16.480/552 Microprocessor and Embedded Systems Il

Virtual Memory

1999 ©UCB

Memory Organization

° What is random access memory % AM)? What are
static RAM (SRAM) and dynamic RAM (DRAM)?

° What is DRAM Cell or anization? How are the cells
arranged internall X emory addressing?
Regr%shhAn of DRAMs? leference between DRAM
an

° Access time of DRAM = Row access time + column
access time + refreshing

° What are page-mode and nibble-mode DRAMs?

> Synchronous SRAM or DRAM - Ability to transfer a
burst of data given a starting address and a burst
length — suitable for transferring a block of data from
mam memory to cache.

1999 ©UCB

Main Memory Organizations

CPU CPU CPU
Multiplexor
Cache T T TT wT Cache
Cache _
‘/\\ __h_ //\\
Bus Bus Bus
S~ — - ~_—
Memory || Memory || Memory || Memory
NS bank 0 || bank 1 || bank 2 || bank 3

Ve wide memory organization interlgavc_ed
memory organization

one-word wide
memory organization DRAM access time >> bus transfer time

3 1999 ©UCB

Add-
ress

Data
in

Memory Interleaving

I

I

Dispatch |
(based on
2 LSBs of
address)

I

I

Addresses that
are 0 mod 4

Addresses that
are 1 mod 4

Addresses that
are 2 mod 4

Addresses that
are 3 mod 4

Return
data

Data

oy

Module accessed

0

<> 2
Bus cycle

<> 3

Memory cycle

Interleaved memory is more flexible than wide-access memory in
that it can handle multiple independent accesses at once.

1999 ©UCB

Memory Access Time Example

°© Assume that it takes 1 cycle to send the address,
15 cycles for each DRAM access and 1 cycle to
send a word of data.

° Assuming a cache block of 4 words and one-word
wid? DRAM, miss penalty =1 + 4x15 + 4x1 =65
cycles

° With main memory and bus width of 2 words, miss
penalty = 1 + 2x15 + 2x1 = 33 cycles. For 4-word
wide memorg, miss penalty is 17 cycles. Expensive
due to wide bus and control circuits.

° With interleaved memory of 4 memory banks and
same bus width, the miss penaItY =1+ 1x15 + 4x1
= 20 cycles. The memory controller must supply
consecutive addresses to different memory banks.
Interleaving is universally adapted in high-
performance computers.

1999 ©UCB

Virtual Memory

°ldea 1: Manx Programs sharing DRAM
Memory so that context switches can occur

°ldea 2: Allow program to be written without
memory constraints — program can exceed
the size of the main memory

°ldea 3: Relocation: Parts of the program
can be placed at different locations in the
memory instead of a big chunk.

°Virtual Memory:

(1) DRAM Memory holds many programs
running at same time (processes)

(2) use DRAM Memory as a kind of
“cache” for disk

1999 ©UCB

Memory Hierarchy: The Big Picture

Virtual
memory
Main memory
,/
Cache
Registers !
— —
T
Words
Lines
(transferred Pages
_ explicitly (transferred
via load/store) automatically (transferred
upon cache miss) automatically
upon page fault)

Data movement in a memory hierarchy.

1999 ©UCB

Impact of Technology on Virtual Memory

N Disk seek time
—0—

ms

Time

a DRAM access time

ns

CPU cycle time

pS
1980 1990 2000 2010
Calendar year

Fig. 20.11 Trends in disk, main memory, and CPU speeds.

1999 ©UCB

Virtual Memory has own terminology

° Each process has its own private “virtual
address space” (e.g., 232 Bytes); CPU actually
generates “virtual addresses”

° Each computer has a “Ehysical address space”
(e.g., 128 MegaBytes DRAM); also called “real
memory”

> Address translation: mapping virtual addresses
to physical addresses

- Allows multiple programs to use (different
chunks of physical) memory at same time

* Also allows some chunks of virtual memory
to be represented on disk, not in main
memory (to exploit memory hierarchy)

1999 ©UCB

Mapping Virtual Memory to Physical Memory

° Divide Memory into equal sized
“chunks” (say, 4KB each)

Ogirtual Memory

° Any chunk of Virtual Memory ~ Stack
assigned to any chunk of i

Physical Memory (“page”)

64 MB Physical Memory *
— Heap =

10

 Static

< —
j + Code
0

A

Single
Process

\4
1999 ©UCB

Handling Page Faults

° A page fault is like a cache miss
- Must find page in lower level of hierarchy

°If valid bit is zero, the Physical Page
Number points to a page on disk

°When OS starts new I|(3rocess, it
creates space on disk for all the pages
of the process, sets all valid bits in
Eage table to zero, and all Physical
age Numbers to point to dis

- called Demand Paging - pages of the
process are loaded from disk only as
needed

11 1999 ©UCB

Comparing the 2 levels of hierarchy

° Cache Virtual Memory
°Block or Line Page
°Miss Page Fault
°Block Size: 32-64B Page Size: 4K-16KB
° Placement Fully Associative
|rect PR
N-way Set Associative
°Replacement: Least Recently Used

LRU or Random (LRU) approximation
°Write Thru or Back Write Back

°How Managed: Hardware + Software
»Hardware (Operating System) rseuws

How to Perform Address Translation?

°VM divides memory into equal sized
pages

° Address translation relocates entire
pages
- offsets within the pages do not change

- If make page size a power of two, the
virtual address separates into two fields:

Virtual Page Number Page Offset virtual address

- like cache index, offset fields

13 1999 ©UCB

Mapping Virtual to Physical Address
Virtual Address

3130292827 ...cevvvviiiinn, 121110 98 3210
Virtual Page Number Page Offset
1KB page
size
v
Physical Page Number Page Offset
292827 o, 121110 98 3210

Physical Address

14 1999 ©UCB

15

Address Translation

°Want fully associative page placement

°How to locate the physical page?
°Search impractical (too many pages)

°A page table is a data structure which
contains the mapping of virtual pages
to physical pages

* There are several different ways, all up to
the operating system, to keep this data
around

°Each process runninlg in the system
has its own page table

1999 ©UCB

Address Translation: Page Table
Virtual Address (VA):

[virtual page nbr]offset]

Page Table

Page Table -—»

Register V AR P P N. !
index Val: Access :Physical
into | f.id: nghts :Page v
page :Number Physical
table V A.R. :P.P.N. Memory

0: AR. : Address (PA)

I_-"alge Ttal;Ie

IS locate Access Rights: None, Read Only,

in phvsical Read/Write, Executable _,o

mtfmgry N g

16

dISk 1999 ©UCB

17

Page Tables and Address Translation

Page table
register Page table
[—F—»[—
' \
. B
B-
1
Virtual ' & :
page | |
number ! \
v \
- =
N
\
|
|
Valid ___ 1 |
bits !
Other
flags

Main memory

The role of page table in the virtual-to-physical address
translation process.

1999 ©UCB

Protection and Sharing in Virtual Memory

Page table for

process 1
= Read & w rite
accesses allowed

Page table for Only read accesses
process 2 allow ed
! | Pointer

Flags !
Permiséion bits

To disk memory Main memory

Virtual memory as a facilitator of sharing and memory
protection.

18 1999 ©UCB

Optimizing for Space

°Page Table too big!

- 4GB Virtual Address Space + 4 KB page
= 220 (~ 1 million) Page Table Entries
= 4 MB just for Page Table of single
process!

°Variety of solutions to tradeoff Page
Table size for slower performance when
miss occurs in TLB

~Use a limit register to restrict page table
size and let it grow with more pages,Multilevel
page table, Paging page tables, etc.

(Take O/S Class to learn more)

19 1999 ©UCB

20

How Translate Fast?

° Problem: Virtual Memory requires two
memory accesses!

- one to translate Virtual Address into Physical
Address (page table lookup)

- one to transfer the actual data (cache hit)

- But Page Table is in physical memory! => 2 main
memory accesses!

° Observation: since there. is locality in pages
of data, must be locality in virtual addresses
of those pages!

° Wray not create a cache of virtual to physical
address translations to make translation
fast? (smaller is faster)

°For historical reasons, such a “page table
cache” is called a Translation LooKkaside
Buffer, or TLB

1999 ©UCB

Typical TLB Format

Virtual PhysicaIJVaIid Ref|Dirty | Access
Page Nbr|Page Nb Rights

“tag” “data”
*TLB just a cache of the page table mappings

 Dirty: since use write back, need to know

whether or not to write page to disk when
replaced

» Ref: Used to calculate LRU on replacement

 TLB access time comparable to cache
_(much less than main memory access time)

1999 ©UCB

Translation Look-Aside Buffers
*TLB is usually small, typically 32-4,096 entries

 Like any other cache, the TLB can be fully
associative, set associative, or direct mapped

data data
l virtual physical
addr. addr. \ 4
hitF—%»1 hit miss |—» .
Processor _T TLB Cache Main
miss Memory

Page OS Fault
Table Handler

page fault/
22 protection violation 1999 ©UCB

Translation Lookaside Buffer

Virtual Byte
page number offset

: Virtual
Valid | | |
bits address
: c
! TLB tags e
' ®
Tags match 2
and entry B O
: : —
is valid
i Physical
Other P20 numlloer vy Pg(yj/smal
flags - address
Physical Byte offset
address tag in word

Cache index

Virtual-to-physical address translation by a TLB and how the
resulting physical address is used to access the cache memory.

23 1999 ©UCB

3210 DECStation 3100/

MIPS R2000

3130290 15141312 111098
Virtual Address Virtual page number Page offset
20 12
D h S
Valid Dirty Tag Physical page number
TLB o
G—
TLB hit «—o (e 1
O
64 entries, &=
fully O —
associative T
JV y
i Physical page number Page offset
Physical Address : .
Physical address tag Cache index
e
J16 J14 j\z oftsot
Valid Tag Data
Cache
16K entries, | ¢t 1 '
direct
mapped , 1=
© o

24 cache hit<—<_ [

1999 ©UCB

Real Stuff: Pentium Pro Memory Hierarchy

25

° Address Size:
°VM Page Size:
°TLB organization:

°L1 Cache:

°L2 Cache:

32 bits (VA, PA)
4 KB, 4 MB

separate i,d TLBs
(I-TLB: 32 entries
d-TLB: 64 entries)
4-way set associative
LRU approximated
hardware handles miss

8 KB, separate i,d
4-way set associative
LRU approximated
32 byte block

write back

256 or 512 KB

1999 ©UCB

