
1 1999 ©UCB

16.480/552 Microprocessor and Embedded Systems II

Virtual Memory

2 1999 ©UCB

Memory Organization

° What is random access memory (RAM)? What are
static RAM (SRAM) and dynamic RAM (DRAM)?

° What is DRAM Cell organization? How are the cells
arranged internally? Memory addressing?
Refreshing of DRAMs? Difference between DRAM
and SRAM?

° Access time of DRAM = Row access time + column
access time + refreshing

° What are page-mode and nibble-mode DRAMs?
° Synchronous SRAM or DRAM – Ability to transfer a

burst of data given a starting address and a burst
length – suitable for transferring a block of data from
main memory to cache.

3 1999 ©UCB

Main Memory Organizations
CPU

Cache

Bus

Memory

CPU

Bus

Memory

Multiplexor

Cache

CPU

Cache

Bus

Memory
bank 1

Memory
bank 2

Memory
bank 3

Memory
bank 0

one-word wide
memory organization

wide memory organization interleaved
memory organization

DRAM access time >> bus transfer time

4 1999 ©UCB

Memory Interleaving

Interleaved memory is more flexible than wide-access memory in
that it can handle multiple independent accesses at once.

Add-
ress

Addresses that
are 0 mod 4

Addresses that
are 2 mod 4

Addresses that
are 1 mod 4

Addresses that
are 3 mod 4

Return
data

Data
in

Data
out

Dispatch
(based on
2 LSBs of
address)

Bus cycle

Memory cycle

0

1

2

3

0

1

2

3

Module accessed

Time

5 1999 ©UCB

Memory Access Time Example

° Assume that it takes 1 cycle to send the address,
15 cycles for each DRAM access and 1 cycle to
send a word of data.

° Assuming a cache block of 4 words and one-word
wide DRAM, miss penalty = 1 + 4x15 + 4x1 = 65
cycles

° With main memory and bus width of 2 words, miss
penalty = 1 + 2x15 + 2x1 = 33 cycles. For 4-word
wide memory, miss penalty is 17 cycles. Expensive
due to wide bus and control circuits.

° With interleaved memory of 4 memory banks and
same bus width, the miss penalty = 1 + 1x15 + 4x1
= 20 cycles. The memory controller must supply
consecutive addresses to different memory banks.
Interleaving is universally adapted in high-
performance computers.

6 1999 ©UCB

Virtual Memory
° Idea 1: Many Programs sharing DRAM

Memory so that context switches can occur

° Idea 2: Allow program to be written without
memory constraints – program can exceed
the size of the main memory

° Idea 3: Relocation: Parts of the program
can be placed at different locations in the
memory instead of a big chunk.

°Virtual Memory:
(1) DRAM Memory holds many programs
running at same time (processes)

(2) use DRAM Memory as a kind of
“cache” for disk

7 1999 ©UCB

Data movement in a memory hierarchy.

Memory Hierarchy: The Big Picture

 Pages

 Lines

 Words

 Registers

 Main memory

 Cache

 Virtual
memory

 (transferred
explicitly

via load/store)
 (transferred
automatically

upon cache miss)
 (transferred
automatically

upon page fault)

8 1999 ©UCB

Fig. 20.11 Trends in disk, main memory, and CPU speeds.

Impact of Technology on Virtual Memory

1990 1980 2000 2010

T
im

e

Calendar year

Disk seek time

ps

ns

µs

s

ms

CPU cycle time

DRAM access time

9 1999 ©UCB

Virtual Memory has own terminology
° Each process has its own private “virtual

address space” (e.g., 232 Bytes); CPU actually
generates “virtual addresses”

° Each computer has a “physical address space”
(e.g., 128 MegaBytes DRAM); also called “real
memory”

° Address translation: mapping virtual addresses
to physical addresses

• Allows multiple programs to use (different
chunks of physical) memory at same time

• Also allows some chunks of virtual memory
to be represented on disk, not in main
memory (to exploit memory hierarchy)

10 1999 ©UCB

Mapping Virtual Memory to Physical Memory

0

Physical Memory

∞Virtual Memory

Heap
64 MB

° Divide Memory into equal sized
“chunks” (say, 4KB each)

0

° Any chunk of Virtual Memory
assigned to any chunk of
Physical Memory (“page”)

Stack

Heap

Static

Code

Single
Process

11 1999 ©UCB

Handling Page Faults

°A page fault is like a cache miss
• Must find page in lower level of hierarchy

° If valid bit is zero, the Physical Page
Number points to a page on disk

°When OS starts new process, it
creates space on disk for all the pages
of the process, sets all valid bits in
page table to zero, and all Physical
Page Numbers to point to disk

• called Demand Paging - pages of the
process are loaded from disk only as
needed

12 1999 ©UCB

Comparing the 2 levels of hierarchy
°Cache Virtual Memory
°Block or Line Page
°Miss Page Fault
°Block Size: 32-64B Page Size: 4K-16KB
°Placement: Fully Associative
Direct Mapped,
N-way Set Associative

°Replacement: Least Recently Used
LRU or Random (LRU) approximation

°Write Thru or Back Write Back
°How Managed: Hardware + Software
Hardware (Operating System)

13 1999 ©UCB

How to Perform Address Translation?

°VM divides memory into equal sized
pages

°Address translation relocates entire
pages

• offsets within the pages do not change
• if make page size a power of two, the
virtual address separates into two fields:

• like cache index, offset fields

Virtual Page Number Page Offset virtual address

14 1999 ©UCB

Mapping Virtual to Physical Address

Virtual Page Number Page Offset

Page OffsetPhysical Page Number

Translation

31 30 29 28 27 .………………….12 11 10

29 28 27 .………………….12 11 10

 9 8 ……..……. 3 2 1 0

Virtual Address

Physical Address
 9 8 ……..……. 3 2 1 0

1KB page
size

15 1999 ©UCB

Address Translation
°Want fully associative page placement
°How to locate the physical page?
°Search impractical (too many pages)
°A page table is a data structure which
contains the mapping of virtual pages
to physical pages

• There are several different ways, all up to
the operating system, to keep this data
around

°Each process running in the system
has its own page table

16 1999 ©UCB

Address Translation: Page Table
Virtual Address (VA):

virtual page nbr offset

Page Table
Register

Page Table
is located
in physical
memory

index
into
page
table

+

Physical
Memory

Address (PA)

Access Rights: None, Read Only,
Read/Write, Executable

Page Table

Val
-id

Access
Rights

Physical
Page
Number

V A.R. P. P. N.
0 A.R.

V A.R. P. P. N.

...

...

disk

17 1999 ©UCB

Page Tables and Address Translation

The role of page table in the virtual-to-physical address
translation process.

 Page table

 Main memory

 Valid
bits

 Page table
register

 Virtual
page

number

 Other
f lags

18 1999 ©UCB

Protection and Sharing in Virtual Memory

 Virtual memory as a facilitator of sharing and memory
protection.

 Page table for
process 1

 Main memory

Permission bits

 Pointer
 Flags

 Page table for
process 2

 To disk memory

Only read accesses
allow ed

Read & w rite
accesses allowed

19 1999 ©UCB

Optimizing for Space
°Page Table too big!

• 4GB Virtual Address Space ÷ 4 KB page
 ⇒ 220 (~ 1 million) Page Table Entries
 ⇒ 4 MB just for Page Table of single
process!

°Variety of solutions to tradeoff Page
Table size for slower performance when
miss occurs in TLB

 Use a limit register to restrict page table
size and let it grow with more pages,Multilevel
page table, Paging page tables, etc.

(Take O/S Class to learn more)

20 1999 ©UCB

How Translate Fast?
° Problem: Virtual Memory requires two

memory accesses!
• one to translate Virtual Address into Physical

Address (page table lookup)
• one to transfer the actual data (cache hit)
• But Page Table is in physical memory! => 2 main

memory accesses!
° Observation: since there is locality in pages

of data, must be locality in virtual addresses
of those pages!

° Why not create a cache of virtual to physical
address translations to make translation
fast? (smaller is faster)

° For historical reasons, such a “page table
cache” is called a Translation Lookaside
Buffer, or TLB

21 1999 ©UCB

Typical TLB Format
Virtual Physical Valid Ref Dirty Access

Page Nbr Page Nbr Rights

•TLB just a cache of the page table mappings

• Dirty: since use write back, need to know
whether or not to write page to disk when
replaced
• Ref: Used to calculate LRU on replacement

• TLB access time comparable to cache
 (much less than main memory access time)

“tag” “data”

22 1999 ©UCB

Translation Look-Aside Buffers
•TLB is usually small, typically 32-4,096 entries

• Like any other cache, the TLB can be fully
associative, set associative, or direct mapped

Processor TLB Cache Main
Memory

misshit

data

hit

miss

Disk
Memory

OS Fault
Handler

page fault/
protection violation

Page
Table

data

virtual
addr.

physical
addr.

23 1999 ©UCB

 Translation Lookaside Buffer

Virtual-to-physical address translation by a TLB and how the
resulting physical address is used to access the cache memory.

Virtual
page number

 Byte
 offset

Byte offset
in word

Physical
address tag

Cache index

Valid
bits

TLB tags

Tags match
and entry
is valid

Physical
page number Physical

address

Virtual
address

T
ra

n
s
la

ti
o
n

Other
flags

24 1999 ©UCB

Valid Tag Data

Page offset

Page offset

Virtual page number

Physical page numberValid

1220

20

16 14

Cache index

32

DataCache hit

2
Byte

offset

Dirty Tag

TLB hit

Physical page number

Physical address tag

31 30 29 15 14 13 12 11 10 9 8 3 2 1 0 DECStation 3100/
MIPS R2000Virtual Address

TLB

Cache

64 entries,
fully

associative

Physical Address

16K entries,
direct

mapped

25 1999 ©UCB

Real Stuff: Pentium Pro Memory Hierarchy
° Address Size: 32 bits (VA, PA)
° VM Page Size: 4 KB, 4 MB
° TLB organization: separate i,d TLBs

(i-TLB: 32 entries,
d-TLB: 64 entries)
4-way set associative
LRU approximated
hardware handles miss

° L1 Cache: 8 KB, separate i,d
4-way set associative
LRU approximated
32 byte block
write back

° L2 Cache: 256 or 512 KB

