Self-assembly and Nanotechnology 10.524

Lecture on Microelectromechanical Systems (MEMS) & NEMS

Instructor: Prof. Zhiyong Gu (Chemical Engineering)

April 24, 2013

Table of Contents

- MEMS (Microelectromechanical systems)
- Nanoelectromechanical systems (NEMS)
- Example I: Catalytic nanomotors
- Example II: Self-folded micro-containers
- Example III: Self-assembled nanowires

MEMS AND Microsystems

Lecturer: Dr. Hongwei Sun Mechanical Engineering

What is MEMS? Microsystems?

MEMS:

Micro-Electro-Mechanical Systems (MEMS) is the integration of mechanical elements, sensors, actuators, and electronics on a common silicon substrate through microfabrication technology.

Micro accelerometer and Comparison with Conventional one (Courtesy of NASA Glenn Research Center)

Microsystems:

Engineering systems that could contain MEMS components that are design to perform specific engineering functions

µChemLab[™] by Sandia National Laboratory

Scale of MEMS and Microsystems

Gear: 100um

FIGURE 1.5 Various objects and their linear size.

Microsystems vs MEMS

(Microelectromechanical Systems) MEMS

Micro/Nano technology development

	Торіс	Knowledge Base	Work to Date	Leading Region
MEMS	components (for biosensing)	Advanced	Extensive	US ~ Japan ~ Europe
	integrated systems	Incomplete	Significant	Europe
	integration of biomaterials	Minimal	Isolated examples	Europe, US
Micro- fluidics	discrete devices	Advanced	Extensive	US
	integrated systems	Incomplete	Minor	Europe ~ US > Japan
Mass sensors	piezo devices	Advanced	Extensive	None
	Si cantilevers	Incomplete (esp. liquid operation)	Significant (dry) Minor (wet)	US ~ Europe
	integrated biomaterials	Incomplete	Significant	Europe ~ Japan
Nano- technology	"top-down" (nanofab.)	Incomplete	Significant	US > Europe
	"bottom-up" (molec. organized materials)	Incomplete	Extensive	US, Japan, Europe
	Integration into complex (bio)systems	Incomplete	Little	Europe ~ US

MicroElectroMechanical Systems (MEMS)

- Scale: from below 1 µm to above 1 mm
- *Manufacture:* batch fabrication technology
- *Function:* micro -mechanics, -electronics, -fluidics, -optics, ...

Where MEMS is manufactured?

MEMS Development flowchart

Common Microfabrication techniques

Process Type	Examples		
Lithography	photolithography, screen printing, electron-beam lithogaphy, x-ray lithography		
Thin-Film Deposition	chemical vapor deposition (CVD), plasma-enhanced chemical vapor deposition (PECVD), sputtering, evaporation, spin-on application, plasma spraying, etc.		
Electroplating	blanket and template-delimited electroplating of metals		
Directed Deposition	electroplating, stereolithography, laser-driven chemical vapor deposition, screen printing, transfer printing		
Etching	plasma etching, reactive-ion enhanced (RIE) etching, deep reactive ion etching (DRIE), wet chemical etching, electrochemical etching, etc.		
Directed Etching	laser-assisted chemical etching (LACE)		
Machining	drilling, milling, electric discharge machining (EDM), diamond turning, sawing, etc.		
Bonding	fusion bonding, anodic bonding, adhesives, etc.		
Surface Modification	wet chemical modification, plasma modification		
Annealing	thermal annealing, laser annealing		

Table of example processes used in micromachining.

MEMS vs. Microelectronics

Microelectronics	MEMS
Si, Si compounds, plastic	Si, Si compounds, plastic + polymer, metals, quartz
Specific electric functions	Perform electrical, optical, mechanical, biological func.
Stationary!	Normally include moving parts!!!
Primarily 2-D structures	Complex 3-D structures
Complex patterns with high density	Relatively simple pattern
Non-contact with Media	Sensor is interfacing with contact media
Mature IC design methodology & standards	Lack of engineering design rule and standards
Fabrication techniques are mature	Not mature
Mass production	Custom-needs basis
Well established packaging technology	Infant stage

Prof. Jiang Zhe, Univ. of Akron

History of MEMS development

History of MEMS

- 1939 PN-junction semiconductor (W. Schottky)
- 1948 Transistor (J. Bardeen, W.H. Brattain, W. Shockley)
- 1954 Piezoresistive effect in semiconductors (C.S. Smith)
- 1958 First integrated circuit (IC) (J.S. Kilby)
- 1959 "There's Plenty of Room at the Bottom" (R. Feynman)
- 1962 Silicon integrated piezo actuators (O.N. Tufte, P.W. Chapman and D. Long)
- 1965 Surface micromachined FET accelerometer (H.C. Nathanson, R.A. Wickstrom)
- 1967 Anisotropic deep silicon etching (H.A. Waggener et al.)
- 1977 Silicon electrostatic accelerometer (Stanford)
- 1979 Integrated gas chromatograph (S.C. Terry, J.H. Jerman and J.B. Angell)

History of MEMS development

History of MEMS

- 1982 "Silicon as a Mechanical Material" (K. Petersen)
- 1983 Integrated pressure sensor (Honeywell)
- 1985 LIGA (W. Ehrfeld et al.)
- 1986 Silicon wafer bonding (M. Shimbo)
- 1988 Batch fabricated pressure sensors via wafer bonding (Nova Sensor)
- 1992 Bulk micromachining (SCREAM process, Cornell)
- 1993 Digital mirror display (Texas Instruments)
- 1994 Commercial surface micromachined accelerometer (Analog Devices)
- 1999 Optical network switch (Lucent)

Successful MEMS Products

- Automotive industry: manifold air pressure sensor, air bag sensor (accelerometer with self-test)
- TI digital mirror display (DMD) video projection system (development cost ~ \$1B)
- Inkjet nozzles (HP, Canon, Lexmark) up to 1600 x 1600 resolution (~ 30M units per year)

3. User-refillable cartridges can deliver 10-pl drops with a 10-µm drop-placement accuracy.

[J. Bryzek, 1998]

Applications of MEMS and Microsystems

Market of MEMS and Microsystems

Roger Grace Associates

Application Sector	2000	2004	CAGR(%)
IT/Peripheral	8,700	13,400	11.5
Medical/Biochemical	2,400	7,400	32.5
Industrial/Automation	1,190	1,850	11.6
Telecommunications	130	3,650	128.1
Automotive	1,260	2,350	16.9
Environmental Monitoring	520	1,750	35.4
Total	14,200	30,400	21.0

(in Millions of US \$)

MEMS transducers (sensor & actuator)

Detecting signals

Thermal--temperature, heat, heat flow Mechanical--force, pressure, velocity, acceleration, position Chemical--concentration, composition, reaction rate Magnetic--field intensity, flux density, magnetization Optic--intensity, wavelength, polarization, phase Electrical--voltage, current, charge Electrical-voltage, current

MEMS transducers (sensor & actuator)

Actuating means

Thermal force Shape memory alloy Piezoelectric crystal Electrostatic force MEMS actuator

Mechanical movement

Typical MEMS/Microsystems-accelerometer

MEMS sensor:

Typical MEMS/Microsystems-accelerometer

Typical MEMS-based projection system

MEMS transducers:

Typical MEMS/Microsystems- µChemLab

Microsystems:

µChemLab[™] by Sandia National Laboratory

Function:

Liquid-phase system: discriminate proteins to detect and identify biotoxins, viruses, and bacterial agents.

Gas-phase system: detection of chemical warfare agents and a selection of toxic industrial chemicals, explosives, and organic solvents.

Gas chromatography

Components:

The breadboard provides power conditioning and switching, thermal monitoring and control of gas analysis components, analog-to-digital data conversion, fan, pump, and valve control, and operational timing and sequencing. The Gas Module is made up of **microfabricated** Preconcentrators, Gas Chromatograph separation columns, and Surface Acoustic Wave chemical detectors.

Detail: http://www.sandia.gov/news-center/news-releases/2003/mat-chem/chempartners.html

Examples of MEMS and Microsystems- µChemLab

Sketch of gas-phase system

Sample collection and concentration units in μ ChemLab

Micromachined Collection and pre concentration unit

Micromachined Gas chromatography

SAW sensor in µChemLab

Array of Surface Acoustic Wave (SAW) detector

Examples of MEMS and Microsystems- bioMEMS

other MEMS applications:

sensors

- potential, pressure, force, pH, chemistry actuators
 - pumps, valves, probes, grippers, ...

systems

- Integrated microfluidic platforms
- Lab-on-a-chip systems

Examples of MEMS and Microsystems- Insulin MEMS pump

Pump size = 6mm x 10mm

Diabetes is a medical condition where the body does not manufacture its own insulin. Insulin is used to metabolise sugar and, if it is not available, the person suffering from diabetes will eventually be poisoned by the build-up of sugar. It is important to maintain blood sugar levels within a safe range as high levels of blood sugar have long-term complications such as kidney damage and eye damage. These are not however, normally dangerous in the short-term. Very low levels of blood sugar (hypoglaecemia) are potentially very dangerous in the short-term. They result in a shortage of sugar to the brain which causes confusion and ultimately a diabetic coma and death. In such circumstances, it is important for the diabetic to eat something to increase their blood sugar level.

Examples of Microsystems (Lab-on-a Chip)- DNA analysis DNA analysis

Examples of Microsystems (Lab-on-a Chip)- DNA analysis

Integrated DNA Analysis

Drawing courtesy of C. Mastrangelo, U. Michigan

Microsystems- DNA detector

•Adsorption of small molecules induces surface stress through electrostatic interactions and steric hindrance, which can bend a cantilever

•This study applied the above principle to DNA fragments, which should only induce significant surface stress if the fragment on the cantilever is a precise match.

Fig. 1. Scanning electron micrograph of a section of a microfabricated silicon cantilever array (eight cantilevers, each 1 μ m thick, 500 μ m long, and 100 μ m wide, with a pitch of 250 μ m, spring constant 0.02 N m⁻¹; Micro- and Nanomechanics Group, IBM Zurich Research Laboratory, Switzerland).

Prof Jiang Zhe U. of Akron

Examples of MEMS and Microsystems- DNA detector

Books and references

MEMS books:

- 1. Stephen Senturia, *Microsystem Design*, Kluwer, 2001
- 2. Chang Liu, Foundation of MEMS, 2005
- 3. Marc Madou, Fundamentals of Microfabrication, 2nd Edition, CRC, 2002
- 4. Gregory Kovacs, Micromachined Transducers Sourcebook, McGraw-Hill, 1998
- 5. Nadim Maluf, An Introduction to Microelectromechanical Systems Engineering, Artech House, 2000
- 6. William Trimmer, Editor, *Micromechanics and MEMS: Classic and Seminal Papers to 1990*, IEEE Press, 1997
- 7. Mohamed Gad-el-Hak, Editor, The MEMS Handbook, CRC, 2002
- 8. Bharat Bhushan, Editor, Handbook of Nanotechnology, Springer, 2004
- 9. John Pelesko and David Bernstein, *Modeling MEMS and NEMS*, Chapman & Hall/CRC, 2003
- 10. Gabriel Rebeiz, RF MEMS: Theory, Design, and Technology, Wiley, 2003
- 11. Nam-Trung Nguyen and Steve Wereley, *Fundamentals and Applications of Microfluidics*, Artech House, 2002
- 12. Stephen Campbell, *The Science & Engineering of Microelectronic Fabrication*, 2nd Edition, Oxford, 2001
- 13. James Gere, Mechanics of Materials, 5th Edition, Brooks/Cole, 2001

MEMS website and Journals, conferences

Website: http://www.memsnet.org/

<u>Journals:</u> Journal of Microelectromechanical System (J.MEMS) (IEEE/ASME) Sensors and Actuators (ELSEVIER) Journal of Micromechanics & Microengineering And more

MEMS companies: http://www.memsnet.org/links/ (hundreds of companies)

Conferences:

- 1. Hilton Head , Solid-State Sensors, Actuator, and Microsystem Workshop ,Transducer Research Foundation
- 2. International MEMS conference (IEEE)
- 3. Micro Total Analysis System (uTAS)

And more at http://home.earthlink.net/~trimmerw/mems/Conferences.html

Website: http://www.memsnet.org/

MEMS and Nanotec	hnology Clearinghouse - Microsoft Internet Explorer	
File Edit View Favo	rites Tools Help	
🚱 Back 🝷 🐑 -	🖹 🛃 🏠 🔎 Search 📌 Favorites 🚱 🔗 - 🌺 💿 - 🔜 🎇 🦓	
Address 🙋 http://www.n	nemsnet.org/?news	🔽 🔁 Go 🛛 Links 🎽 📆 🔻
MEMS and Nanote	chnology Clearinghouse	Register or Sign in 🔼
7	MEMS and Nanotechnology Clearinghouse	Home
Industry News	An information resource for the MEMS and Nanotechnology development community hosted by the <u>MEMS and</u> <u>Nanotechnology Exchange</u> , the nation's leading provider of high-quality foundry and consulting services	
Event Calendar		MEMO
Job Listings	News Events Jobs Resumes <u>MEMS-talk</u>	Exchange
Post a Job	Nano-walker A Molecule Carrier	Fabrication
Resume Listings	Nanoscale walker's cargo carrying is step towards molecular-scale machinery read more	Brewer
Related Site Links	New Nano-detector Very Promising For Remote Cosmic Realms 2007-01-17	Temporary Etch
What is MEMS?	A miniscule but super-sensitive sensor can help solve the mysteries of outer space read more A Nane Solution To Increasing Bandwidth	Protective
Beginner's Guide	2007-01-17 MIT researchers develop microphotonic devices for communications, clearing the way for higher-performance optical networks read more	Science
Glossary	Research Into Nano Polymers Could Help Fight Wrinkles	COVENTOD
Material	Technology would be most likely to give way to film 'implants' in areas of the face prone to wrinkling read more	COVENIOR
Database	Hp Researchers Give Chips A Nano Spin	FINETECH
Discussion Groups	A layer of switches connected with nanowires eliminate wiring between transistors read more	simply accurate
Post a Link	Nanobatteries – Away With Exploding Batteries 2007-01-16	
Advertise with	New safer three-dimensional lithium-ion nanobattery helps reduce fire risks read more	
us	2007-01-11	www.finetechUSA.com
MEMS Exchange [®]	Single-use microfluidics chips used for cell sorting and collection read more Nana May Halp With Windshield Fag	
Free Processing!	2007-01-10	
Ads by Goooooogle	A transparent coat of carbon nano tubes keep condensation offiglass surfaces without the pitfalls of wire heating read more	
Functional Test Systems	more news	
Automated systems for		
diodes, RF devices,		
www.keithley.com		
Laser Micro		
Dissection Top Range Systems for		
Laser Micro Dissection and Micro Manipulation		
www.palm-microlaser.co		
e		🥑 Internet
Slide 5 of	49 Pixel English (U.S.)	
🥂 start 🛛 🖸 🏼	🛛 🚱 👘 🕞 day_schedule 🛛 💆 class1_introducti 🔁 mems_1 👘 😥 2 Internet Expl 🔹 🙆 Inbox - Microsof 🖳 mems_outline_fi 🛛 EN 🖉	👰 🔏 ờ 🔇 🖂 🙆 🗾 12:41 PM

Nanoelectromechanical Systems (NEMS)

NEMS or **nanoelectromechanical systems** are similar to MEMS but smaller. They hold promise to improve abilities to measure small displacements and forces at a molecular scale.

There are <u>two approaches</u> most researchers accept as standard paths to NEMS. <u>The top-down approach</u> can be summarized as "a set of tools designed to build a smaller set of tools". For example, a millimeter sized factory that builds micrometer sized factories which in turn can build nanometer sized devices. The other approach is <u>the bottom-up approach</u>, and can be thought of as putting together single atoms or molecules until a desired level of complexity and functionality has been achieved in a device. Such an approach may utilize molecular self-assembly or mimic molecular biology systems.

<u>A combination of these approaches</u> may also be used, in which nanoscale molecules are integrated into a top-down framework.

From Wiki

NEMS Fabrication Process

Schematic of surface micromachining approach used to nanofabricate NEMS devices. The pattern shapes are created by a scanning electron beam (E-beam) exposing a polymeric polymethylmethacrylate (PMMA) resist. The motion may be actuated by applying a voltage between the electron on the moving element and the electrode on the substrate

Self-assembly and Nanotechnology

Science **2000**, *290*, 1532

NEMS and E-beam Lithography

Electron micrograph of NEMS objects fabricated in single-crystal silicon by using electron beam lithography and surface micromachining. (A) A torsional oscillator from (15), (B) a compound torsional oscillator, (C) a series of silicon nanowires from (16), and (D) an oscillating silicon mesh mirror

Self-assembly and Nanotechnology Science 2000, 290, 1532

Rotational bearings based upon multiwall carbon nanotubes. By attaching a gold plate (with dimensions of order 100nm) to the outer shell of a suspended multiwall carbon nanotube, they are able to electrostatically rotate the outer shell relative to the inner core. These bearings are very robust; Devices have been oscillated thousands of times with no indication of wear. The work was done in situ in an SEM. These nanoelectromechanical systems (NEMS) are the next step in miniaturization that may find their way into commercial aspects in the future.

Nanomotor constructed at UC Berkeley. The motor is about 500nm across: 300 times smaller than the diameter of a human hair

From Wiki

Carbon Nanotube Nanomotor

 a) Schematic motor layout. R: nanotubesuspended metal plate rotor
 A1, A2: anchors; S1,S2,S3: stators 200nm

 b) SEM image of completed nanomotor

(Fennimore, Yuzvinsky, Zettl et al, Nature 2003)

Nanotube Rotational Bearing

manufacturing center at UML

Ultrahigh Frequency Nanotube Resonators

Amplitude (in logarithmic scale) and phase of the electrical current in a vacuum 106 Torr (triangles) and in air (circles) for a nanobridge resonator made from coating a bare suspended CNT device with 2.5 nm indium. The data were taken at *Vg*0, *Vg*112mV, and *Vd* 46 mV by the 1! method.

PRL 97, 087203 (2006)

Example I: Self-Propelled Nanorotors

Schematic of nanobarcode synthesis. (a) Gold sputtering onto an alumina membrane. (b) Electrodeposition of gold plugs. (c) Electrodeposition of a sacrificial layer of copper. (d) Electrodeposition of nickel segment. (e) Electrodeposition of gold segment. (f) Selective dissolution of alumina. (g) Selective dissolution of copper.

Chem. Commun., 2005, 441–443

Self-Propelled Nanorotors

(a) Optical microscope snapshots of a nanorod rotating counterclockwise.
(b) Optical microscope snapshots showing the dynamics of a suspended nanorod with a nearlinear movement followed by tethering to a surface impurity that induces a circular movement.

Chem. Commun., 2005, 441-443

Example: Catalytic Nanomotors

0.5 µm

Platinum/gold nanorods composite: Top: Schematic of a platinum/gold nanorod. Bottom left: An optical micrograph (500I) of a platinum/gold rod. Bottom right: TEM of a platinum/gold rod.

Chem. Eur. J. **2005**, *11*, 6462 – 6470 Self-assembly and Nanotechnology An SEM image at 35000 magnification of 1.5 mm400 nm striped metallic rod. Respective segment sizes (nm): Au, 350; Ni, 100; Au, 200; Ni, 100; Pt, 550.

Angew. Chem. Int. Ed. 2005, 44, 744 -746

Catalytic Nanomotors

Browne & Feringa, Nature Nanotechnology, 2006, 1, 25-35

Catalytic Nanomotors

Microfabricated gold "gears" with platinum on one side of each of the teeth. The result is the counterclockwise rotation of the structure when placed in hydrogen peroxide solution

Chem. Eur. J. 2005, 11, 6462 – 6470

Self-Assembly of Electronic Systems

manufacturing center at UML

Self-Assembled Self-folding Micro-Containers

$100\text{-}200\;\mu\text{m}$

Gimi, Leong, Gu, Yang, Artemov, Bhujwalla, Gracias. *Biomedical Microdevices* 2005, 7, 341-345.

Self-Assembled Self-folding Micro-Containers

Self-Assembled Self-folding Micro-Containers

Leong, Gu, Koh, Gracias. JACS 2006, 128, 11336-11337

Self-Assembly of Nanowires

Park, Lim, Chung, Mirkin. Science 2004, 303, 348

Magnetic assembly

Love, Urbach, Prentiss, Whitesides. *JACS*, 2003, *125*, 12696.

Self-Assembly of Nanowires

Large scale bundles during membrane dissolution

"Glued" 3D bundles

"Glued" 2D networks

Self-assembly and Nanotechnology

Gu, Chen, Gracias. Langmuir 2004, 20,11308.

Self-assembling route to Nanotechnology

A flowchart delineating the factors that must be considered when approaching the self-assembly of a nanoscale system

Ozin and Arsenault. Nanochemistry: A Chemical Approach to Nanomaterials. RSC Publishing, 2005

Nanorobots for Medicine (Surgery)

The depicted blue cones shows the sensors "touching" areas that triggers the nanorobots' behaviors.

Euro Nano Forum 2005

Nanorobots for Medicine (Surgery)

The atherosclerotic lesion was reduced due nanorobots activation. The temperatures in the region turn in expected levels.

Self-assembly and Nanotechnology

Euro Nano Forum 2005

<u>Next Lecture</u> on May 1 – Last Lecture !

May 1 (3:30-6pm): 1st half of final presentations (alphabetical order): 16 students

May 7 (final exam time: 3-6pm): 2nd half of final presentations (alphabetical order): 17 students

May 7: Final report due (by emails)

✤ Room: KI302

