Chapter 8

The 8088 and 8086 Microprocessors—Their Memory Interface

The 8088 and 8086 Microprocessors, Triebel and Singh

Introduction

- 8.1 8088 and 8086 Microprocessors—✓
- 8.2 Minimum-Mode and Maximum-Mode Systems—✓
- 8.3 Minimum-Mode Interface—✓
- 8.4 Maximum-Mode Interface—✓
- 8.5 Electrical Characteristics—✓
- 8.6 System Clock—✓
- 8.7 Bus Cycles and Time States—✓
- 8.8 Hardware Organization of the Memory Address Space
- 8.9 Memory Bus Status Codes
- 8.10 Memory Control Signals
- 8.11 Read and Write Bus Cycles
- 8.12 Memory Interface Circuits
- 8.13 Programmable Logic Arrays

8.1 8088 and 8086 Microprocessors– Introduction

- First generation 16-bit microprocessor from Intel Corporation
 - 8086 Microprocessor—1979
 - Full 16-bit architecture
 - Internally processed 16-bit data
 - Externally accessed 16-bit wide data memory
 - 8088 Microprocessor—1980
 - Processed 16-bit data internally/accessed 8-bit wide data memory externally
 - Permitted lower cost system solution
 - Resulted in lower performance
 - Common characteristics
 - Manufactured on high-performance metal-oxide process (HMOS)
 - Circuitry equivalent to 29000 transistors
 - 40 pin dual-in-line (DIP) package

- Most pins are independent and
 - serve a single function
 - Examples: CLK—clock INTR—interrupt request READY—bus ready
 - Some multi-functions pinsdifferent times/different mode
 - Examples:

AD0-AD15– multiplexed address/data lines at different times

A16/S3—multiplexed address and status line at different times

IO/M* or S2* Control line in one mode or bus status line in other mode

Common signals						
Name	Function	Туре				
AD7-AD0	Address/data bus	Bidirectional, 3-state				
A15-A8	Address bus	Output, 3-state				
A19/S6- A16/S3	Address/status	Output, 3-state				
MN/MX	Minimum/maximum Mode control	input				
RD	Read control	Output, 3-state				
TEST	Wait on test control	Input				
READY	Wait state control	Input				
RESET	System reset	Input				
NMI	Nonmaskable Interrupt request	Input				
INTR	Interrupt request	Input				
CLK	System clock	Input				
V _{cc}	+5 V	Input				
GND	Ground					

(a)

8.2 Minimum-Mode and Maximum-Mode Systems– Selecting the Mode and Types of Signals

- Two operating modes of 8088/8086
 - Minimum mode—small system/single processor configuration
 - Maximum mode—large system/singlemulti-processor configuration
 - Hardware connection at MN/MX* pin 33 selects mode
 - 1 = +Vcc = Minimum mode
 - 0 = GND = Maximum mode
 - 8088 signals/pins categorized as
 - Common—same function both modes

Examples: Pin 9 (AD7)- pin 16 (AD0)

- Minimum Mode—special minimum mode operations
 Examples: pins 26-28 are DEN*, DT/R*, and IO/M*
- Maximum Mode—special maximum mode operations Example: pins 26-28 are S0*, S1*,

The 8088 and 8086 Microprocess

Minimum mode signals (MN/ $\overline{MX} = V_{CC}$)

Type

Input

Output

Output,

3-state

Output, 3-state

Output, 3-state

Output, 3-state

Output, 3-state

Output

Output

Type

Bidirectional

Output,

Output, 3-state

Output

3-state

Function

Hold request

Write control

Data enable

Status line

Hold acknowledge

IO/memory control

Data transmit/receive

Address latch enable

interrupt acknowledge

(b)

Maximum mode signals (MN/MX = GND)

Function

Request/grant bus

access control

control

status

Bus priority lock

Bus cycle status

Instruction queue

(c)

Name

HOLD

HLDA

WR

IO/M

DT/R

DEN

sso

ALE

INTA

Name

RQ/GT1.0

LOCK

<u>52-50</u>

QS1, QS0

5

- Minimum Mode Interface
 - MPU provides all of the interface signals
 - Address/data bus
 - Status
 - Control
 - Interrupt
 - DMA

Multiplexed address/data bus

- 20-bit address (A19-A0) → 1MByte address space
- 8-bit data bus (D7-D0)
- Signals of the address/data bus
 - AD0-AD7—bi-directional, tri-state
 - Lower 8 address output lines
 - 8 bi-directional data bus lines
 - A8-A15—output, tri-state
 - Next 8 address lines
 - A16/S3-A19/S6—output, tri-state
 - Four most significant address lines

The 8088 and 8086 Microprocessor \$,3 + \$6 status gutputs

- Memory/IO Control Signals
 - Support signals for controlling the memory and I/O interface circuitry
 - All but READY are outputs
 - ALE= address latch enable
 - Signals external circuitry that a valid address in on the address bus and it should be latched
 - IO/M* = IO/memory
 - Identifies type of data transfer taking place over the data bus; used to enable/disable memory and/or IO interface
 - IO/M* = 1 = input/output data
 - IO/M* = 0 = memory data
 - DT/R* = data transmit/receive
 - Tells external circuitry which way data is to be transferred over the bus; used to set direction of data bus interface circuits
 - DT/R* = 1 = transmit mode (write/output)

The 8088 and 8086 Microprocessors **PTiR**eia Od Sread mode (read/input)

- Memory/IO Control Signals (continued)
 - RD* = read \rightarrow active 0
 - Signals that a read/input bus cycle is in progress
 - WR* = write \rightarrow active 0
 - Signals that a write/output bus cycle is in progress
 - DEN* = data enable → active 0
 - Signal when the data bus should be enabled
 - READY = ready
 - 1= Acknowledges that the memory subsystem is ready to complete the bus cycle
 - 0= Memory subsystem is not ready; insert wait sates to extend the bus cycle
 - SSO* = status
 - 0= instruction code read
 - 1= data access

- Interrupt Interface
 - Support signals for implementing an interrupt driven I/O interface
 - Maskable interrupt interface—INTR and INTA*
 - Nonmaskable interrupt interface—NMI
 - Reset interface—RESET
 - INTR = interrupt request input → active 1 (level triggered)
 - External device signals the MPU that it needs maskable interrupt service
 - INTA* = interrupt acknowledge output→ active 0
 - MPU acknowledges to an external devices that its maskable interrupt request is being serviced
 - NMI = nonmaskable interrupt input
 - External device initiates NMI request with 0 to 1 transition (edge triggered)
 - RESET = reset input → active 1
 - Logic 1 initiates hardware reset of MPU

• Initializes internal registers and reset The 8088 and 8086 Microprocessors Triebel and Singn Service routine

- Direct Memory Access Interface
 - Support signals for implemented a direct memory access interface
 - Permits direct transfer of information between parts of memory or between memory and I/O devices
 - External devices, such as a DMA controller, perform these operations independent of MPU
 - HOLD= Hold request input → active 1 (level triggered)
 - External device request the MPU give it control of the system bus
 - HOLDA* = Hold acknowledge output→ active 1
 - MPU tri-states its bus lines
 - Acknowledges to an external devices that the MPU bus is in the hold state

The 8088 and 8086 Microprocessors, the hold state

8.3 Minimum-Mode Interfaces– 8086 Interface Differences

- Data bus
 - 16-bit wide
 - D15-D0
 - Multiplexed with A15 through A0
 - Allows 3 types of data transfers
 - Word—over D15-D0
 - Low byte—over D7-D0
 - High byte—over D15-D8
- Memory/IO Controls
 - SSO* → BHE* (bank high enable)
 - Used to signal external circuitry whether or not a byte transfer is taking place over the upper 8 data bus lines
 - A0 now does the same for a byte transfer over the lower 8 data bus line

The 8088 and 8086 Microprocessors, Triebel and Singh

- Intended for use in multi-processor applications
 - Multiple 8088/8086 MPU
 - Floating point coprocessor
 - Global versus local resources
 - Local resource (memory, IO, etc.) only accessible by a specific processor
 - Global resources are shared by all processors
 - Global resources can only be access by one MPU at a time; access requires bus locking
 - New signal LOCK* is used by MPU to lock other processors off the bus during an access of a global resource
 - Maximum-mode configuration
 - MN/MX* pin = $0 \rightarrow GND$
 - Most memory, IO, and interrupt interface outputs produced by an external 8288 bus controller

- 8288 bus controller connection
 - Inputs are codes from the 3-bit bus status lines
 - S2*S1*S0* = bus status code
 - Outputs produced by 8288 instead of 8088
 - Based on bus status code→ active
 0
 - MRDC*= Memory read command MWTC*= Memory write command

AMWC*= Advanced memory

- write command
 - IORC*= I/O read command
 - **IOWC*= I/O write command**
 - AIOWC*= advanced I/O write command
 - Produced for all bus cycles
 ALE= Address latch enable
 DT/R*= Data transmit/receive
 - **DEN=** Data enable (complement)

The 8088 and 8086 Microprocessors, INTA*= Interrupt acknowledge3

	Status Input	8				
<u>\$2</u>	51	SO	CPU Cycle	8288 Command		
0	0	0	Interrupt Acknowledge	INTA		
0	0	1	Read I/O Port	IOBC		
0	1	0	Write I/O Port	IOWC, AIOWC		
0	1 1	1	Halt	None		
1	0	0	Instruction Fetch	MBDC		
1	0	1	Read Memory	MBDC		
1	1	0	Write Memory	MWTC. AMWC		
1	1	1	Passive	None		

- Bus status codes, associated cycles, and outputs
 - 8088 outputs a bus status code associated with the type of bus cycle to be performed
 - Memory read
 - Memory write
 - Instruction fetch
 - Read I/O port (Input)
 - Write I/O port (Output)
 - Interrupt acknowledge
 - Halt
 - One or two command outputs become active
 - 101 = Memory read → MRDC*
 - 010 = Output → IOWC* and AIOWC*
 - Appropriate signals are connected to drive external memory, IO, and interrupt circuitry

- Differences from 8088 maximummode interface
 - 16-bit multiplexed data bus
 - BHE* output

The 8088 and 8086 Microprocessors, Triebel and Singh

Symbol	Meaning Minimum		Maximum	Test condition		
V _{IL}	Input low voltage	−0.5 V	+0.8 V			
VIH	Input high voltage	+2.0 V	V _{cc} + 0.5 V			
V _{ol}	Output low voltage		+0.45 V	I _{ol} = 2.0mA		
V _{он}	Output high voltage	+2.4 ∨		I _{OH} = -400 uA		

8.5 Electrical Characteristics– Power Supply Ratings and Input/Output Logic Levels

- Power supply voltages
 - Applied between +Vcc and GND
 - Vcc= +5V ± 10%
 - Icc = 340mA @ 25°C Output logic levels
- Input logic levels—min/max
 .5V ≤ V_{IL} ≤ +0.8V
 - $+2.0V \le V_{IH} \le Vcc+.05V$
- Output logic levels

V_{OHmin}= +2.4V @ IOH = -400uA

- V_{OLmax}= +0.45V @ IOL = 2.0mA*
- * Measured at 2.5mA for 8086

8.6 System Clock– 8284 Clock Generator and CLK

- CLK is used as the time base for synchronization of internal and external operations of the microprocessor and microcomputer
 - Standard Clock (CLK) rates of 8008/8086 8088 → 5MHz 8088-2 → 8MHz 8086 → 5MHz
 - 8086-2 → 8MHz 8086-1 → 10MHz
 - Other clock outputs
 - PCLK = peripheral clock = $\frac{1}{2}$ X CLK
 - OSC = oscillator clock = 3 X CLK
- Other functions of 8284
 - Reset synchronization
 - Ready synchronization

The 8088 and 8086 Microprocessors, Triebel and Singh

8.6 System Clock-8284 to 8088 Connection

- Crystal between X1 and X2 pins of 8284
 - Fundamental frequency is 3X CLK 15MHz for 5MHz 8088 24MHz for 8 MHz 8088
 - F/C* selects the clock source
 - 0 = crystal attached to X1 and X1
 - 1 = external clock at EFI input
 - CLK output is at MOS levels, but attaches directly to CLK input of 8088

8.7 Bus Cycles and Time States- Types of Bus Cycles

BUS CYCLE BUS CYCLE

- Bus cycle is the operation performed by the microprocessor to access an external device
 - Memory read bus cycle
 - Memory write bus cycle
 - IO read (input) bus cycle
 - IO write (output) bus cycle
 - Duration and states of the bus cycle
 - 4 clock cycles per bus cycle
 - Time states called T1, T2, T3, T4
 - At 8MHZ T state = 125ns and bus cycle duration is 500ns
- Multiplexed address/data transfer operation
 - Address output during T1
 - Bus lines in high-Z state in T2
 - Data transfer takes place during states T3 and T4

The 8088 and 8086 Microprocessors, Triebel and Singh

8.7 Bus Cycles and Time States– Idle and Wait States

- Bus cycle with idle
 - If no bus activity is necessary, microprocessor inserts idle states between bus cycles
 - Identified as Ti
 - May be due to the fact that the instruction queue is already full so no instructions need to be fetched
 - Bus cycle with wait states
 - If the memory or I/O device is not able to respond in the duration of a bus cycle (500ns @8MHz), it must make READY 0 during T3 to extend the bus cycle
 - Wait states (Tw) are inserted to extend the bus cycle until READY returns to 1
 - 8MHz bus cycle with 2 wait state =

The 8088 and 8086 Micro

 $\begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 1 & 1 & 0 \\ 0 & 1 & 1 & 0 \\ 0 & 1 & 1 & 0 \\ 0 & 1 & 0$

Introduction

- 8.1 8088 and 8086 Microprocessors
- 8.2 Minimum-Mode and Maximum-Mode Systems
- 8.3 Minimum-Mode Interface
- 8.4 Maximum-Mode Interface
- 8.5 Electrical Characteristics
- 8.6 System Clock
- 8.7 Bus Cycles and Time States
- 8.8 Hardware Organization of the Memory Address Space—✓
- 8.9 Memory Bus Status Codes
- 8.10 Memory Control Signals—✓
- 8.11 Read and Write Bus Cycles—✓
- 8.12 Memory Interface Circuits—✓
- 8.13 Programmable Logic Arrays

8.8 Hardware Organization of the Memory Address Space– 8088 Microprocessor

- 8088 memory hardware is organized as a single byte-wide memory bank
 - Size—1M X 8 bits
 - Physical address range— 0H–FFFFH
 - Address/data bus demultiplexed in external hardware
 - Input:

20-bit address bus— A19 through A0

• Input/Output:

8-bit data bus—D7 Through D0

8.8 Hardware Organization of the Memory Address Space– 8088 Memory Accesses

Byte access bus cycle

Transfer X

X + 1

(X)

D7-D0

Second bus cycle

/(X + 1)

X

D7-D0

(á)

A19-A0

A19-A

(b)

First bus cycle

X + 1

(X) 🥢

D7-D0

A19-A0

- MPU applies address of storage location to be accessed over address lines A19-A0
 - A19—most significant bit
 - A0—least significant bit
- Byte of data written into or read from address X transferred over data lines D0 through D7
 - D7—most significant bit
 - D0—least significant bit
- Byte access takes a minimum of one bus cycle of duration
 - @5MHz—800ns
 - @8MHz—500ns
- Word access bus cycles
 - MPU must access two consecutive storage locations in memory—X and X+1
 - Requires two bus cycles
 - Address X accessed during cycle 1
 - Address X+1 accessed during cycle 2
 - Word access duration is a minimum of two bus cycle @5MHz—2 X 800ns = 1600ns @8MHz—2 X 500ns = 1000ns

8.8 Hardware Organization of the Memory Address Space– 8086 Microprocessor

- 8086 memory hardware is organized as a two bytewide memory bank
 - Bank size—512K X 8 bits
 - Low-bank holds even addressed bytes—0H through FFFEH
 - High-bank holds odd addressed bytes—1H through FFFFH
 - Address/data bus demultiplexed in external hardware
 - Input:

20-bit+ address bus— A19 through A0, and BHE*

- A1-A19 = selects storage location
- A0 = 0 enables low bank
- BHE* = 0 enables high bank
- Input/Output:
 - 16-bit data bus—D15 Through D0
 - $D7-D0 \rightarrow$ even addressed byte accesses
 - D15-D8 \rightarrow odd addressed byte accesses
 - D15-D0 \rightarrow word accesses

8.8 Hardware Organization of the Memory Address Space– 8086 Aligned Memory Accesses

- Low bank byte access bus cycle
 - MPU applies even address X to both banks over address lines A19-A0
 - MPU enables just the low bank BHE*A0 = 10 → enables low bank
 - Byte of data written into or read from address X transferred over data lines D0 through D7
- High bank access bus cycle differences
 - Odd address X+1 applied to both banks
 - High bank enabled
 BHE*A0 =01 = → enable high bank
 - Byte-wide data transfer takes place over data line D8 through D15
- Word access bus cycle differences
 - Even word address X applied to both banks
 - MPU enables both banks
 BHE*A0 =00 = → enable low and high bank
 - Word-wide data transfer takes place over D0 through D15

All accesses takes a minimum of one bus cycle of duration @5MHz—800ns @8MHz—500ns

8.8 Hardware Organization of the Memory Address Space– 8086 Misaligned Word Memory Access

- Misaligned-word access bus cycles
 - Word starting at address X+1 is misaligned
 - Requires two bus cycles
 - Access byte at address X+1 during cycle 1
 - A19-A0 = X+1
 - BHE*A0 =01→ enables high bank D15-D8 → carries data
 - Access byte at address X+2 during cycle 2
 - A19-A0 = X+2
 - BHE*A0 =10→ enables low bank D7-D0 → carries data
 - Word access duration is a minimum of two bus cycle
 @5MHz—2 X 800ns = 1600ns
 @8MHz—2 X 500ns = 1000ns
 - Impact on performance—software should minimize accessing misaligned data

8.10 Memory Control Signals– 8088 Minimum-Mode Interface

Multiplexed-address data bus

AD0-AD7

A8-A19

- Control signal review
 - ALE = pulse to logic 1 tells bus interface circuitry to latch address
 - RD* = logic 0 tells memory subsystem that a code or data read is in progress
 - WR*= logic 0 tells memory subsystem that a data write is in progress
 - IO/M*= Logic 0 tells interface circuits that the data transfer operation is for the memory subsystem
 - DT/R* = sets the direction of the external data bus for read(input) or write(output) operation
 - DEN*= enables the interface between the memory subsystem and MPU data bus
 - SSO* = tells memory interface whether the memory access is a code read or data access

8.10 Memory Control Signals– 8088 Maximum-Mode Interface

- Maximum-mode interface differences review
 - 8288 bus controller produces the control signals
 - Signal changes
 - MRDC* replaces RD*
 - MWTC* and AMWC* replace WR*
 - DEN is complement of DEN*
 - IO/M* no longer needed (bus controller creates separate memory and IO read/write controls)
 - SSO* no longer part of interface

8.10 Memory Control Signals– 8088 Maximum-Mode Interface

	Sta	Status Inputs			
1	\overline{S}_2	\overline{S}_1	Ξ ₀	CPU Cycle	8288 Command
	0	0	0	Interrupt acknowledge	ĪNTĀ
	0	0	1	Read I/O port	IORC
	0	1	0	Write I/O port	IOWC, AIOWC
	0	1	1	Halt	None
	1	0	0	Instruction fetch	MRDC
	1	0	1	Read memory	MRDC
	1	1	0	Write memory	MWTC, AMWC
	1	i	1	Passive	None

- Memory bus status code review
 - During all memory accesses one of three bus cycle status code are output by the MPU
 - Instruction fetch
 - Read memory
 - Write memory
 - 8288 decodes to produce appropriate control command signals
 - MRDC* → instruction fetch/memory read
 - MWTC* \rightarrow memory write
 - AMWC* → advanced memory write

8.11 Read and Write Bus Cycles– 8088 Minimum Mode Read Bus Cycle

- Read bus cycle timing diagram—shows relationship between signals relative to times states
 - T1 state—read cycle begins
 - Address output on A0-A19
 - Pulse produced at ALE--address should be latched in external circuitry on trailing edge of ALE
 - IO/M* set to 0→ memory bus cycle
 - DT/R* set to 0→ set external data bus control circuitry for receive mode (read)
 - T2 state
 - Status code output on S3-S6
 - AD0 through AD7 tri-stated in preparation for data bus operation
 - RD* set to 0→ read cycle
 - DEN* set to 0 → enable external data bus control circuitry
 - T3 state
 - Data on D0-D7 read by the MPU
 - T4 state—read cycle finishes
 - RD* returns to 1→ inactive level
 - Complete address/data bus tri-stated
 - IO/M* returned to 1 → IO bus cycle
 - DEN* returned to 1→ inactive level
 - DT/R* returns to 1→ transmit level

8.11 Read and Write Bus Cycles– 8086 Minimum Mode Read Bus Cycle

- Differences of 8086 read bus cycle
 - BHE* is output along with the address in T1
 - Data read by the MPU can be carried over all 16 data bus lines
 - M/IO*—which replaces
 IO/M*—switches to 1 instead
 of 0 at the beginning of T1
 - SSO* signals is not produce

8.11 Read and Write Bus Cycles– 8088 Minimum Mode Write Bus Cycle

- Write bus cycle timing diagram—shows relationship between signals relative to times states
 - T1 state—write cycle begins
 - Address output on A0-A19
 - Pulse produced at ALE and address latched in external circuitry on trailing edge of ALE
 - IO/M* set to 0→ memory bus cycle
 - DT/R* remains at 1→ external data bus control circuitry for transmit mode (write)
 - T2 state
 - Status code output on S3-S6
 - AD0 through AD7 transitioned to data bus and write data placed on bus
 - DEN* set to 0 → enable external data bus control circuitry
 - WR* set to 0→ write cycle
 - T3 or T4 state
 - Data on D0-D7 written into memory (memory decides when!)
 - T4 state—write cycle finishes
 - WR* returns to 1→ inactive level
 - Complete address/data bus tri-stated
 - IO/M* returned to 1 → IO bus cycle
 - DEN* returned to 1→ inactive level

The 8088 and 8086 Microprocessors, Triebel and Singh

8.11 Read and Write Bus Cycles– 8086 Maximum Mode Write Bus Cycle

CLK	
\$2-50	52-50 ACTIVE 52-50 INACTIVE
ADDRESS/STATUS	A19-A16 S6-S3 FLOAT
ÖHE	BHE LOW FOR DATA TRANSFER ON HIGH ORDER BYTE (D15-D8)
ADDRESS/DATA (AD15-AD0)	A15-A0 DATA OUT D15-D0
·ALE	
·AMWC OR ·ARWC	
·MWTC OR ·IOWC	
*DEN	
*8288 BUS CONTROL	LLER OUTPUTS

- Similar to 8088/8086 minimum-mode write bus cycle
 - Address and data transfer operation identical
 - Transfer may be a high-byte, lowbyte, word
- Differences is the 8288 produces the bus control signals—ALE, DEN, AMWC*, and MWTC*
 - Bus status code S2*-S0* output prior to T1 and held through T2
 - AMWC* and MWTC* replace WR* (Note timing difference)
 - DEN =1 produced instead of DEN* =0 (change in external circuitry!)

8.12 Memory Interface Circuits– Block Diagram

- Building blocks of the maximum mode 8086 memory interface
 - 8288 bus controller
 - Address bus latch
 - Address decoder
 - Data bus transceiver/buffer
 - Bank read control logic
 - Bank write control logic
 - Memory subsystem

The 8088 and 8086 Microprocessors, Triebel and Singh

8.12 Memory Interface Circuits– Overview of Memory Access Operation

- - Bus status code for type of memory access output to 8288 on S2*-S0*
 - 8288 decodes to produce the command and control signals need to coordinate the data transfer
 - Address is latched, buffered, and decoded to:
 - Produce chip enable signals for the memory array
 - Select a specific memory location
 - Select upper, lower, or both banks of the memory array
 - **MWTC*** and **MRDC*** combined with A0L and BHEL* to set the appropriate bank(s) of the memory array for write or read, respectively
 - DT/R* and DEN are used to enable the data bus transceiver/buffer and set it for the transmit (write) or receive (read) direction

70 <u>(17)</u>

8D <u>(18)</u>

8.12 Memory Interface Circuits– Address Latch

- Roles of the address latch
 - Latch address signals A0-A19 and BHE*
 - Buffer signals so that they may be used to drive a large memory system, IO peripherals, and other interfaces
- Requirements

- 21 bit wide latch/buffer
- Low propagation delay– allows use of slower memories
- 74F373—Octal D-type latch
 - 8 independent buffered D-type flipflops (latches)
 - Enable to output propagation delay = 13 ns
 - Outputs sink 24 mA (buffering)
 - OC* =0 enables latch circuits

(b)

10

1D

C1

1D

(16)

(19)

- 70

80

8.12 Memory Interface Circuits– Address Latch Design

- Implemented with 3 74F373 Octal-D-type latches
 - Inputs AD0-AD15, A16-A19, and BHE* from MPU
 - All devices permanently enabled by fixing the OC* inputs at logic 0
 - All latches clocked in parallel with pulse at ALE from 8288
 - Latched and buffered outputs are: A0L-A19L, and BHEL*
 - Parts of address applied to the address inputs of memory subsystem, address decoder, and read/write control logic

8.12 Memory Interface Circuits– Bank Write Control Logic Design

- Role of write control logic
 - Memory array is organized in upper and lower banks

- Byte to a storage location in the upper (odd) bank
- Byte to a storage location in the lower (even) bank
- Word to storage locations in both banks
- Write control logic must decode A0L, BHEL*, and MWTC* to produce independent write signals—WR_U* and WR_L*
- 7432—2-input OR gate solution
 - MWTC*(MWRC*) =0 enables both gates

BHEL* AOL WR_U* WR_L* Result

0

0

1

0

- 0 0 Both banks enabled
- 0 1 0 Lower (even) bank enabled
 - 1 0 1 Upper (odd) bank enabled

8.12 Memory Interface Circuits– Bank Read Control Logic Design

- Role of read control logic
 - Types of data reads that may take place:
 - Byte from the lower (even) bank
 - Byte from upper (odd) bank
 - Word of data from both banks or an instruction fetch
 - Read control logic must decode A0L, BHEL*, and MRDC* to produce independent read signals—RD_U* and RD_L*
 - 7432-based solution is similar to bank write control logic
 - MRDC* =0 enables both gates

BHEL* AOL RDU* **RD**L* **Result**

0	0	0	0	Both banks enabled
1	0	1	0	Lower (even) bank enabled
0	1	0	1	Upper (odd) bank enabled

8.12 Memory Interface Circuits– Data Bus Transceivers

- Roles of the data bus transceiver/buffer
 - Set the direction of the data path been memory and the MPU bus
 - Appropriately time the enabling of the transceivers to coincide with the read/write data transfer
 - Buffer the data bus lines so that they may be used to drive a large memory system, IO peripherals, and other interfaces
- Requirements
 - 8/16 bit wide bi-directional transceiver
 - Low propagation delay– allows use of slower memories
- 74F245—Octal bi-directional bus transceiver
 - 8 independent bus transceivers
 - DIR input selects direction of data transfer
 - $\mathbf{0} = \mathbf{B} \text{ to } \mathbf{A} \rightarrow \mathbf{read}$
 - 1 = A to $B \rightarrow$ write
 - G* =0 enables all transceivers
 - Outputs sink 64 mA (buffering)

8.12 Memory Interface Circuits– Data Bus Transceiver Design

- Implemented with 2 74F245 Octal bi-directional bus transceivers
 - A inputs/outputs are D0-D15 directly from MPU
 - Direction of both devices set by logic level of DT/R*
 - Both devices enabled at appropriate time for data transfer by DEN=1
 - B inputs/outputs are the buffered data bus lines DB0 through DB15
 - Buffered data bus lines applied directly to the memory subsystem

8.12 Memory Interface Circuits– Address bus with Latch and Decoder

- Role of address decoder
 - Part of the buffered/latched address is decoded to create chip enables
 - Address inputs A19L A18L A17L is decoded to produce 8 independent chip enable outputs CE0* through CE7*
 - Inputs and outputs

A19L A18L A17L CE0* CE1* CE2* CE3* CE4* CE5* CE6* CE7*

0	0	0	0	1	1	1	1	1	1	1
0	0	1	1	0	1	1	1	1	1	1
0	1	0	1	1	0	1	1	1	1	1
0	1	1	1	1	1	0	1	1	1	1
1	0	0	1	1	1	1	0	1	1	1
1	0	1	1	1	1	1	1	0	1	1
1	1	0	1	1	1	1	1	1	0	1
1	1	1	1	1	1	1	1	1	1	0

The 8088 and 8086 Microprocessors, Triebel and Singh

• Byte from the lower bank

8.12 Memory Interface Circuits– Address Decoder

- Requirements of Address Decoder
 - Requires standard decoder/multiplexer functions
 - 2-input 4-output—74F139
 - 3-input 8-output—74F138
 - 74F139 decoder/multiplexer
 - Dual 2-input 4-output decoder/multiplexer
 - Two-bit input BA
 - Four independent outputs Y0 through Y3
 - G* input enables the associated decoder
 - Operation
 - G* = 1 forces all outputs to 1
 - G* = 0 enables circuit and the Y output associated with the input code switches to the active 0 level

8.12 Memory Interface Circuits– 3-input 8-Output Address Decoder Design Using the 74F139

- 3-input 8-output address decoder made with two 2-input 4-output decoder/multiplexer circuits
 - A19L =0 makes 1G* =0 and 2G* =1 and enables outputs CE0*-CE3*
 - A19L =1 makes 1G* =1 and 2G* =0 and enables CE4*-CE7*
 - Code at A18L A17L applied to the BA inputs of both multiplexers in parallel
 - Output associated with the input code on the enabled decoder becomes active

8.12 Memory Interface Circuits– 3-Input 8-Output Address Decoder Design Using the 74F138

