Chapter 9

Memory Devices, Circuits, and Subsystem Design

Introduction

- 9.1 Program and Data Storage Memory—✓
- 9.2 Read-Only Memory—✓
- 9.3 Random Access Read/Write Memories—✓
- 9.4 Parity, Parity Bit, and Parity-Checker/Generator Circuit
- 9.5 FLASH Memory
- 9.6 Wait-State Circuitry—✓
- 9.7 8088/8086 Microcomputer System Memory Interface Circuitry—✓

9.1 Program and Data Storage Memory– The Memory Unit

- Memory—provides the ability to store and retrieve digital information
 - Instructions of a program
 - Data to be processed
 - Results produced by processing
- Organization of the Microcomputer memory unit
 - Secondary storage—stores information that is not currently in use
 - Slow-speed
 - Very large storage capacity
 - Implemented with magnetic/optical storage devices—in PC
 - Hard disk drive
 - Floppy disk drive
 - Zip drive
 - Primary storage—stores programs and data that are currently active
 - High-speed
 - Smaller storage capacity
 - Implemented with semiconductor memory
 - Partitioning of Primary Storage
 - Program storage memory—holds instructions of the program and constant information such as look-up tables
 - EPROM (BIOS in PC)
 - FLASH memory
 - DRAM (volatile code storage in a PC)
 - Data storage memory—holds data that frequently changes

The 8088 and 8086 Microprocessors, Thebel and Singh 3

• DRAM (PC)

9.2 Read-Only Memory– Types

- Read-only memory (ROM)
 - Used for storage of machine code of program
 - Stored information can only be read by the MPU
 - Information is nonvolatile—not lost when power turned off
 - Types:
 - ROM—mask-programmable read only memory
 - Programmed as part of manufacturing process
 - Lowest cost
 - High volume applications
 - PROM—one-time programmable read-only memory
 - Permanently programmed with a programming instrument
 - EPROM—erasable programmable read-only memory
 - Programmed like a PROM
 - Erasable by Ultraviolet light
 - Electrically alterable ROM-like devices
 - FLASH memory
 - EEROM (E²ROM)

9.2 Read-Only Memory– Block Diagram

- Block diagram of the ROM, PROM, and EPROM are essentially the same
- Signal interfaces
 - Address bus (A10-A0)—MPU inputs address information that selects the storage location to be accessed
 - Data Bus (D7-D0)—information from the accessed storage location output to be read by MPU
 - Control bus—enables device and/or enables output from device
 - CE* = chip enable—active 0; 1 low-power stand by mode
 - OE* = output enable—active 0; 1 high-Z state
 - Byte capacity– number of bytes a device can store
 - Calculated from number of address bits
 - EX: Address = 11-bit address
 - Storage capacity = 2¹¹ = 2048 bytes
- Organization—how the size of a ROM is described
 - Formed from capacity and data bus width EX: 2048 X 8 or just 2K X 8
- Storage density—number of bits of storage in a ROM
 - Calculated from byte capacity and data width

The 8088 ar EX08Storage density, Fri 2048 X 8 ingh6384 bits (16K bits)

9.2 Read-Only Memory– Organization and Capacity

• Example:

A ROM device has 15 address lines and 8 data lines. What are the address range, byte capacity, organization, and storage density?

Solution:

Address range
 A14-A0 = 000 0000 0000 0000₂ → 111 1111 1111 1111₂
 = 0000H → 7FFFH

- Byte capacity
 2¹⁵ = 32,768 bytes = 32K bytes
- Organization 32768 X 8 bit

Storage density
 32768 x 8 = 262144 bits = 256K bits

9.2 Read-Only Memory– Operation

- Read operation
 - MPU outputs address and control information on its bus.
 - Interface circuit applies Address A10-A0 to the address inputs of the ROM to select a specific byte wide storage location
 - Interface circuits decode additional address bits to produce a chip select output
 - Logic 0 at CS* applied to the CE* input of the ROM to enable it for operation
 - Memory interface circuitry produces appropriately timed MEMR* output
 - MEMR* applied to OE* input of the ROM to enable the information at the addressed storage location onto the output bus D7-D0
 - Memory interface supplies the byte of data from the ROM to the MPUs data bus
 - MPU reads the byte of data from the ROM from its data bus

9.2 Read-Only Memory– Standard EPROM ICs

- EPROM part numbers formed by adding the prefix "27" to the device total Kbytes of storage capacity
 - Examples:
 - 16K bit EPROM \rightarrow 2716
 - 32K bit EPROM \rightarrow 2732
 - 1M bit EPROM \rightarrow 27C010
- Most EPROM available in byte wide organization
 - Examples:
 - $\mathbf{2764} \rightarrow \mathbf{8K} \times \mathbf{8}$
 - 27C020 → 256K X8
- NMOS versus CMOS process
 - Manufacturing processes used to make EPROMs
 - NMOS=N-channel metal-oxide semiconductor
 - CMOS= complementary symmetry metaloxide semiconductor
 - "CMOS" designated by "C" in part number

• NMOS—older devices such as 2716 and 2732 The 8088 and 8086 Microprocessors, Triebel and Singh CMOS—all newer devices 27C64 and up

EPROM	Density (bits)	Capacity (bytes)
2716	16K	2K × 8
2732	32K	4K × 8
27C64	64K	8K × 8
27C128	128K	16K × 8
27C256	256K	32K × 8
27C512	512K	64K × 8
27C010	1.M	128K × 8
27C020	2M	256K × 8
27C040	4M	512K × 8

9.2 Read-Only Memory– Pin Layouts

27C512	27C128	27C64	2732A	2716	Pin
A ₁₅	Vpp	V _{PP}			1
A ₁₂	A ₁₂	A ₁₂			2
A ₇	Α,	A,	Α,	Α,	3
A ₆	A ₆	A ₆	A ₆	A ₆	4
A ₅	A ₅	A ₅	A ₅	A ₅	5
A4	A₄	A4	A4	A₄	6
A ₃	A ₃	A ₃	A ₃	A3	7
A ₂	A ₂	A ₂	A ₂	A ₂	8
Α,	Α,	A ₁	A,	A1	9
Ao	A	Ao	Ao	A ₀	10
00	O ₀	00	0,	00	11
о,	0,	0,	0,	0,	12
02	02	02	02	02	13
God	Gred	God	God	God	14

 	<u></u>		
∨ _{₽₽} □	1	28	⊐vcc
A12	2	27] A ₁₄
Α, [3	26	□ A ₁₃
A ₆ [4	25	🗆 A ₈
A₅⊏	5	24	🗆 A 9
A4	6	23	□ A ₁₁
A3 🗆	7	22	
A ₂	8	21	A10
A1 🗖	9	20	D CE
A ₀	10	19	Þo, .
0₀⊏	11	18	⊐o ₅
0, □	12	17	þo₅
0,0	13	16	Þo₄
6~1	14	15	ho.

Pin	2716	2732A	27C64	27 <u>C</u> 128	27C512
28			V _{cc}	V _{cc}	V _{cc}
27			PGM	PGM	A14
26	Vcc	Vcc	N.C.	A ₁₃	A ₁₃
25	A ₈	A ₈	A ₈	A ₈	A ₈
24	A ₉	A ₉	A ₉	A ₉	Ag
23	Vpp	A11	A ₁₁	A ₁₁	A ₁₁
22	ŌĒ	OE/V _{PP}	ŌE	ŌĒ	OE/VPP
21	A ₁₀	A ₁₀	A ₁₀	A ₁₀	A ₁₀
20	CE	ĈĒ	ĈĒ	CE	CE
19	0,	0,	0,	0,	07
18	06	06	06	06	06
17	05	05	05	05	05
16	04	04	04	04	04
15	0.	0.	0.	0.	0.

- EPROM pin layouts are designed for compatibility
 - Permit easy upgrade from lower to higher density
 - Publish pin layouts of future densities
 - Allows design of circuit boards to support drop in upgrade to higher densities
- Most pins are independent and serve a common function for all densities
 - Examples:
 - pin 10- A0
 - pin 11--00
 - pin 14- Gnd
- Some have one multi-function pin
 - OE*/Vpp
 - Vpp mode during programming only

9.2 Read-Only Memory– EPROM Switching Waveforms

- Timing of the read operation
 - Output data is not immediately available at the outputs
 - Delays exist between the application of the address,CE* and OE* signals and the occurrence of a valid output
 - tacc= access time—address to valid output delay time
 - tCE= chip-enable time—chip enable to valid output delay
 - tOE=output-enable time—output enable to valid data delay
 - To assure that the MPU reads valid data, these inputs must be applied at the appropriate times
 - Responsibility of the memory interface circuitry
 - Another delay occurs at the removal of OE* before the outputs lines are returned to the high-Z state

The 8088 and 8086 Microprocessors, Triedel and Singh the outputs to recover

9.2 Read-Only Memory– 27C256 Read Cycle Timing Characteristics

	Versions	V _{CC} ± 5%	27C256	6-120V05	27C256	-135V05	27C256	-150V05	27C2 P27C N27C	256-1 256-1 256-1	27C2 P27C N27C	256-2 256-2 256-2	270 P270 N270	256 C256 C256	
		$V_{CC} \pm 10\%$			27C256	-135V10	27C256	-150V10			27C2 P27C2 N27C2	56-20 256-20 256-20	27C2 P27C2 N27C	56-25 256-25 256-25	Un
Symbol	Parameter		Min	Max	Min	Max	Min	Max	Min	Max	Min	Max	Min	Max	
t _{ACC}	Address to output delay			120		135		150		170		200		250	ns
t _{CE}	CE to output delay			120		135		150		170		200		250	ns
t _{OE}	OE to output delay			60		65		70		75		75		100	ns
t _{DF} (2)	OE high to output high-Z	2		30		35		45		55		55		60	ns
t _{он} (2)	Output hold from addres	ses, CE or is first	0		0		0		0		0		0		ns

Notes:

3. Package Prefixes: No Prefix = CERDIP; N = PLCC; P = Plastic DIP.

- EPROM part numbers include access time and power supply tolerance information
 - 27C256120V05

tACC = 120ns

Vcc = ± 5%

• 27C256-1

tACC = 170ns

Vcc = ± 10% (standard unmarked)

- Maximum access times of the 27C256-120V05
 - tacc=120ns
 - tCE= 120ns
 - tOE= 60ns
 - tDF= 30ns
 - Note that tacc and tCE should be applied at the same time
 - More delays in tCE path!

^{1.} A.C. characteristics tested at V_{IH} = 2.4 V and V_{IL} = 0.45 V.

Timing measurements made at $V_{OL} = 0.8$ V and $V_{OH} = 2.0$ V.

Guaranteed and sampled.

9.2 Read-Only Memory– DC Electrical Characteristics

Symbol	Parameter		Notes	Min	Typ ⁽³⁾	Max	Unit	Test Conditions
l _{Li}	Input load current				0.01	1.0	μA	$V_{IN} = 0V$ to V_{CC}
ILO	Output leakage currer	nt				± 10	μA	$V_{OUT} = 0V$ to V_{CC}
I _{PP1}	V _{PP} read current		5			200	μA	V _{PP} = V _{CC}
I _{SB1}	V _{CC} current standby	TTL	8			1.0	mA	ČE = V _{IH}
I _{SB2}		CMOS	4			100	μA	CE = V _{CC}
I _{CC1}	V _{CC} current active		5, 8			30	mA	CE = V _{IL} f = 5 MHz
V	Input low voltage (±10% supply) (TT			-0.5		0.8		
¥ IL	Input low voltage (CMOS)			-0.2	n an the angle Shi Mari Angle Saint Shi Angle	0.8		
V	Input high voltage (± 10% supply) (TT	L)		2.0		V _{CC} + 0.5		
• 114	Input high voltage (CMOS)			0.7 V _{CC}		V _{CC} + 0.2		
VOL	Output low voltage					0.45	V	I _{OL} = 2.1 mA
V _{OH}	Output high voltage			3.5			v	I _{OH} = -2.5 mA
I _{OS}	Output short circuit cu	rrent	6			100	mA	
V _{PP}	V _{PP} read voltage		7	V _{CC} -0.7		V _{CC}	V	

Notes:

- 1. Minimum D.C. input voltage is -0.5V. During transitions, the inputs may undershoot to -2.0V for periods less than 20 ns. Maximum D.C. voltage on output pins is $V_{CC} + 0.5V$ which may overshoot to $V_{CC} + 2V$ for periods less than 20 ns.
- Operating temperature is for commercial product defined by this specification. Extended temperature options are available in EXPRESS and Military version.
- 3. Typical limits are at $V_{CC} = 5V$, $T_A = +25^{\circ}C$.
- 4. $\overline{\text{CE}}$ is V_{CC} ± 0.2V. All other inputs can have any value within spec.

- 5. Maximum Active power usage is the sum $I_{PP} + I_{CC}$. The maximum current value is with outputs O_0 to O_7 unloaded.
- Output shorted for no more than one second. No more than one output shorted at a time. I_{OS} is sampled but not 100% tested.
- 7. V_{PP} may be one diode voltage drop below V_{CC} . It may be connected directly to V_{CC} . Also, V_{CC} must be applied simultaneously or before V_{PP} and removed simultaneously or after V_{PP} .
- 8. VIL, VIH levels at TTL inputs.

Some important operating DC voltage and current ratings

- Vcc is ±5% or ± 10%
- High and low output voltages
 - V_{OL} max = 0.45V
 - V_{OH} min = 3.5V
- High and low input voltages
 - V_{IL} max = .8V (TTL)
 - V_{IH} min = 2V (TTL)
- **V**_{cc} current—active

- V_{cc} current—standby
 - I_{ss1} = 1 ma (TTL)

Many applications require more ROM capacity than is available in a single device

- Need more bytes of storage
- Connects to a wider data bus
- Expanding byte capacity with 2 EPROMS
 - Connect address bus lines in parallel
 - Connect output lines in parallel
 - Connect OE* in parallel
 - Enable chips with separate chip selects
 - Address bit A15 decoded to produce CS0* and CS1*
 - A15=0 → CS0*
 - A15=1 → CS1*
 - Implemented with inverting buffer
 - Byte capacity
 2¹⁶ = 64K bytes
 - Organization
 - 64K X 8 bit
 - Storage density

The 8088 and 8086 Microprocessie, Trighels 12k bits

9.2 Read-Only Memory– Expanding Word Length

- Expanding word length with 2 EPROM
 - Connecting to 8086 16-bit data bus
 - Connect address bus lines in parallel
 - Connect CE* in parallel
 - Connect OE* in parallel
 - 8 data outputs of EPROM 0 used to supply the lower data bus lines D0-D7
 - 8 data outputs of EPROM 1 used to supply the upper 8 data bus lines D8-D15
 - Byte capacity
 2 X 2¹⁵ = 64K byte
 - Organization 32K X 16 bit
 - Storage density 32K x 16 = 512K bits

9.7 8088/8086 Microcomputer System Memory Circuitry– Minimum-Mode 8088 System Program Memory Interface*

Program memory

- Implemented with a single 2716 EPROM—2K X 8-bit
- **Program memory address range** A10-A0 = 00000H - 007FFH
- CS_v* =0 produced by decoding additional address bit ie. A11-A19 = $0 \rightarrow CS_{\gamma}^*$
- A11-A19 = $10000000 \rightarrow CS_{\chi}^*$ MEMR *8088 of 8086 Microprocessors, Triebel and Singh

9.7 8088/8086 Microcomputer System Memory Circuitry– Maximum-Mode 8088 System Memory Interface*

 Enable signals for address latches, data bus transceivers, RAM, and PROM produced by bus controller

9.3 Random Access Read/Write Memories– Types of RAMs

- Random Access Read/Write Memory (RAM)
 - Used for temporary storage of data and program information
 - Stored information can be altered by MPU—read or written
 - Information read from RAM
 - Modified by processing
 - Written back to RAM for reuse at a later time
 - Information normally more frequently randomly accessed than ROM
 - Information is volatile— lost when power turns off
 - Types:
 - Static RAM (SRAM)— data once entered remains valid as long as power supply is not turned off
 - Lower densities
 - Higher cost
 - Higher speeds
 - DRAM—data once entered requires both the power to be maintained and a periodic refresh
 - Higher densities
 - Lower cost
 - Lower speeds
 - Refresh requires additional circuitry

9.3 Random Access Read/Write Memories– SRAM Block Diagram

- Signal interfaces
 - Address bus (A12-A0)—MPU inputs address information that selects the storage location to be accessed
 - Data Bus (I/O7-I/O0)—input/output of information for the accessed storage location from/to MPU
 - Control bus—enables device, enables output from device, and selects read/write operation
 - CE* = chip enable—active 0
 - OE* = output enable—active 0
 - WE* = write enable
 - 0 = write to RAM
 - 1 = read from RAM

9.3 Random Access Read/Write Memories– Standard SRAM ICs

SRAM	Density (bits)	Organization
4361	64K	64K × 1
4363	64K	16K×4
4364	64K	8K×8
43254	256K	64K×4
43256A	256K	32K × 8
431000A	1M	128K × 8

- Part numbers vary widely by manufacturer—Hitachi/NEC use "43xxx
- SRAMs are available in a variety of densities and organization
 - Typical SRAM densities
 - 64K bit
 - 256K bit
 - 1M bit
 - Typical organizations of the 64K bit SRAM
 - 64K X 1 bit
 - 16K X 4 bit
 - 8K X 8 bit

9.3 Random Access Read/Write Memories– Pin Layout of SRAMs

- 4364 and 43256A pin layouts are designed for compatibility
- 4364 pin configuration (Fig a)
 - A12-A0 → 13-bit address 2¹³ = 8K bytes
 - I/O7-I/O0 \rightarrow byte wide
 - Pin 1 NC = no connect
 - Pin 27 WE*
 - Pin 20 CE1* \rightarrow active 0
 - Pin 26 CE2 \rightarrow active 1
 - Pin 22 → OE*
 - Pin 28 Vcc
 - Pin 14 GND
- 43256A differences (Fig b)
 - Pin 1 \rightarrow A14
 - Pin 26 → A13
 - Pin 20 called CS* (function unchanged)

9.3 Random Access Read/Write Memories-Expanding Word-Width and Capacity Most SRAM subsystems

- - **Require both word-width and bit capacity** expansion
 - Require the ability to write on byte-wide or word wide basis- design only supports words
- Expansions performed in a similar way as for **EPROMs**
- 16K X 16-bit SRAM circuit
 - A0-A12 in parallel
 - A13 decoded to form CS0* and CS1*
 - $CS0^* \rightarrow$ enable Bank 0
 - $CS1^* \rightarrow$ enable Bank 1
 - SRAMs 0 & 2—input/outputs connected in parallel and supply low byte of data bus
 - SRAMs 1 & 3—input/ outputs connected in parallel and supply high byte of data bus
 - **MEMW*** and **MEMR*** produces independent write and read enables MEMW* MEMR* Data Transfer

		Bata manoron
0	0	Invalid
0	1	Word write
1	0	Word read

Inactive The 8088 and 8086 Microprochew can the circuit be modified to support byte wide write?

9.3 Random Access Read/Write Memories– Standard Read/Write Cycle Times

Part number	Read/write cycle time
4364-10	100 ns
4364-12	120 ns
4364-15	150 ns
4364-20	200 ns

- Speed of a SRAM identified as read/write cycle time
 - Variety of speeds available—4364 available in speeds ranging from 100ns to 200ns
 - Shorter the cycle time the better
- Designated by a dash speed indicator following the part number
 - -10 = 100ns
 - -12 = 120ns

9.3 Random Access Read/Write Memories– DC Electrical Characteristics

		_ L	lmits.	_		
Parameter	Symbol	Min	Тур	Max	Unit	Test Conditions
Input leakage current	lu			1	μ A	$V_{IN} = 0 V \text{ to } V_{CC}$
Output leakage current	ILO			1	μA	
Operating supply current	I _{CCA1}			(1)	mA	$\label{eq:cell} \begin{split} \overline{CE}_1 &= V_{ L},\\ CE_2 &= V_{ H},\\ I_{ /O} &= 0,\\ Min \ cycle \end{split}$
	I _{CCA2}		5	10	mA	$\overline{CE}_{1} = V_{ L},$ $CE_{2} = V_{ H},$ $I_{ /O} = 0,$ DC current
	ICCA3		3	5	mA	$\begin{split} \overline{CE}_1 &\leq 0.2 \text{ V}, \\ CE_2 &\geq V_{CC} - 0.2 \text{ V}, \\ V_{IL} &\leq 0.2 \text{ V}, \\ V_{IH} &\geq V_{CC} - 0.2 \text{ V}, \\ f &= 1 \text{ MHz}, I_{I/O} = 0 \end{split}$
Standby supply current	I _{SB}			(2)	mA	$\overline{CE}_{1} \ge V_{IH} \text{ or } \\ CE_{2} = V_{IL}$
	I _{SB1}			(3)	mA	$\overline{CE}_1 \ge V_{CC} - 0.2 V$ $CE_2 \ge V_{CC} - 0.2 V$
	I _{SB2}			(3)	mA	CE ₂ ≤0.2 V
Output voltage, low	V _{OL}	· ·		0.4	V	l _{OL} = 2.1 mA
Output voltage,	V _{OH}	2.4			v	l _{OH} = -1.0 mA

Notes:

 μPD4364-10/10L: 45 mA max μPD4364-12/12L/12LL: 40 mA max μPD4364-15/15L/15LL: 40 mA max μPD4364-20/20LL: 35 mA max

(2) μPD4364-xx: 5 mA max μPD4364-xxL: 3 mA max μPD4364-xxLL: 3 mA max μPD4364-xxLL: 3 mA max Some important operating DC voltage and current ratings

- Vcc = 5V±10%
- High and low output voltages
 - V_{OL} max = 0.4V
 - V_{OH} min = 2.4V
- Icc—operating current
 - Varies based on frequency of repeated read/write cycles
 - I_{CCA1}—repeatedly performing fastest R/W cycle

I_{CCA1} max = 45mA @ -100ns

- I_{CCA1} max = 35mA @ -200ns
- I_{CCA1} increases with frequency
 - Fastest read cycle of -20 is ½ the frequency of the fastest -10 cycle
- ICCA2—no R/W taking place (DC)

 I_{CCA2} max = 10mA

9.3 Random Access Read/Write Memories– Write Cycle and Timing

Notes:

- 1. A write occurs during the overlap of a low \overline{CE}_1 and a high CE_2 and a low \overline{W}
- 2. \overline{CE}_1 or \overline{WE} [or CE_2] must be high [low] during any address transaction.
- 3. If \overline{OE} is high the I/O pins remain in a high-impedance state.

- Timing is referenced to valid address
 - t_{wc} = write cycle time—address must remain valid for this period

4364-10 t_{wc} = 100ns

- Other important timing characteristics
 - t_{CW1} = CE1* to end of write time—minimum amount of time between CE1* becoming active and completion of write cycle

4364-10 t_{cw1} = 80ns

t_{CW2} = CE2 to end of write time—minimum amount of time between CE2 becoming active and completion of write cycle

4364-10 t_{CW2} = 80ns

- t_{AS} = address set-up time—minimum amount of time the address must be stable before WE* becomes active
 - 4364-10 t_{AS} = 0ns
- t_{WP} = write pulse width—minimum duration of the write 4364-10 t_{WP} = 60ns
- t_{DW} = data valid to end of write pulse—minimum time that input data must be maintained valid after the leading edge of WE*

4364-10 t_{DW} = 60ns

t_{DH} = data hold time—minimum time that input data must be maintained valid after the training edge of WE*

4364-10 t_{DH} = 0ns

t_{wR} = write recovery hold time—minimum time that must elapse from training edge of WE*before another write can

24

The 8088 and 8086 Microperivitiated rs, Triebel and Singh

4364-10 t_{wR} = 5ns

9.6 Wait-State Circuitry– Extending the Bus Cycle

- If the memory or I/O device is slow for the bus cycle of the MPU, read/write access cycles must be extended with wait states
 - Recall—bus cycle duration
 - 5MHZ 8088/8086 = 800ns
 - 8MHz 8088/8086 = 500ns
 - 10MHz 8086 = 400ns
 - Memory device speed not a problem with these older processor
 - 100MHz 80486—10ns clock
 - 2 clocks/bus cycle—20ns bus cycle duration
 - Slow I/O devices are a potential problem
 - Solution is wait-state generator circuit
 - Accepts CLK and bus cycle control signals as inputs
 - Circuit detects when bus cycle is in progress and delays active READY for an appropriate number of clock cycles

9.6 Wait-State Circuitry– Wait-State Generator Circuit Inputs and Outputs

Input of FF

- CS0* and CS1* represents chip selects for the program and data storage memory
- MRDC* and MWTC* correspond to read or write commands that occur during a memory access cycle
- RESET is hardware reset of the MPU
- Strapped output of the shift register is another input
- CLK is MPU clock and drives shift register
- Output of FF
 - Q* output goes to the READY input of the MPU
 - 0 = extend the bus cycle with wait states
 - 1= complete the current bus cycle

9.6 Wait-State Circuitry– Wait-State Generator Circuit Operation

- Operation
 - Initial state after pulse at RESET is FF reset
 - Q* = 1 → READY
 - Q → CLR of shift register and makes SR outputs = 0
 - Bus cycle initiated
 - CS0* or CS1* becomes active = 0 making D=1
 - Pulse to 0 at either MRDC* or MWTC* clocks FF
 - FF sets making Q* = 0 and Q =1
 - Q* = 0 → READY inactive insert wait sates
 - Q = 1 applied as data input of SR
 - SR no longer held in clear state
 - CLK shifts logic 1 applied at Data input up through the SR
 - Bus cycle completes
 - When selected SR output (1) become 1, RS* input of FF made 0 and it resets

 $Q = 0 \rightarrow clears SR$

- Q* = 1 → READY active and bus cycle completes
- Bus cycle extended by how many clocks?

The 8088 and 8086 Microprocessors, Triebel and Singh

 $\frac{\overline{CS}_0}{\overline{CS}_1} \bullet$

9.7 8088/8086 Microcomputer System Memory Circuitry– Minimum-Mode 8086 System Data Memory Interface

- Data memory
 - Implemented with 4 2142 1K X 4-bit SRAMs—1K X 16-bit
 - Assume: A11-A19 = 100000000 → CS_x*
 - SRAM memory address range A11-A0 = 1000 0000 0000₂ - 1011 1111 1111₂ = 00800H - 00BFFH
 - MEMW* →hWE \$88 and 8086 Microprocessors, Triebel and Singh
 - MEMR* \rightarrow OD

28

9.7 8088/8086 Microcomputer System Memory Circuitry– Maximum-Mode 8088 System Memory Interface

 Enable signals for address latches, data bus transceivers, RAM, and PROM produced by bus controller

9.3 Random Access Read/Write Memories– DRAM Block Diagram

- DRAM signal interfaces
 - Address multiplexed in external circuitry into a separate row and column address
 - Row address = A₇-A₀
 - + Column address = A₁₅-A₈
 - Special RAS* and CAS* inputs used to strobe address into DRAM
 - Row and column addresses applied at different times to address inputs A₀ through A₇
 - + Row address first
 - Column address second
 - Known as "RAS before CAS"
 - Address reassembled into 16-bit address inside DRAM
 - Frequently data organizations are X1, X2, and X4
 - Separate data inputs and outputs
 - Data input labeled D
 - + Data output labeled Q
 - Read/write (W) input signals read or write operation

9.3 Random Access Read/Write Memories– Standard DRAM ICs

- Density DRAM (bits) Organization 2164B 64K $64K \times 1$ 21256 256K 256K × 1 $64K \times 4$ 21464 256K 421000 1M $1M \times 1$ 256K×4 424256 1M $4M \times 1$ 44100 4M $1M \times 4$ 44400 4M 256K×16 44160 4M 416800 $8M \times 2$ 16M 416400 $4M \times 4$ 16M 416160 $1M \times 16$ 16M
- DRAMs are available in a variety of densities and organization
 - Typical DRAM densities
 - 64K bit
 - 256K bit
 - 1M bit, Etc.
 - Modern DRAMS as large as 1G bit
 - Typical organizations of the 4M bit DRAM
 - 4M X 1 bit
 - 1M X 4 bit
 - Modern higher density devices also available in X8, X16, and X32 organizations

9.3 Random Access Read/Write Memories– DRAM IC Packaging

Packaging

- Multiplexed address permits device to be built in a package with less pins
 - Typically 16 pin DIP or 18 pin DIP
- Modern devices available in a circuit card format—called a "module"
 - SIMM—single in-line memory module—30 pin and 72 pin versions
 - DIMM—dual in-line memory module—168pins and 184 pins
 - SIMM and DIMM differ in size, pin layout, and signal distribution
 - Permits easier upgrade of systems with more DRAM memory by simply inserting another module

9.3 Random Access Read/Write Memories– Circuit Design using DRAMS

Sixteen 64KX1-bit DRAMs interconnected to form a 64K word memory subsystem—1M-bits of memory

- Circuit connections
 - 8 multiplexed address inputs of all devices connected in parallel
 - RAS and CAS lines of all devices connected in parallel
 - Data input and output lines
 - Independent data lines arranged to form a 16-bit wide output bus
 - Independent input lines arranged to form a 16-bit wide input bus
 - In most microprocessor applications input and output lines are connected together
 - Read/write lines
 - W inputs of upper 8 DRAMs connected together and driven by WR0*
 - W inputs of lower 8 DRAMs connected together and driven by WR1*
 - Permits byte-wide or word-wide reads and writes

9.3 Random Access Read/Write Memories– Circuitry of a DIMM Module

- **256M byte DIMM circuit**
 - Organized 32MX64-bit or 64MX32-bit
 - Designed with 256M bit SDRAMs
 - Data transfer operations synchronized using clock (CKE) input
 - Permits connection to 32-bit or 64 bit busses
 - Connect CS₀* and CS₂* together for 64-bit-wide operation
 - Multiplexed input/outputs DQ₀-DQ₆₃
 - Input/output mask (DQM₀₋₇) inputs used to put outputs into Hi-Z state
 - Other versions available
 - With extra parity SDRMS—72 data lines

			Ο.
an an tha tha an tao tao. In 1976 tao amin' an tao amin' an tao amin' a	and a second		DRAM ₁
na toku kun na san		7 1 L L	DRAM ₂
in de la companya de La companya de la comp		ang ang pang pang pang pang pang pang pa	DRAM ₃
and the second second			DRAM ₄
<u>8-BIT</u>		9-BIT	DRAM ₅
		V	DRAM ₆
a second to second	8-BIT PB	sa ang sa 🖡	DRAM ₇
MPU	Parity	e é tracado <mark>e</mark>	DRAM _{PB}
	Checker/ Generator	a strange	197 () (197
an an the state of the state of the	PE		
e en le en ante d'altra		an an said	eg tradition
	e n en en		in en tra-
	and the Market of Article		1.

9.4 Parity, The Parity Bit, and Parity-Checker/Generator Circuit– Parity and the Parity Bit

- Data exchange between the MPU and data memory subsystem in a microcomputer must be done without error
 - Sources of errors
 - Emissions that affect data on the data bus line
 - Electrical noise signals—spikes or transients that affect data on data lines
 - Defective bit in a DRAM
 - + Soft errors of DRAM
 - Solutions for improving data integrity
 - + Parity
 - Error correction code (ECC)
 - Parity most frequently used
 - Parity

Memory

Array DRAM

- Add an additional bit of data to each byte or word of data so that all elements of data have the same parity
- + Extra bit is known as the "parity bit"
 - Even parity—element of data has an even number of bits at the 1 logic level
 - Odd parity—element of data has an odd number of bit that are logic 1
- Circuitry added to the DRAM memory interface to generate an appropriate parity bit on writes to memory
- Extra DRAM required to store the parity bit
- Circuitry checks element of data from correct parity during read operations
- Parity errors (PE) reported to MPU usually as an

The 8088 and 80

9.4 Parity, The Parity Bit, and Parity-Checker/Generator Circuit– Parity Generator/Checker Circuitry

NUMBER OF INPUTS A	OUTPUTS				
THRU I THAT ARE HIGH	Σ EVEN	Σ ODD			
0,2,4,6,8	М	, L .			
1,3,5,7,9	L	H			

- Parity generator/checker circuit—circuit added to the data memory interface to implement parity
 - May be implemented with a 74AS280 parity generator/checker IC
 - 9 inputs A through I
 - Two outputs Σodd and Σeven
 - Operation
 - Even number of inputs are logic 1 →
 - $\Sigma even = 1$ and $\Sigma odd = 0$
 - Signals that input has even parity
 - Odd number of inputs are logic 1→
 - Σ even = 0 and Σ odd = 1
 - Signals that input has odd parity

9.4 Parity, The Parity Bit, and Parity-Checker/Generator Circuit– Parity Generator/Checker Circuitry

- Circuit configuration
 - Inputs A through H attach in parallel to data bus lines D0 through D7
 - Input I is attached to the data output of the parity DRAM
 - Only activated during reads
 - Σodd output is attached to the data input of parity DRAM
 - MPU write operation
 - Accepts byte of data to be written to memory as input from the data bus
 - Data also applied in parallel to the input of the DRAMs for data lines D0 through D7
 - Circuit checks parity and generates
 Σodd and Σeven outputs
 - Σodd output supplied to input of parity DRAM for storage along with the byte in memory
 - If parity is even—Σodd = 0 and 9-bit value saved in memory still has even parity
 - If parity is odd—Σodd = 1 and parity

The 8088 and 8086 Microproce 9-bit value changed to even and 37 saved in memory

9.4 Parity, The Parity Bit, and Parity-Checker/Generator Circuit– Parity Generator/Checker Circuitry

- Read operation:
 - Accepts 9-bit wide input from data outputs of the DRAM subsystem
 - Checks the number of bits that are at the 1 logic level
 - Produces appropriate logic level signals at odd parity and even parity outputs
 - If parity is even—Σeven = 1 and parity is correct
 - Memory operation completes normally
 - If parity is odd—Σeven = 0 and a parity error is detected
 - Error condition signaled to MPU by logic 0 at PE*
 - Usually applied as NMI input to the MPU
 - Must get serviced before executing next instruction
 - MPU may
 - Reattempt memory access
 - Initiate an orderly shut

38

The 8088 and 8086 Microprocessors, TriebedownSofapplication

Chapter 8

The 8088 and 8086 Microprocessors—Their I/O Interface

Introduction

- 8.14 Types of Input/Output—✓
- 8.15 Isolated Input/Output—✓
- 8.16 Input/Output Data Transfers—✓
- 8.17 Input/Output Instructions—✓
- 8.18 Input/Output Bus Cycles—✓

8.14 Types of Input/Output- Role and Types of Input/Output

- 8088/8086 architecture implements independent memory and input/output address spaces
 - Memory address space- 1,048,576 bytes long (1M-byte)-00000H-FFFFH
 - Input/output address space- 65,536 bytes long (64K-bytes)-0000H-FFFFH
 - Input/output can be implemented in either the memory or I/O address space
 - Role of I/O

- Allows I/O devices such as peripheral ICs to input data or receive results
- Each input/output address is called a port
- An I/O device may be assigned a range of I/O ports

Types of Input/Output

- Isolated I/O- ports implemented in the I/O address space
- Memory mapped I/O—ports implemented in the memory address space
- **Microcomputer systems can employ both** types

8.14 Real-Mode Input-Output Address Space-Isolated I/O (Continued)

• All I/O accesses take either one or two bus cycles

- Byte input/output= 1 bus cycle
- Aligned word input/output= 1 bus cycle—on 8086
- Misaligned word input/output = 2 bus cycles
- Page 0
 - First 256 byte addresses → 0000H -00FFH
 - Can be accessed with direct or variable I/O instructions
 - Ports F8H through FFH reserved

8.14 Input-Output Address Space- Memory Mapped I/O

Memory mapped I/O—a part of the memory address space is dedicated to I/O devices

Example:

E0000H-E0FFFH \rightarrow 4096 memory addresses assigned to I/O ports E0000H, E0001H, and E0002H correspond to bytewide ports 0,1, and 2 E0000H and E0001H correspond to word-wide port 0 at address E0000H Advantages of memory mapped I/O Instructions that affect data in memory (MOV, ADD, AND, etc.) can be used to perform I/O operations I/O transfers can take place between and I/O port and any of the registers Disadvantage of memory mapped I/O Memory instructions perform slower Part of the memory address space cannot be used to implement memory

8.15 Isolated Input/Output Interface– 8088 Minimum-Mode Interface

- Similar in structure and operation to memory interface
- I/O devices—can represent LEDs, switches, keyboard, serial communication port, printer port, etc.
- I/O data transfers take place between I/O devices and MPU over the multiplexed-address data bus

AD0-AD7

A8-A15

Control signal review

- ALE = pulse to logic 1 tells bus interface circuitry to latch I/O address
- RD* = logic 0 tells the I/O interface circuitry that an input (read) is in progress
- WR*= logic 0 tells the I/O interface circuitry that an output (write) is in progress
- IO/M*= logic 1 tells I/O interface circuits that the data transfer operation is for the IO subsystem
- DT/R* = sets the direction of the data bus for input (read) or output (write) operation
- DEN*= enables the interface between the I/O subsystem and MPU data bus

8.15 Isolated Input/Output Interface- 8088 Maximum-Mode Interface

- Maximum-mode interface differences review
 - 8288 bus controller produces the control signals
 - Signal changes
 - IORC* replaces RD*
 - IOWC* and AIOWC* replace WR*
 - DEN is complement of DEN*
 - IO/M* no longer needed (bus controller creates separate IO read/write controls)
 - SSO* no longer part of interface

8.15 Isolated Input/Output Interface– 8086 Minimum and Maximum-Mode Interfaces

8.15 I/O Control Signals– 8088/8086 Maximum-Mode Bus Status Codes

Status inputs				0.000	
Ξ ₂	Ξ ₁	S ₀	CPU cycle	8288 command	
0	0	0	Interrupt acknowledge	INTA	
0	0	1	Read I/O port	IORC	
0	1	0	Write I/O port	IOWC, AIOWC	
0	1	1	Halt	None	
1	0	0	Instruction fetch	MRDC	
1	Ö	1	Read memory	MRDC	
1	1	0	Write memory	MWTC, AMWC	
1	1	1	Passive	None	

- Bus status code review
 - During all I/O accesses one of two bus cycle status code are output by the MPU
 - Read I/O port
 - Write I/O port
 - 8288 decodes to produce appropriate control command signals
 - IORC* \rightarrow input (read I/O)
 - IOWC* \rightarrow output (write I/O)
 - AIOWC* \rightarrow output (write I/O)

8.17 Input/Output Instructions– Direct I/O Instructions

Mnemonic	Meaning	Format	Operation	
ไท	Input direct	IN Acc,Port	$(Acc) \leftarrow (Port)$ Acc = AL or AX	
	Input indirect (variable)	IN Acc,DX	$(Acc) \leftarrow ((DX))$	
OUT	Output direct	OUT Port,Acc	(Port) ← (Acc)	
	Output indirect (variable)	OUT DX,Acc	((DX)) ← (Acc)	

- Types of instructions
 - Direct I/O instructions—only allow access to ports at page 0 addresses
 - Variable I/O instructions—allows access of ports anywhere in the I/O address space
 - **Direct I/O instructions**
 - IN Acc,Port
 - **OUT Port,Acc**
 - Port = 8-bit direct address—limited to 0H through FFH (page 0)
 - Acc = accumulator register AX (word transfer); AH or AL (byte transfer)
 - Example:
 - IN AL, OFEH
 - (FE) \rightarrow AL (byte input operation)
- Also known as accumulator I/O—because source or destination must always be in accumulator (A) register

8.17 Input/Output Instructions– Variable I/O Instructions

Mnemonic	Meaning	Format	Operation	
ไท	Input direct	IN Acc,Port	(Acc) ← (Port)	Acc = AL or AX
	Input indirect (variable)	IN Acc,DX	$(Acc) \leftarrow ((DX))$	
OUT	Output direct	OUT Port,Acc	(Port) ← (Acc)	
	Output indirect (variable)	OUT DX,Acc	((DX)) ← (Acc)	

- Variable I/O instructions IN Acc,DX
 - OUT DX,Acc
 - DX = 16-bit indirect address—allows access to full I/O address space
 - Acc = accumulator register AX (word transfer); AH or AL (byte transfer)
 - Example:

MOV DX,0A000H ;load I/O address IN AL,DX ;input value to AL MOV BL,AL ;copy value to BL (A000H) → BL (byte input operation)

8.17 Input/Output Instructions– Examples

 Write instructions to output the value FFH to the byte wide port at I/O address ABH

 Solution: MOV AL, 0FFH ;load data into AL
 OUT 0ABH,AL ;output to port ABH Write instructions to output the value FFH to the byte wide port at I/O address B000H

Solution:
 MOV DX,0B000H ; load address into DX
 MOV AL, 0FFH ; load data into AL
 OUT DX,AL ; output to port B000H

8.17 Input/Output Instructions– Examples (Continued)

 Read data from byte-wide ports at addresses AAH and A9H. Output as a word to the word-wide port at address B000H.

Solution:
 IN AL,0AAH ; input first byte
 MOV AH, AL ; load data into AL
 IN AL,0A9H ; input 2nd byte
 MOV DX,0B000H ; load address into DX
 OUT DX,AX ; output word to port B000H

8.18 Input and Output Bus Cycles– 8088 Minimum Mode Input Bus Cycle

- Input (I/O read) bus cycle timing diagram—shows relationship between signals relative to time states
 - T1 state—input cycle begins
 - Address output on A0-A15
 - Pulse produced at ALE--address should be latched in external circuitry on trailing edge of ALE
 - IO/M* set to $1 \rightarrow$ I/O bus cycle
 - DT/R* set to 0→ set external data bus control circuitry for receive mode (input)
 - T2 state
 - Status code output on S3-S6
 - AD0 through AD7 tri-stated in preparation for data bus operation
 - RD* set to $0 \rightarrow$ input cycle
 - DEN* set to 0 → enable external data bus control circuitry
 - T3 state
 - Data on D0-D7 input (read) by the MPU
 - T4 state—input cycle finishes
 - RD* returns to 1→ inactive level
 - Complete address/data bus tri-stated
 - IO/M* returned to 0 → memory bus cycle
 - DEN* returned to 1→ inactive level
 - DT/R* returns to 1→ transmit level

8.18 Input and Output Bus Cycles– 8088 Minimum Mode Output Bus Cycle

- Output (I/O write) bus cycle timing diagram
 - T1 state—output cycle begins
 - Address output on A0-A15
 - Pulse produced at ALE and address latched in external circuitry on trailing edge of ALE
 - IO/M* set to 1→ I/O bus cycle
 - DT/R* set to 1→ external data bus control circuitry for transmit mode (output)
 - T2 state
 - Status code output on S3-S6
 - AD0 through AD7 transitioned to data bus and output data placed on bus
 - DEN* set to 0 → enable external data bus control circuitry
 - WR* set to 0→ output cycle
 - T3 or T4 state
 - Data on D0-D7 output (write) into I/O port (I/O device decides when!)
 - T4 state—output cycle finishes
 - WR* returns to 1→ inactive level
 - Complete address/data bus tri-stated
 - IO/M* returned to 0 → memory bus cycle
 - DEN* returned to 1→ inactive level

8.18 Input and Output Bus Cycles– 8086 Minimum Mode Read and Write Bus Cycles

