

Revised based on slides from WPI ECE2801

Moving Towards Embedded Hardware

Typical components of a PC:

- x86 family microprocessor
- Megabytes or more of main (volatile) memory
- Gigabytes or more of magnetic memory (disk)
- Operating System (w/ user interface)
- Serial I/O
- Parallel I/O
- Real-time clock
- Keyboard
- Video Display
- Sound card
- Mouse
- NIC (Network Interface Card)
- etc.

The PIC 16F87x Series Microcontroller

Some of the characteristics of the PIC 16F87x series

- High performance, low cost, for embedded applications
- Only 35 instructions
- Each instruction is exactly one word long and is executed in 1 cycle (except branches which take two cycles)
- 4K words (14bit) flash program memory
- 192 bytes data memory (RAM) + 128 bytes EEPROM data memory
- Eight level deep hardware stack
- Internal A/D converter, serial port, digital I/O ports, timers, and more!

What these changes mean when programming?

- Since there is no DOS or BIOS, you'll have to write I/O functions yourself. Everything is done directly in assembly language.
- Code design, test, and debug will have to be done in parallel and then integrated after the hardware is debugged.
- Space matters! Limitations on memory may mean being very clever about algorithms and code design.

PIC16F87X

Key Features PICmicroô Mid-Range Reference Manual (DS33023)	PIC16F873	PIC16F874	PIC16F876	PIC16F877
Operating Frequency	DC - 20 MHz			
Resets (and Delays)	POR, BOR (PWRT, OST)	POR, BOR (PWRT, OST)	POR, BOR (PWRT, OST)	POR, BOR (PWRT, OST)
FLASH Program Memory (14-bit words)	4K	4K	8K	8K
Data Memory (bytes)	192	192	368	368
EEPROM Data Memory	128	128	256	256
Interrupts	13	14	13	14
I/O Ports	Ports A,B,C	Ports A,B,C,D,E	Ports A,B,C	Ports A,B,C,D,E
Timers	3	3	3	3
Capture/Compare/PWM modules	2	2	2	2
Serial Communications	MSSP, USART	MSSP, USART	MSSP, USART	MSSP, USART
Parallel Communications	-	PSP	-	PSP
10-bit Analog-to-Digital Module	5 input channels	8 input channels	5 input channels	8 input channels
Instruction Set	35 Instructions	35 Instructions	35 Instructions	35 Instructions

All instructions are single cycle, except for any program branches. These take two cycles since the fetch instruction is "flushed" from the pipeline while the new instruction is being fetched and then executed.

Program Memory Organization

- 13-bit program counter (PC)
 ⇒ addresses for 2¹³ = 8K
 locations
- Each location is 14 bits (All the instructions are 14 bits long)
- PIC16F874 has only 4K (x14 bit) program memory - the upper bit is simply ignored during fetches from program memory
 - Paging: 2K / page

Two Special addresses

- Reset Vector Address (0000h)
 - When the CPU starts up from its reset state, its PC is automatically cleared to zero.

• Assign goto Mainline instruction

- Interrupt Vector Address (0004h)
 - 0004h is automatically loaded into the program counter when an interrupt occurs.
 - Assign goto IntService instruction there: cause the CPU to jump to the beginning of the interrupt service routine, located elsewhere in the memory space.

PCL and PCLATH registers

- PC: Program
 Counter, 13 bits
- PCL (02h): 8 bits, the lower 8 bits of PC
- PCLATH (0Ah): PC Latch, provides the upper 5 (or 2) bits of PC when PCL is written to

will overwrite the value that was stored from the first push. There are no status bits to indicate stack overflow or stack underflow conditions.

 No PUSH or POP instructions. The PC is pushed onto the stack when a CALL instruction is executed, or an interrupt causes a branch. The stack is popped when a RETURN, RETLW, or a RETFIE instruction is executed.

Introduction to PIC Microcontroller: Data Memory Organization

Review

- Harvard architecture
 - Separated Program memory and Data memory, separated access
 - Instruction pipelining: while the first instruction is executed (which might involves data memory access), the second one is fetched from the program memory
- Program memory
 - Up to 8K words (13 bit PC, 2¹³=8K)
 - Each word is 14 bits
 - Each instruction is exactly 1 word long.
 - General program structure two special addresses: Reset vector address (0000h) and Interrupt vector address (0004h)
 - 8 level deep hardware stack

Data Memory Organization

- Data memory is made up of
 - Special Function Registers (SFR) area
 - General Purpose Registers (GPR) area
- SFRs control the operation of the device, e.g.
 - I/O ports and associated control registers used to establish each bit of a port as wither an input or an output
 - Registers that provide the data input and data output to the variety of resources on the chip, such as the timers, the serial ports, and the analogto-digital converter.
 - Registers that contain control bits for selecting the mode of operation of a chip resource as well as enabling or disabling its operation
 - Registers that contain status bits which denote the state of one of these chip resources
- GPRs are the other name for the microcontroller's RAM, are the general area for data storage and scratch pad operations
- Register File is a PIC terminology, denote memory locations that an instruction can access via an address.

	A	File Address	4	File Address		File Address	ŀ	File Address		
	Indirect addr (*)	00h	Indirect addr.(*)	806	Indirect addr.(*)	100h	Indirect addr. (*)	180h		
	TMR0	01h	OPTION REG	81h	TMR0	101h	OPTION REG	181h		
	PCL	02h	PCL	82h	PCL	102h	PCL	182h		
	STATUS	03h	STATUS	83h	STATUS	103h	STATUS	183h		
	FSR	04h	FSR	84h	FSR	104h	FSR	184h		
	PORTA	05h	TRISA	85h		105h		185h		
	PORTB	06h	TRISB	86h	PORTB	106h	TRISB	186h		
	PORTC	07h	TRISC	87h		107h		187h		
	PORTD ⁽¹⁾	08h	TRISD ⁽¹⁾	88h		108h		188h		
	PORTE ⁽¹⁾	09h	TRISE ⁽¹⁾	89h		109h		189h		
	PCLATH	0Ah	PCLATH	8Ah	PCLATH	10Ah	PCLATH	18Ah		
	INTCON	0Bh	INTCON	8Bh	INTCON	10Bh	INTCON	18Bh		
	PIR1	0Ch	PIE1	8Ch	EEDATA	10Ch	EECON1	18Ch		
	PIR2	0Dh	PIE2	8Dh	EEADR	10Dh	EECON2	18Dh		
	TMR1L	0Eh	PCON	8Eh	EEDATH	10Eh	Reserved ⁽²⁾	18Eh		
	TMR1H	0Fh		8Fh	EEADRH	10Fh	Reserved ⁽²⁾	18Fh		
	T1CON	10h		90h		110h		190h		
	TMR2	11h	SSPCON2	91h						
	T2CON	12h	PR2	92h						
	SSPBUF	13h	SSPADD	93h						
	SSPCON	14h	SSPSTAT	94h						
	CCPR1L	15h		95h						
	CCPR1H	16h		96h						
	CCP1CON	17h		97h						
	RCSTA	18h	TXSTA	98h						
	TXREG	19h	SPBRG	99h						
	RCREG	1Ah		9Ah						
	CCPR2L	1Bh		9Bh						
	CCPR2H	1Ch		9Ch						
	CCP2CON	1Dh		9Dh						
	ADRESH	1En	ADRESL	9Eh						
	ADCON0	1⊢n	ADCON1	9Fh		120h		1A0h		
		20h		A0h						
	General		General							
	Purpose		Purpose		accesses		accesses			
			i tegister		20h-7Fh		A0h - FFh			
	96 Bytes		96 Bytes			16Fh		1EFN		
						1700		1FUI1		
UNIL 10.40		7Fh		FFh		17Fh		1FFh		
	Bank 0		Bank 1		Bank 2		Bank 3			

Banking

- Data memory is partitioned into banks
- Each bank extends up to 7Fh (128) bytes
 - 4 banks : 4*128 bytes = 512 bytes
 - 2 banks : 2*128 bytes = 256 bytes
- Lower locations of each bank are reserved for SFRs. Above the SFRs are GPRs.
- Implemented as Static RAM
- Some "high use" SFRs from bank0 are mirrored in the other banks (e.g., INDF, PCL, STATUS, FSR, PCLATH, INTCON)
- RP0 and RP1 bits in the STATUS register selects the bank when using direct addressing mode.

Direct Addressing

- Use only 7 bits of instruction to identify a register file address
- The other two bits of register address come from RP0 and RP1 bits in the STATUS register

Accessed Bank	Direct (RP1:RP0)	Indirect (IRP)		
0	0 0	0		
1	0 1	0		
2	1 0	-		
3	1 1	Ţ		

Fx	ample [.] Bank o	switching	3 11
	CLRF	STATUS	; Clear STATUS register (Bank0)
	BSF	STATUS, RP0	; Bank1
	:; BCF	STATUS, RP0	; Bank0
	: ; MOVLW XORWF	0x60 STATUS, F	; Set RP0 and RP1 in STATUS register, other ; bits unchanged (Bank3)
	:; BCF	STATUS, RP0	; Bank2
	:; BCF	STATUS, RP1	; Bank0

UML 16.480/552 Micro II

Indirect Addressing

- The INDF register is not a physical register. Addressing the INDF register will cause indirect addressing.
- Any instruction using the INDF register actually access the register pointed to by the File Select Register (FSR).
- The effective 9-bit address is obtained by concatenating the 8-bit FSR register and the IRP bit in STATUS register.

Example

	MOVLW	0x20	;initialize pointer
	MOVWF	FSR	;to RAM
NEXT	CLRF	INDF	;clear INDF register
	INCF	FSR,F	;inc pointer
	BTFSS	FSR,4	;all done? (to 0x2F)
	GOTO	NEXT	;no clear next
CONTINU	JE		
	:		;yes continue

Special Function Registers (1)

- W, the working register
 - To move values from one register to another register, the value must pass through the W register.
- FSR (04h,84h,104h,184h), File Select Register
 - Indirect data memory addressing pointer
- INDF (00h,80h,100h,180h)
 - accessing INDF accesses the location pointed by IRP+FSR
- PC, the Program Counter, PCL (02h, 82h, 102h, 182h) and PCLATH (0Ah, 8Ah, 10Ah, 18Ah)

Special Function Registers (2)

• **STATUS** (03h, 83h, 103h, 183h)

R/W-0	R/W-0	R/W-0	R-1	R-1	R/W-x	R/W-x	R/W-x
IRP	RP1	RP0	TO	PD	Z	DC	С
bit 7							bit 0

- IRP: Register bank select bit (indirect addressing)
- RP1:RP0 Register bank select bits (direct addressing)
- NOT_TO: Time Out bit, reset status bit
- NOT_PD: Powel-Down bit, reset status bit
- Z: Zero bit ~ ZF in x86
- DC: Digital Carry bit ~ AF in x86
- C: Carry bit ~ CF in x86 (note: for subtraction, borrow is opposite)

I/O Ports

- General I/O pins are the simplest of peripherals used to monitor and control other devices.
- For most ports, the I/O pin's direction (input or output) is controlled by the data direction register **TRISx** (x=A,B,C,D,E): a '1' in the TRIS bit corresponds to that pin being an input, while a '0' corresponds to that pin being an output
- The **PORTx** register is the latch for the data to be output. Reading PORTx register read the status of the pins, whereas writing to it will write to the port latch.
- Example: Initializing PORTD (PORTD is an 8-bit port. Each pin is individually configurable as an input or output).

bcf	STATUS, RP0	; bank0
bcf	STATUS, RP1	
clrf	PORTD	; initializing PORTD by clearing output data latches
bsf	STATUS, RP0	; select bank1
movlw	0xCF	; value used to initialize data direction
movwf	TRISD	; PORTD<7:6>=inputs, PORTD<5:4>=outputs,
		; PORTD<3:0>=inputs