
DAP Spr.‘98 ©UCB 1

 Memory Hierarchy—Ways to Reduce
Misses

DAP Spr.‘98 ©UCB 2

Review: Who Cares About the
Memory Hierarchy?

µProc
60%/yr.

DRAM
7%/yr.

1

10

100

1000
19

80
19

81

19
83

19
84

19
85

19
86

19
87

19
88

19
89

19
90

19
91

19
92

19
93

19
94

19
95

19
96

19
97

19
98

19
99

20
00

DRAM

CPU
19

82

Processor-Memory
Performance Gap:
(grows 50% / year)

Pe
rf

or
m

an
ce

“Moore’s Law”

• Processor Only Thus Far in Course:
– CPU cost/performance, ISA, Pipelined Execution

 CPU-DRAM Gap

• 1980: no cache in µproc; 1995 2-level cache on chip
(1989 first Intel µproc with a cache on chip)

DAP Spr.‘98 ©UCB 3

The Goal: Illusion of large, fast, cheap
memory

• Fact: Large memories are slow, fast memories are
small

• How do we create a memory that is large, cheap and
fast (most of the time)?

• Hierarchy of Levels
– Uses smaller and faster memory technologies close to the

processor
– Fast access time in highest level of hierarchy
– Cheap, slow memory furthest from processor

• The aim of memory hierarchy design is to have
access time close to the highest level and size equal
to the lowest level

DAP Spr.‘98 ©UCB 4

Recap: Memory Hierarchy Pyramid
Processor (CPU)

Size of memory at each level

Level 1

Level 2

Level n

Increasing Distance
from CPU,

Decreasing cost /
MB

Level 3

. . .

transfer datapath: bus

Decreasing
distance

from CPU,
Decreasing

Access Time
(Memory
Latency)

DAP Spr.‘98 ©UCB 5

Memory Hierarchy: Terminology
Hit: data appears in level X: Hit Rate: the fraction of memory accesses

found in the upper level
Miss: data needs to be retrieved from a block in the lower level (Block

Y) Miss Rate = 1 - (Hit Rate)
Hit Time: Time to access the upper level which consists of Time to

determine hit/miss + memory access time
Miss Penalty: Time to replace a block in the upper level + Time to

deliver the block to the processor
Note: Hit Time << Miss Penalty

DAP Spr.‘98 ©UCB 6

Current Memory Hierarchy

Control

Data-
path

Processor

regs

Secon-
dary
Mem-
ory

L2
Cache

Speed(ns): 0.5ns 2ns 6ns 100ns 10,000,000ns
Size (MB): 0.0005 0.05 1-4 100-1000 100,000
Cost ($/MB): -- $100 $30 $1 $0.05
Technology: Regs SRAM SRAM DRAM Disk

L1
cache

Main
Mem-
ory

DAP Spr.‘98 ©UCB 7

Memory Hierarchy: Why Does it Work? Locality!

• Temporal Locality (Locality in Time):
=> Keep most recently accessed data items closer to the

processor
• Spatial Locality (Locality in Space):

=> Move blocks consists of contiguous words to the upper
levels Lower Level

MemoryUpper Level
Memory

To Processor

From Processor
Blk X

Blk Y

Address Space0 2^n - 1

Probability
of reference

DAP Spr.‘98 ©UCB 8

Memory Hierarchy Technology
• Random Access:

– “Random” is good: access time is the same for all locations
– DRAM: Dynamic Random Access Memory

» High density, low power, cheap, slow
» Dynamic: need to be “refreshed” regularly

– SRAM: Static Random Access Memory
» Low density, high power, expensive, fast
» Static: content will last “forever”(until lose power)

• “Not-so-random” Access Technology:
– Access time varies from location to location and from time

to time
– Examples: Disk, CDROM

• Sequential Access Technology: access time linear in
location (e.g.,Tape)

• We will concentrate on random access technology
– The Main Memory: DRAMs + Caches: SRAMs

DAP Spr.‘98 ©UCB 9

Introduction to Caches
• Cache

– is a small very fast memory (SRAM, expensive)
– contains copies of the most recently accessed

memory locations (data and instructions): temporal
locality

– is fully managed by hardware (unlike virtual memory)
– storage is organized in blocks of contiguous memory

locations: spatial locality
– unit of transfer to/from main memory (or L2) is the

cache block

• General structure
– n blocks per cache organized in s sets
– b bytes per block
– total cache size n*b bytes

DAP Spr.‘98 ©UCB 10

Caches
• For each block:

– an address tag: unique identifier
– state bits:

» (in)valid
» modified

– the data: b bytes
• Basic cache operation

– every memory access is first presented to the cache
– hit: the word being accessed is in the cache, it is returned to

the cpu
– miss: the word is not in the cache,

» a whole block is fetched from memory (L2)
» an “old” block is evicted from the cache (kicked out), which

one?
» the new block is stored in the cache
» the requested word is sent to the cpu

DAP Spr.‘98 ©UCB 11

Cache Organization
(1) How do you know if something is in the cache?
(2) If it is in the cache, how to find it?

• Answer to (1) and (2) depends on type or
organization of the cache

• In a direct mapped cache, each memory address is
associated with one possible block within the
cache
– Therefore, we only need to look in a single location in the

cache for the data if it exists in the cache

DAP Spr.‘98 ©UCB 12

Simplest Cache: Direct Mapped
Main

Memory
4-Block Direct
Mapped CacheBlock

Address
0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15

Cache
Index

0
1
2
30010

0110

1010

1110

• index determines block in cache
• index = (address) mod (# blocks)
• If number of cache blocks is power of 2,

then cache index is just the lower n bits
of memory address [n = log2(# blocks)]

tag index

Memory block address

DAP Spr.‘98 ©UCB 13

Issues with Direct-Mapped

• If block size > 1, rightmost bits of index are
really the offset within the indexed block

ttttttttttttttttt iiiiiiiiii oooo

 tag index byte
to check to offset
if have select within
correct block block block

DAP Spr.‘98 ©UCB 14

16 12 Byte
offsetHit Data

16 32

4K
entries

16 bits 128 bits

Mux

32 32 32

2

32

Block offsetIndex

Tag

Address (showing bit positions)
31 . . . 16 15 . . 4 3 2 1 0

64KB Cache with 4-word (16-byte) blocks

Tag DataV

DAP Spr.‘98 ©UCB 15

Direct-mapped Cache Contd.
• The direct mapped cache is simple to design and its

access time is fast (Why?)
• Good for L1 (on-chip cache)
• Problem: Conflict Miss, so low hit ratio
Conflict Misses are misses caused by accessing different

memory locations that are mapped to the same cache
index

In direct mapped cache, no flexibility in where memory
block can be placed in cache, contributing to conflict
misses

DAP Spr.‘98 ©UCB 16

Another Extreme: Fully Associative
• Fully Associative Cache (8 word block)

– Omit cache index; place item in any block!
– Compare all Cache Tags in parallel

• By definition: Conflict Misses = 0 for a fully
associative cache

Byte Offset

:

 Cache Data
B 0

0431

:

Cache Tag (27 bits long)

Valid

:

B 1B 31 :

 Cache Tag
=
=

=

=
=
:

DAP Spr.‘98 ©UCB 17

Fully Associative Cache

• Must search all tags in cache, as item can be in
any cache block

• Search for tag must be done by hardware in
parallel (other searches too slow)

• But, the necessary parallel comparator hardware
is very expensive

• Therefore, fully associative placement practical
only for a very small cache

DAP Spr.‘98 ©UCB 18

Compromise: N-way Set Associative
Cache

• N-way set associative:
N cache blocks for each Cache Index

– Like having N direct mapped caches operating in parallel
– Select the one that gets a hit

• Example: 2-way set associative cache
– Cache Index selects a “set” of 2 blocks from the cache
– The 2 tags in set are compared in parallel
– Data is selected based on the tag result (which matched the

address)

DAP Spr.‘98 ©UCB 19

Example: 2-way Set Associative Cache

Cache Data
Block 0

Cache TagValid

:: :

Cache Data
Block 0

Cache Tag Valid

: ::

Cache
Block

Hit

mux

tag index offset address

= =

DAP Spr.‘98 ©UCB 20

Set Associative Cache Contd.
• Direct Mapped, Fully Associative can be seen as

just variations of Set Associative block placement
strategy

• Direct Mapped =
1-way Set Associative Cache

• Fully Associative =
n-way Set associativity for a cache with

exactly n blocks

DAP Spr.‘98 ©UCB 21

Addressing the Cache
– Direct mapped cache: one block per set.

– Set-associative mapping: n/s blocks per set.

– Fully associative mapping: one set per cache (s = n).

tag offsetindex
Direct mapping log n log b

tag offsetindex
Set-associative mapping log s log b

tag offset
Fully associative mapping log b

DAP Spr.‘98 ©UCB 22

Alpha 21264 Cache Organization

DAP Spr.‘98 ©UCB 23

Block Replacement Policy
• N-way Set Associative or Fully Associative have

choice where to place a block, (which block to
replace)
– Of course, if there is an invalid block, use it

• Whenever get a cache hit, record the cache block
that was touched

• When need to evict a cache block, choose one which
hasn't been touched recently: “Least Recently Used”
(LRU)
– Past is prologue: history suggests it is least likely of the

choices to be used soon
– Flip side of temporal locality

DAP Spr.‘98 ©UCB 24

Review: Four Questions for
Memory Hierarchy Designers

• Q1: Where can a block be placed in the upper level?
(Block placement)

– Fully Associative, Set Associative, Direct Mapped
• Q2: How is a block found if it is in the upper level?

 (Block identification)
– Tag/Block

• Q3: Which block should be replaced on a miss?
(Block replacement)

– Random, LRU
• Q4: What happens on a write?

(Write strategy)
– Write Back or Write Through (with Write Buffer)

