
The 8088 and 8086 Microprocessors,Triebel and Singh 1

Chapter 6
8088/8086 Microprocessor
Programming 2

The 8088 and 8086 Microprocessors,Triebel and Singh 2

Introduction
6.1 Flag-Control Instructions—
6.2 Compare Instruction—
6.3 Jump Instructions—
6.4 Subroutines and Subroutine-Handling Instructions —
6.5 The Loop and Loop-Handling Instructions —
6.6 Strings and Sting-Handling Instructions

The 8088 and 8086 Microprocessors,Triebel and Singh 3

6.1 Flag Control Instructions- Loading,
Storing, and Modifying Flags• Variety of flag control instructions provide support

for loading, saving, and modifying content of the
flags register
• LAHF/SAHF Load/store control flags
• CLC/STC/CMC  Modify carry flag
• CLI/STI  Modify interrupt flag

• Modifying the carry flag—CLC/STC/CMC
• Used to initialize the carry flag
• Clear carry flag

CLC
 0  (CF)

• Set carry flag
STC
1  (CF)

• Complement carry flag
CMC
(CF*)  (CF) * stands for overbar (NOT)

• Modifying the interrupt flag—CLI/STI
• Used to turn on/off external hardware

interrupts
• Clear interrupt flag

CLC
 0  (CF) Disable interrupts

• Set interrupt flag
STC
1  (CF) Enable interrupts

The 8088 and 8086 Microprocessors,Triebel and Singh 4

6.1 Flag Control Instructions- Debug Example

• Debug flag notation
• CF . CY = 1, NC = 0

• Example—Execution of carry
flag modification instructions
CY=1  initial sate
CLC ;Clear carry flag
STC ;Set carry flag
CMC ;Complement carry flag

The 8088 and 8086 Microprocessors,Triebel and Singh 5

6.1 Flag Control Instructions- Loading and
Storing the Flags Register

• Format of the flags in the AH register
• All loads and stores of flags take place through the

AH register
• B0 = CF
• B2 = PF
• B4 = AF
• B6 = ZF
• B7 = SF

• Load the AH register with the content of the flags registers
LAHF
(Flags)  (AH)
Flags unchanged

• Store the content of AH into the flags register
SAHF
 (AH)  (Flags)
SF,ZF,AF,PF,CF  updated

• Application—saving a copy of the flags in memory and
initializing with new values from memory

LAHF ;Load of flags into AH
MOV [MEM1],AH ;Save old flags at address MEM1
MOV AH,[MEM2] ;Read new flags from MEM2 into AH
SAHF ;Store new flags in flags register

The 8088 and 8086 Microprocessors,Triebel and Singh 6

6.1 Flag Control Instructions- Debug Example

• Example—Execution of the flag
save and initialization sequence

• Other flag notation:
Flag = 1/0
SF = NG/PL
ZF = ZR/NZ
AF = AC/NA
PF = PE/PO

The 8088 and 8086 Microprocessors,Triebel and Singh 7

6.2 Compare Instruction- Instruction Format
and Operation

• Compare instruction
• Used to compare two values of data and

update the state of the flags to reflect their
relationship

• General format:
CMP D,S

• Operation: Compares the content of the
source to the destination; updates flags based
on result

(D) - (S)  Flags updated to reflect
 relationship

• Source and destination contents unchanged
• Allowed operand variations:

• Values in two registers
• Values in a memory location and a

register
• Immediate source operand and a value

in a register or memory
• Allows SW to perform conditional control

flow—typically testing of a flag by jump
instruction

• ZF = 1  D = S = Equal
• ZF = 0, CF = 1  D < S = Unequal, less

 than
• ZF = 0, CF = 0  D > S = Unequal,

 greater than

The 8088 and 8086 Microprocessors,Triebel and Singh 8

6.2 Compare Instruction- Compare Example
• Example:

MOV AX,1234H ;Initialize AX
MOV BX,ABCDH ;Initialize BX
CMP AX,BX ;Compare AX-BX

• Initialization of data registers AX and BX with
immediate data:

IMM16  (AX) = 1234H
IMM16  (BX) = ABCDH

• Compare computation performed as:
(AX) = 00010010001101002
(BX) = 10101011110011012

(AX) – (BX) = 00010010001101002 - 10101011110011012
ZF = 0 = NZ
SF = 0 = PL  treats operands as signed

 numbers
CF = 1 = CY
AF = 1 = AC
OF = 0 = NV
PF = 0 = PO

The 8088 and 8086 Microprocessors,Triebel and Singh 9

6.2 Compare Instruction- Listing and Debug
Execution

The 8088 and 8086 Microprocessors,Triebel and Singh 10

6.3 Jump Instructions- Unconditional and
Conditional Jump Control Flow

• Jump operation alters the execution path of the
instructions in the program—flow control
• Unconditional Jump

• Always takes place
• No status requirements are imposed
• Example

• JMP AA instructions in Part I executed
• Control passed to next instruction

identified by AA in Part III
• Instructions in Part II skipped

• Conditional jump
• May or may not take place
• Status conditions must be satisfied
• Example

• Jcc AA instruction in Part 1 executed
• Conditional relationship specified by cc is

evaluated
• If conditions met, jump takes place and

control is passed to next instruction
identified by AA in Part III

• Otherwise, execution continues
sequentially with first instruction in Part II

• Condition cc specifies a relationship of status
flags such as CF, PF, ZF, etc.

The 8088 and 8086 Microprocessors,Triebel and Singh 11

6.3 Jump Instructions- Unconditional Jump
Instruction• Unconditional jump instruction

• Implements the unconditional jump operation needed
by:

• Branch program control flow structures
• Loop program control flow structures

• General format:
JMP Operand

• Types of unconditional jumps
• Intrasegment—branch to address is located in the

current code segment
• Only IP changes value
• short-label

• 8-bit signed displacement coded into the
instruction

• Immediate addressing
• Range equal –126 to +129
• New address computed as:
(Current IP) + short-label  (IP)

 Jump to address = (Current CS) + (New IP)
• near-label

• 16-bit signed displacement coded in the
instruction

• Example
JMP 1234H

The 8088 and 8086 Microprocessors,Triebel and Singh 12

6.3 Jump Instructions- regptr16
Unconditional Jump Example

• regptr16
• 16-bit value of IP specified

as the content of a register
• Register addressing
• Operation:

(BX)  (IP)
 Jump to address = (Current CS(0)) +

 (New IP)
• Example

1342:0100 JMP BX
Prior to execution

(IP) = 0100H
(BX) =0010H

After execution
(IP) =0010H

Address of next instruction
(CS:IP) = 1342:0010

The 8088 and 8086 Microprocessors,Triebel and Singh 13

6.3 Jump Instructions- memptr16
Unconditional Jump Example

• memptr16
• 16-bit value of IP specified as

the content of a storage location
in memory

• Register indirect addressing
• Example

1342:0100 JMP [BX]
Prior to execution
 (IP) = 0100H
 (DS) = 1342H
 (BX) = 1000H
 (DS:BX) = (1342H:1000H) = 0200H
After execution
 (IP) = 0200H
Next instruction
 (CS:IP) = 1342:0200H

The 8088 and 8086 Microprocessors,Triebel and Singh 14

6.3 Jump Instructions- Intersegment
Unconditional Jump Operation

• Intersegment—branch to address is located in another code segment
• Both CS and IP change values
• far-label

• 32-bit immediate operand coded into the instruction
• New address computed as:

• 1st 16 bits  (IP)
• 2nd 16 bits  (CS)

Jump to address = (New CS):(New IP)
• memptr32

• 32-bit value specified in memory
• Memory indirect addressing
• Example

JMP DWORD PTR [DI]
• Operation:

(DS:DI)  new IP
(DS:DI +2)  new CS

Jump to address = (New CS):(New IP)

The 8088 and 8086 Microprocessors,Triebel and Singh 15

6.3 Jump Instructions- Conditional Jump
Instruction

• Condition jump instruction
• Implements the conditional jump operation
• General format:

Jcc Operand
• cc = one of the supported conditional

relationships
• Supports the same operand types as

unconditional jump
• Operation: Flags tested for conditions

defined by cc and:
If cc test True:

IP, or IP and CS are updated with new
value

• Jump is taken
• Execution resumes at jump to target

address
If cc test False:

IP, or IP and CS are unchanged
• Jump is not taken
• Execution continues with the next

sequential instruction
• Examples of conditional tests:
 JC = jump on carry  CF = 1
 JPE/JP = jump on parity even  PF =1
 JE/JZ = jump on equal  ZF = 1

The 8088 and 8086 Microprocessors,Triebel and Singh 16

6.3 Jump Instructions- Branch Program
Structures

• Example—IF-THEN-ELSE comparing
values
• One of the most widely used flow

control program structure
• Implemented with CMP, JE, and

JMP instructions
• Operation

• AX compared to BX to update
flags

• JE tests for
ZF = 1

• If (AX) ≠ (BX); ZF = 0  THEN
path—next sequential
instruction is executed

• If (AX) = (BX); ZF =1  ELSE
path—instruction pointed to by
EQUAL executes

• JMP instruction used in THEN
path to bypass the ELSE path
when

 JMP END

 END:

The 8088 and 8086 Microprocessors,Triebel and Singh 17

6.3 Jump Instructions- Branch Program
Structures

• Example—IF-THEN-ELSE using
a register bit test

• Conditional test is made with
JNZ instruction and branch taken
if

ZF =0
• Generation of test condition

(AL) = xxxxxxx AND 00000100
 = 00000x00

if bit 2 = 1 ZF =0 (not zero)
if bit 2 = 0 ZF =1

Therefore, jump to BIT2_ONE only
takes place if bit 2 of AL equals 1

• Same operation can be
performed by shifting bit 2 to the
CF and then testing with JC

CF =1

JMP END

END:

The 8088 and 8086 Microprocessors,Triebel and Singh 18

6.3 Jump Instructions- Program Applying
Branching

The 8088 and 8086 Microprocessors,Triebel and Singh 19

6.3 Jump Instructions- Loop Program
Structures

• Example—Repeat-Until program structure
• Allows a part of a program to be

conditionally repeated over an over
• Employs post test—conditional test at end of

sequence; always performs one iteration
• Important parameters

• Initial count  count register
• Terminal count  zero or other value

• Program flow of control:
• Initialize count

MOV CL,COUNT
• Perform body of loop operation

AGAIN: --- --- first of multiple
instructions

• Decrement count
DEC CL

• Conditional test for completion
 JNZ AGAIN

The 8088 and 8086 Microprocessors,Triebel and Singh 20

6.3 Jump Instructions- Loop Program
Structures

• Example—While-Do program structure
• Allows a part of a program to be conditionally

repeated over an over
• Employs pre-test—at entry of loop; may perform

no iterations
• Important parameters

• Initial count  count register
• Terminal count  zero or other value

• Program flow/control:
• Initialize count

MOV CL,COUNT
• Pre-test

 AGAIN: JZ NEXT
• Perform body of loop operation

 --- --- first of multiple instructions
• Decrement count

DEC CL
• Unconditional return to start of loop

 JMP AGAIN

The 8088 and 8086 Microprocessors,Triebel and Singh 21

6.3 Jump Instructions- Block Move Program

The 8088 and 8086 Microprocessors,Triebel and Singh 22

6.4 Subroutines and Subroutine-Handling
Instructions- Subroutine

• Subroutine—special segment of program that can be called for
execution from any point in a program
• Program structure that implements HLL “functions”

and “procedures”
• Written to perform an operation (function/procedure)

that must be performed at various points in a program
• Written as a subroutine and only included once in the

program
• Example:

• Instruction in Main part of program calls “Subroutine A”
• Program flow of control transferred to first instruction of

Subroutine A
• Instructions of Subroutine A execute sequentially
• Return initiated by last instruction of Subroutine A
• Same sequence repeated when the subroutine is called

again later in the program
• Instructions

• Call instruction—initiates the subroutine from the main
part of program

• Return instruction—initiates return of control to the main
program at completion of the subroutine

• Push and pop instructions used to save register content
and pass parameters

The 8088 and 8086 Microprocessors,Triebel and Singh 23

6.4 Subroutines and Subroutine-Handling
Instructions- Call Instruction

• Call Instruction
• Implements two types of calls

• Intrasegment call
• Intersegment call

• Intrasegment call—starting address of subroutine is
located in the current code segment

• Only IP changes value
• near-proc

• 16-bit offset coded in the instruction
• Example

CALL 1234H
• Operation:

1. IP of next instruction saved on top of stack
2. SP is decremented by 2
3. New value from call instruction is loaded
into IP
4. Instruction fetch restarts with first
instruction of subroutine

Current CS:New IP

The 8088 and 8086 Microprocessors,Triebel and Singh 24

6.4 Subroutines and Subroutine-Handling
Instructions- Intrasegment Call Operation
(Continued)

• regptr16
• 16-bit value of IP specified as the content of a register
• Register addressing
• Example:

CALL BX
• Operation:

• Same as near-proc except
(BX)  New IP

• memptr16
• 16-bit value of IP specified as the content of a storage location

in memory
• Memory addressing modes—register addressing
• Example

 CALL [BX]
• Same as near-proc except

(DS:BX)  New IP

The 8088 and 8086 Microprocessors,Triebel and Singh 25

6.4 Subroutines and Subroutine-Handling
Instructions- Intersegment Call Operation

• Intersegment—start address of the subroutine points to another code segment
• Both CS and IP change values
• far-proc

• 32-bit immediate operand coded into the instruction
• New address computed as:

• 1st 16 bits  New IP
• 2nd 16 bits  New CS

Subroutine starts at = New CS:New IP
• memptr32

• 32-bit value specified in memory
• Memory addressing modes—register indirect addressing
• Example

CALL DWORD PTR [DI]
• Operation:

(DS:DI)  New IP
(DS:DI +2)  New CS
Starting address of subroutine = New CS:New IP

The 8088 and 8086 Microprocessors,Triebel and Singh 26

6.4 Subroutines and Subroutine-Handling
Instructions- Return Instruction

• Return instruction
• Every subroutine must end with a return

instruction
• Initiates return of execution to the instruction in

the main program following that which called the
subroutine

• Example:
RET

• Causes the value of IP (intrasegment return)
or both IP and CS (intersegment return) to be
popped from the stack and put back into the
IP and CS registers

• Increments SP by 2/4

The 8088 and 8086 Microprocessors,Triebel and Singh 27

6.4 Subroutines and Subroutine-Handling
Instructions- Example of a Subroutine Call

The 8088 and 8086 Microprocessors,Triebel and Singh 28

6.4 Subroutines and Subroutine-Handling
Instructions- Structure of a Subroutine

• Elements of a subroutine
• Save of information to stack—PUSH
• Main body of subroutine—Multiple instructions
• Restore of information from stack—POP
• Return to main program—RET

• Save of information
• Must save content of registers/memory locations to

be used or other program parameters (FLAGS)
• PUSH, PUSHF

• Main body
• Retrieve input parameters passed from main program

via stack—stack pointer indirect address
• Performs the algorithm/function/operation required

of the subroutine
• Prepare output parameters/results for return to main

body via stack—stack pointer indirect addressing
• Restore information

• Register/memory location contents saved on stack at
entry of subroutine must be restored before return to
main program—POP, POPF

The 8088 and 8086 Microprocessors,Triebel and Singh 29

6.4 Subroutines and Subroutine-Handling
Instructions- Push and Pop Instruction

• Push instruction
• General format:

PUSH S
• Saves a value on the stack—content of:

• Register/segment register
• Memory

• Example:
PUSH AX
(AH)  ((SP)-1)
(AL)  ((SP)-2)
(SP)-2  (SP) = New top of stack

• Pop instruction
• General format:

POP D
• Restores a value on the stack—content to: register,

segment register, memory
• Example:

POP AX
 ((SP))  AL
((SP)+1)  AH
((SP)+2)  SP =Old top of stack

The 8088 and 8086 Microprocessors,Triebel and Singh 30

6.4 Subroutines and Subroutine-Handling
Instructions- Subroutine Call Involving
PUSH and POP

The 8088 and 8086 Microprocessors,Triebel and Singh 31

6.4 Subroutines and Subroutine-Handling
Instructions- Subroutine Call involving
PUSH and POP (continued)

The 8088 and 8086 Microprocessors,Triebel and Singh 32

6.4 Subroutines and Subroutine-Handling
Instructions- Push Flags Instruction

• Push flags instruction
• General formats:

PUSHF
• Saves flags onto the stack
• Operation
(FLAGS)  ((SP))
(SP)-2  (SP) = New top of stack

• Pop flags instruction
• General formats:

POPF
• Restores flags from the stack
 ((SP))  FLAGS
 (SP)+2  (SP) =Old top of stack

The 8088 and 8086 Microprocessors,Triebel and Singh 33

6.5 The Loop and Loop-Handling
Instructions- Loop Instructions

• Loop—segment of program that is repeatedly
executed
• Can be implemented with compare,

conditional jump, and decrement
instructions

• Loop instructions
• Special instructions that efficiently

perform basic loop operations
• Replace the multiple instructions

with a single instruction
• LOOP—loop while not zero

• CX ≠ 0 — repeat while count not
zero

• LOOPE/LOOPZ– loop while equal
• CX ≠ 0 — repeat while count not

zero, and
• ZF = 1—result of prior instruction

was equal
• LOOPNE/LOOPNZ—loop while not

equal
• CX ≠ 0 — repeat while count not

zero, and
• ZF = 0—result from prior instruction

was not equal

The 8088 and 8086 Microprocessors,Triebel and Singh 34

6.5 The Loop and Loop-Handling Instructions-
Loop Program Structure and Operation

• Structure of a loop
• Initialization of the count in CX
• Body—instruction sequence that is to be

repeated; short label identifying beginning
• Loop instruction– determines if loop is complete

or if the body is to repeat
• Example

1.Initialize data segment, source and
 destination block pointers, and loop count
2. Body of program is executed—source
element read, written to destination, and then
both pointers incremented by 1
3. Loop test

a. Contents of CX decremented by 1
b. Contents of CX check for zero
c. If CX = 0, loop is complete and
next sequential instruction (HLT) is
executed
d. If CX ≠ 0, loop of code is
repeated by returning control to the
instruction corresponding to the
Short-Label (NXTPT:) operand

The 8088 and 8086 Microprocessors,Triebel and Singh 35

6.5 The Loop and Loop-Handling Instructions-
Loop Example—Loop Count Operation

The 8088 and 8086 Microprocessors,Triebel and Singh 36

6.5 The Loop and Loop-Handling Instructions-
Loop Example—Block Search Operation

The 8088 and 8086 Microprocessors,Triebel and Singh 37

6.6 Strings and String-Handling Instructions-
String Instructions

• String—series of bytes or words of data that reside at
consecutive memory addresses

• String instructions
• Special instructions that efficiently perform

basic string operations
• Replaces multiple instructions with a single

instruction
• Examples

• Move string
• Compare string
• Scan string
• Load string
• Store string
• Repeated string

• Typical string operations
• Move a string of data elements from one

part of memory to another—block move
• Scan through a string of data elements in

memory looking for a specific value
• Compare the elements of two strings of

data elements in memory to determine if
they are the same or different

• Initialize a group of consecutive storage
locations in memory

The 8088 and 8086 Microprocessors,Triebel and Singh 38

6.6 Strings and String-Handling Instructions-
Autoindexing

• Autoindexing—name given to the process of automatically incrementing or
decrementing the source and destination addresses by the string instructions
• Direction (DF) control flag of the status register determines mode of

operation
• DF= 0  autoincrement
• DF = 1  autodecrement

• Increment or decrement is by 1 or 2 depending on size data specified
in the instruction

• Direction flag instructions permit the DF bit to be cleared or set as
part of a string routine

• CLD—clear direction flag
0  (DF) = autoincrement

• STD—set direction flag
1  (DF) = autodecrement

Moved from later

The 8088 and 8086 Microprocessors,Triebel and Singh 39

6.6 Strings and String-Handling Instructions-
Move String Instruction

• Move string instruction
• Used to move an element of data between a source

and destination location in memory:
• General format:

MOVSB—move string byte
MOVSW—move string word

• Operation: Copies the content of the source to the
destination; autoincrements/decrements both the
source and destination addresses

((DS)0+(SI))  ((ES)0+(DI))
(SI) ±1 or 2  (SI)
(DI) ±1 or 2  (DI)

• Direction flag determines increment/decrement
DF = 0  autoincrement
DF = 1  autodecrement

• Application example—block move
1. Initialize DS & ES to same value
2. Load SI and DI with block starting addresses
3. Load CX with the count of elements in the string
4. Set DF for autoincrement
5. Loop on string move to copy N elements

• MOVSB and LOOP replaces multiple move and
increment/decrement instructions

The 8088 and 8086 Microprocessors,Triebel and Singh 40

6.6 Strings and String-Handling Instructions-
Compare/Scan String Instructions

• Compare string instruction
• Used to compare the destination element of data in

memory to the source element in memory and reflect
the result of the comparison in the flags

• General format:
CMPSB,SW—compare string byte, word

• Operation: Compares the content of the destination to
the source; updates the flags;
autoincrements/decrements both the source and
destination addresses

((DS)0+(SI)) - ((ES)0+(DI))
update status flags
(SI) ± 1 or 2  (SI)
(DI) ± 1 or 2  (DI)

• Scan string instruction—SCAS
• Same operation as CMPS except destination is

compared to a value in the accumulator (A) register
(AL,AX) - ((ES)0+(DI))

• Application example—block scan
1. Initialize DS & ES to same value
2. Load AL with search value; DI with block starting address; and CX
with the count of elements in the string; clear DF
3. Loop on scan string until the first element equal to 05H is found

The 8088 and 8086 Microprocessors,Triebel and Singh 41

6.6 Strings and String-Handling Instructions-
Load/Store String Instructions

• Load string instruction
• Used to load a source element of data from memory

into the accumulator register.
• General format:

LODSB,SW—load string byte, word
• Operation: Loads the content of the source element

in the accumulator; autoincrements/decrements the
source addresses

((DS)0+(SI))  (AL or AX)
update status flags
(SI) ± 1 or 2  (SI)

• Store string instruction—STOS
• Same operation as LODS except value in

accumulator is stored in destination is memory
(AL,AX)  ((ES)0+(DI))

• Application example—initializing a block of memory
1. Initialize DS & ES to same value
2. Load AL with initialization value; DI with block starting address,
CX with the count of elements in the string; and clear DF
3. Loop on store string until all element of the string are initialized
to 05H

The 8088 and 8086 Microprocessors,Triebel and Singh 42

6.6 Strings and String-Handling Instructions-
Repeat String Instructions

• Repeat string—in most applications the basic string
operations are repeated
• Requires addition of loop or compare &

conditional jump instructions
• Repeat prefix provided to make coding of

repeated sting more efficient
• Repeat prefixes

• REP
• CX ≠ 0 — repeat while not end of string
• Used with: MOVS and STOS

• REPE/REPZ
• CX ≠ 0—repeat while not end of string,

and
ZF = 1—strings are equal

• Used with: CMPS and SCAS
• REPNE/REPNZ—Used with: CMPS and

SCAS
• CX ≠ 0—repeat while not end of string,
and
ZF = 0—strings are not equal
• Used with: CMPS and SCAS

The 8088 and 8086 Microprocessors,Triebel and Singh 43

6.6 Strings and String-Handling Instructions-
Repeat String Examples and Application

• General format:
REPXXXX
Where: XXXX = one of string
instructions

• Examples:
REPMOVB
REPESCAS
REPNESCAS

• Application example—initializing a block of
memory
1. Initialize DS & ES to same value
2. Load AL with initialization value; DI with
block starting address, and CX with the count
of elements in the string
4. Clear the direction flag for autoincrement
mode
4. Repeat store string until all elements of the
string are initialized to 05H

The 8088 and 8086 Microprocessors,Triebel and Singh 44

6.6 Strings and String-Handling Instructions-
Example String Application

