cycle 1
 - Address X+1 accessed during cycle 2
 - Word access duration is a minimum of two bus cycle
 - @5MHz—2 X 800ns = 1600ns
 - @8MHz—2 X 500ns = 1000ns
8.8 Hardware Organization of the Memory Address Space—8086 Microprocessor

- 8086 memory hardware is organized as a two byte-wide memory bank
 - Bank size—512K X 8 bits
 - Low-bank holds even addressed bytes—0H through FFFFEH
 - High-bank holds odd addressed bytes—1H through FFFFFH
 - Address/data bus demultiplexed in external hardware
 - Input:
 20-bit+ address bus—A19 through A0, and BHE*
 A1-A19 = selects storage location
 A0 = 0 enables low bank
 BHE* = 0 enables high bank
 - Input/Output:
 16-bit data bus—D15 Through D0
 D7-D0 → even addressed byte accesses
 D15-D8 → odd addressed byte accesses
 D15-D0 → word accesses
8.8 Hardware Organization of the Memory Address Space—8086 Aligned Memory Accesses

- **Low bank byte access bus cycle**
 - MPU applies even address X to both banks over address lines A19-A0
 - MPU enables just the low bank
 - \(\text{BHE} \cdot \text{A0} = 10 \) \(\rightarrow \) enables low bank
 - Byte of data written into or read from address X transferred over data lines D0 through D7
- **High bank access bus cycle differences**
 - Odd address \(X+1 \) applied to both banks
 - High bank enabled
 - \(\text{BHE} \cdot \text{A0} = 01 \) \(\rightarrow \) enable high bank
 - Byte-wide data transfer takes place over data line D8 through D15
- **Word access bus cycle differences**
 - Even word address X applied to both banks
 - MPU enables both banks
 - \(\text{BHE} \cdot \text{A0} = 00 \) \(\rightarrow \) enable low and high bank
 - Word-wide data transfer takes place over D0 through D15
 - All accesses takes a minimum of one bus cycle of duration
 - @5MHz—800ns
 - @8MHz—500ns
8.8 Hardware Organization of the Memory Address Space—\textbf{8086 Misaligned Word Memory Access}

- Misaligned-word access bus cycles
 - Word starting at address X+1 is misaligned
 - Requires two bus cycles
 - Access byte at address X+1 during cycle 1
 \begin{itemize}
 \item \(A_{19}-A_0 = X+1\)
 \item \(BHE \cdot A_0 = 01\) → enables high bank
 \item \(D_{15}-D_8 \rightarrow\) carries data
 \end{itemize}
 - Access byte at address X+2 during cycle 2
 \begin{itemize}
 \item \(A_{19}-A_0 = X+2\)
 \item \(BHE \cdot A_0 = 10\) → enables low bank
 \item \(D_7-D_0 \rightarrow\) carries data
 \end{itemize}
 - Word access duration is a minimum of two bus cycle
 \begin{itemize}
 \item @5MHz—2 X 800ns = 1600ns
 \item @8MHz—2 X 500ns = 1000ns
 \end{itemize}
- Impact on performance—software should minimize accessing misaligned data
8.10 Memory Control Signals—8088
Minimum-Mode Interface

- Multiplexed-address data bus
 AD0-AD7
 A8-A19

- Control signal review
 - ALE = pulse to logic 1 tells bus interface
circuitry to latch address
 - RD* = logic 0 tells memory subsystem that
 a code or data read is in progress
 - WR* = logic 0 tells memory subsystem that
 a data write is in progress
 - IO/M* = Logic 0 tells interface circuits that
 the data transfer operation is for the
 memory subsystem
 - DT/R* = sets the direction of the external
data bus for read(input) or write(output)
 operation
 - DEN* = enables the interface between the
 memory subsystem and MPU data bus
 - SSO* = tells memory interface whether the
 memory access is a code read or data
 access
8.10 Memory Control Signals—8088
Maximum-Mode Interface

- Maximum-mode interface differences review
 - 8288 bus controller produces the control signals
 - Signal changes
 - MRDC* replaces RD*
 - MWTC* and AMWC* replace WR*
 - DEN is complement of DEN*
 - IO/M* no longer needed (bus controller creates separate memory and IO read/write controls)
 - SSO* no longer part of interface
8.10 Memory Control Signals—8088
Maximum-Mode Interface

- Memory bus status code review
 - During all memory accesses one of three bus cycle status code are output by the MPU
 - Instruction fetch
 - Read memory
 - Write memory
 - 8288 decodes to produce appropriate control command signals
 - MRDC* \(\rightarrow\) instruction fetch/memory read
 - MWTC* \(\rightarrow\) memory write
 - AMWC* \(\rightarrow\) advanced memory write
8.11 Read and Write Bus Cycles – 8088
Minimum Mode Read Bus Cycle

- Read bus cycle timing diagram—shows relationship between signals relative to times states
 - **T1 state**—read cycle begins
 - Address output on A0-A19
 - Pulse produced at ALE—address should be latched in external circuitry on trailing edge of ALE
 - IO/M* set to 0 → memory bus cycle
 - DT/R* set to 0 → set external data bus control circuitry for receive mode (read)
 - **T2 state**
 - Status code output on S3-S6
 - AD0 through AD7 tri-stated in preparation for data bus operation
 - RD* set to 0 → read cycle
 - DEN* set to 0 → enable external data bus control circuitry
 - **T3 state**
 - Data on D0-D7 read by the MPU
 - **T4 state**—read cycle finishes
 - RD* returns to 1 → inactive level
 - Complete address/data bus tri-stated
 - IO/M* returned to 1 → IO bus cycle
 - DEN* returned to 1 → inactive level
 - DT/R* returns to 1 → transmit level
8.11 Read and Write Bus Cycles— 8086
Minimum Mode Read Bus Cycle

- Differences of 8086 read bus cycle
 - BHE* is output along with the address in T1
 - Data read by the MPU can be carried over all 16 data bus lines
 - M/IO*—which replaces IO/M*—switches to 1 instead of 0 at the beginning of T1
 - SSO* signals is not produce
8.11 Read and Write Bus Cycles— 8088
Minimum Mode Write Bus Cycle

- Write bus cycle timing diagram—shows relationship between signals relative to times states
 - **T1 state**—write cycle begins
 - Address output on A0-A19
 - Pulse produced at ALE and address latched in external circuitry on trailing edge of ALE
 - IO/M* set to 0 → memory bus cycle
 - DT/R* remains at 1 → external data bus control circuitry for transmit mode (write)
 - **T2 state**
 - Status code output on S3-S6
 - AD0 through AD7 transitioned to data bus and write data placed on bus
 - DEN* set to 0 → enable external data bus control circuitry
 - WR* set to 0 → write cycle
 - **T3 or T4 state**
 - Data on D0-D7 written into memory (memory decides when!)
 - **T4 state**—write cycle finishes
 - WR* returns to 1 → inactive level
 - Complete address/data bus tri-stated
 - IO/M* returned to 1 → IO bus cycle
 - DEN* returned to 1 → inactive level
8.11 Read and Write Bus Cycles—8086
Maximum Mode Write Bus Cycle

- Similar to 8088/8086 minimum-mode write bus cycle
 - Address and data transfer operation identical
 - Transfer may be a high-byte, low-byte, word

- Differences is the 8288 produces the bus control signals—ALE, DEN, AMWC*, and MWTC*
 - Bus status code S2*-S0* output prior to T1 and held through T2
 - AMWC* and MWTC* replace WR* (Note timing difference)
 - DEN =1 produced instead of DEN* =0 (change in external circuitry!)
8.12 Memory Interface Circuits—Block Diagram

- Building blocks of the maximum mode 8086 memory interface
 - 8288 bus controller
 - Address bus latch
 - Address decoder
 - Data bus transceiver/buffer
 - Bank read control logic
 - Bank write control logic
 - Memory subsystem
8.12 Memory Interface Circuits—Overview of Memory Access Operation

- Overview of the memory access
 - Bus status code for type of memory access output to 8288 on S2*-S0*
 - 8288 decodes to produce the command and control signals need to coordinate the data transfer
 - Address is latched, buffered, and decoded to:
 - Produce chip enable signals for the memory array
 - Select a specific memory location
 - Select upper, lower, or both banks of the memory array
 - MWTC* and MRDC* combined with A0L and BHEL* to set the appropriate bank(s) of the memory array for write or read, respectively
 - DT/R* and DEN are used to enable the data bus transceiver/buffer and set it for the transmit (write) or receive (read) direction
8.12 Memory Interface Circuits—Address Latch

- **Roles of the address latch**
 - Latch address signals A0-A19 and BHE*
 - Buffer signals so that they may be used to drive a large memory system, IO peripherals, and other interfaces

- **Requirements**
 - 21 bit wide latch/buffer
 - Low propagation delay—allows use of slower memories
 - 74F373—Octal D-type latch
 - 8 independent buffered D-type flip-flops (latches)
 - Enable to output propagation delay = 13 ns
 - Outputs sink 24 mA (buffering)
 - OC* = 0 enables latch circuits

<table>
<thead>
<tr>
<th>Inputs</th>
<th>Output</th>
</tr>
</thead>
<tbody>
<tr>
<td>D</td>
<td>Q</td>
</tr>
<tr>
<td>H</td>
<td>H</td>
</tr>
<tr>
<td>L</td>
<td>L</td>
</tr>
<tr>
<td>L</td>
<td>Q0</td>
</tr>
<tr>
<td>H</td>
<td>Z</td>
</tr>
</tbody>
</table>

- **Truth Table**

Note: The diagram and truth table illustrate the functionality of the address latch, showing how it handles various input conditions to produce the output Q, considering the enable (C) state.
8.12 Memory Interface Circuits—Address Latch Design

- Implemented with 3 74F373 Octal-D-type latches
 - Inputs AD0-AD15, A16-A19, and BHE* from MPU
 - All devices permanently enabled by fixing the OC* inputs at logic 0
 - All latches clocked in parallel with pulse at ALE from 8288
 - Latched and buffered outputs are: A0L-A19L, and BHEL*
 - Parts of address applied to the address inputs of memory subsystem, address decoder, and read/write control logic
8.12 Memory Interface Circuits—Bank Write Control Logic Design

- Role of write control logic
 - Memory array is organized in upper and lower banks
 - Types of data writes that may take place:
 - Byte to a storage location in the upper (odd) bank
 - Byte to a storage location in the lower (even) bank
 - Word to storage locations in both banks
 - Write control logic must decode A0L, BHEL*, and MWTC* to produce independent write signals—WR_U* and WR_L*
- 7432—2-input OR gate solution
 - MWTC*(MWRC*) = 0 enables both gates

<table>
<thead>
<tr>
<th>BHEL*</th>
<th>AOL</th>
<th>WR_U*</th>
<th>WR_L*</th>
<th>Result</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>Both banks enabled</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>Lower (even) bank enabled</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>Upper (odd) bank enabled</td>
</tr>
</tbody>
</table>
8.12 Memory Interface Circuits—Bank Read Control Logic Design

- Role of read control logic
 - Types of data reads that may take place:
 - Byte from the lower (even) bank
 - Byte from upper (odd) bank
 - Word of data from both banks or an instruction fetch
 - Read control logic must decode A0L, BHEL*, and MRDC* to produce independent read signals—RD_U* and RD_L*
 - 7432-based solution is similar to bank write control logic
 - MRDC* = 0 enables both gates

<table>
<thead>
<tr>
<th>BHEL*</th>
<th>A0L</th>
<th>RD_U*</th>
<th>RD_L*</th>
<th>Result</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>Both banks enabled</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>Lower (even) bank enabled</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>Upper (odd) bank enabled</td>
</tr>
</tbody>
</table>
8.12 Memory Interface Circuits—Data Bus Transceivers

- Roles of the data bus transceiver/buffer
 - Set the direction of the data path between memory and the MPU bus
 - Appropriately time the enabling of the transceivers to coincide with the read/write data transfer
 - Buffer the data bus lines so that they may be used to drive a large memory system, IO peripherals, and other interfaces

- Requirements
 - 8/16 bit wide bi-directional transceiver
 - Low propagation delay—allows use of slower memories
 - 74F245—Octal bi-directional bus transceiver
 - 8 independent bus transceivers
 - DIR input selects direction of data transfer
 - 0 = B to A → read
 - 1 = A to B → write
 - G* = 0 enables all transceivers
 - Outputs sink 64 mA (buffering)
8.12 Memory Interface Circuits—Data Bus Transceiver Design

- Implemented with 2 74F245 Octal bi-directional bus transceivers
 - A inputs/outputs are D0-D15 directly from MPU
 - Direction of both devices set by logic level of DT/R*
 - Both devices enabled at appropriate time for data transfer by DEN=1
 - B inputs/outputs are the buffered data bus lines DB0 through DB15
 - Buffered data bus lines applied directly to the memory subsystem
8.12 Memory Interface Circuits– Address bus with Latch and Decoder

- Role of address decoder
 - Part of the buffered/latched address is decoded to create chip enables
 - Address inputs A19L A18L A17L is decoded to produce 8 independent chip enable outputs CE0* through CE7*
 - Inputs and outputs

A19L	A18L	A17L	CE0*	CE1*	CE2*	CE3*	CE4*	CE5*	CE6*	CE7*
0	0	0	0	0	0	0	0	0	0	0
0	0	1	0	0	0	0	0	0	0	0
0	1	0	1	0	0	0	0	0	0	0
0	1	1	1	1	1	1	1	1	1	1
1	0	0	1	1	1	1	1	1	1	1
1	0	1	1	1	1	1	1	1	1	1
1	1	0	1	1	1	1	1	1	1	1
1	1	1	1	1	1	1	1	1	1	1

- Byte from the lower bank
- Word of data from both banks or an instruction fetch
 - Read control logic must decode the A0L, BHEL* and MRDC* to produce independent RDU* and RD*L read signals
 - 7432-based solution is similar to bank write control logic
 - MRDC* = 0 enables both gates

The 8088 and 8086 Microprocessors, Triebel and Singh
8.12 Memory Interface Circuits– Address Decoder

- Requirements of Address Decoder
 - Requires standard decoder/multiplexer functions
 - 2-input 4-output—74F139
 - 3-input 8-output—74F138
 - 74F139 decoder/multiplexer
 - Dual 2-input 4-output decoder/multiplexer
 - Two-bit input BA
 - Four independent outputs Y0 through Y3
 - \(G^* \) input enables the associated decoder
 - Operation
 - \(G^* = 1 \) forces all outputs to 1
 - \(G^* = 0 \) enables circuit and the \(Y \) output associated with the input code switches to the active 0 level
8.12 Memory Interface Circuits—3-input 8-output Address Decoder Design Using the 74F139

- 3-input 8-output address decoder made with two 2-input 4-output decoder/multiplexer circuits
 - A19L = 0 makes 1G* = 0 and 2G* = 1 and enables outputs CE0*-CE3*
 - A19L = 1 makes 1G* = 1 and 2G* = 0 and enables CE4*-CE7*
 - Code at A18L A17L applied to the BA inputs of both multiplexers in parallel
 - Output associated with the input code on the enabled decoder becomes active
8.12 Memory Interface Circuits—3-Input 8-Output Address Decoder Design Using the 74F138

88 and 8086 Microprocessors, Triebel and Singh 45