Self-assembly and Nanotechnology 10.524

Lecture 6. Synthesis and Fabrication of Nanomaterials

Instructor: Prof. Zhiyong Gu (Chemical Engineering & CHN/NCOE Nanomanufacturing Center)

Table of Contents

- Section I: Nanoparticles synthesis
 - (a) Some nanoparticle samples (Gold nanoparticles)
 - (b) Case Study: Shaped Nanoparticles (nanocubes, etc)
- Section II: Carbon Nanotube synthesis
- Section III: Nanowires/nanorods
 - (a) Nanoporous template: AAO membrane Nanowire samples (Au, Ni, Cu)
 - (b) Case study: Electrodeposition in nanoporous templates

Section I: Synthesis of Nanoparticles

Growth of colloidal nanocrystals by reduction in the presence of surfactants

- Metal precursor solution
- Reducing Agent
- Capping (stabilizing agent)
- Solvent (heated)

Frens, G.. Controlled nucleation for the regulation of the particle size in monodisperse gold suspensions, Nature (1973), 241(105), 20-2. J. Turkevich, et. al. Coagulation of Colloidal Gold. *Discussions Faraday Soc.* No. 11, 58 (1951).

Molecular surfactant templated growth of nanoparticles

Different solute interaction possibilities can occur

Synthesis of Nanoparticles Using Reverse Micelles

Shchukin, Dmitry G.; Sukhorukov, Gleb B. Nanoparticle synthesis in engineered organic nanoscale reactors. Advanced Materials (2004), 16(8), 671-682.

Nanoparticle Synthesis in Reverse Micelles

AOT: Reverse micelles (0.2 M AOT + 0.4 M water in cyclohexane) Titanium isopropoxide $Ti[OCH(CH_3)_2)]_4$ 0.2 M added under vigorous stirring

Langmuir, 13, 16, 1997

Nanoparticles Stabilization against Aggregation (VDW force is high)

Electrostatic (adsorption of ions)

Coat particles with Organic molecules / polymers

Capping (stabilizing agent) e.g. Trioctylphosphine oxide (TOPO)

Nanoparticle Size Controlled by Ratio of Au(III) / citrate

Amount of HAuCl ₄ solution	Amount of trisodium citrate	Color	λ_{max}	
(10 mM, mL)	solution (1%, mL)			Size (nm)
1.25	2.0	Dark red	518	8.0
1.25	1.6	Red	519	10.0
1.25	1.3	Red	520	13.0
1.25	1.0	Red	522	16.0
1.25	0.875	Red	526	20.0
1.25	0.750	Red	528	25.0
1.25	0.625	Pinkish red	529	32.0
1.25	0.500	Pink	532	41.0
1.25	0.400	Pink	534	55.0
1.25	0.300	Orange	545	73.0

Reference: Chemical Physics Letters (2004), 395(4-6), 366-372

The diameter of gold nanoparticles determines the wavelengths of light absorbed. The colors in this diagram illustrate this effect.

http://www.webexhibits.org/causesofcolor/9.html

Quantum Dots

Fluorescence induced by exposure to ultraviolet light in vials containing various sized Cadmium selenide (CdSe) quantum dots.

A **quantum dot** is a semiconductor nanostructure that confines the motion of conduction band electrons, valence band holes, or excitons (pairs of conduction band electrons and valence band holes) in all three spatial directions.

Self-assembly and Nanotechnology

(Wiki)

Different sized quantum dot nanoparticles are shown above, first in ultraviolet light and then in ambient light. The length of the synthesis reaction determines particle size for CdSe, increasing from left to right. In colloidal suspension, this semiconductor behaves in the same way as a metal.

http://www.webexhibits.org/causesofcolor/9.html

Shape Control over the Growth of Colloidal Nanocrystals

Y. Yin and A. P. Alivisatos, Nature, (2005) 664-670

Case Study I: Shaped Nanoparticles - Nanocubes

Shaped Nanoparticles

Spherical vs. shaped nanoparticles

Novel properties: size and shape dependent optical, electrical, etc.

Several examples

Younan Xia's group, U Washington

Nanocubes: Science, 2002, 298, 2176-2179

Catherine J. Murphy's group, U South Carolina

Nanorods: J. Phys. Chem. B 2005, 109, 13857-13870

A Paul Alivisatos's group, UC Berkeley

Branched nanocrystals: Nature 2005, 437, 664-670

Tetrapod-shaped CdSe

Au nanoparticles

Solution-phase synthesis

Including: metal precursor, solvent, reducing agent, capping agent, etc.

Capping agents: surfactants or polymers, modifying the kinetics of atoms assembly/growth to generate shapes

Polyol method: easy and efficient method

Solvent: ethylene glycol

Also as a reducing agent when heated

Capping agents: polymers mostly used

Purposes:

- Self-assembly or directed assembly to create 1D, 2D, and 3D structures
- Self-assembly with polymers or block copolymers to obtain novel nanocomposites

Shaped Nanoparticles – Some Preliminary Results

SEM images of Ag nanoparticles using poly(vinyl pyrrolidone) (PVP)

SEM images of Ag nanoparticles using Block copolymers

Pluronic block copolymers PEO-PPO-PEO

manufacturing center at UML

Section II: Synthesis of Carbon Nanotubes

Carbon Nanotube: A Form of Carbon

Review on Nanotubes:

Accounts of Chemical Research (2002), 35(12). Entire issue is based on Nanotubes. Dai, Hongjie. Carbon nanotubes: opportunities and challenges. Surface Science (2002), 500(1-3), 218-241.

manufacturing center at UML

Different Types of Nanotubes

a1 zig zag vector a2 reflection over armchair line

Chiral

The (n,m) nanotube naming scheme can be thought of as a vector (Ch) in an infinite graphene sheet that describes how to 'roll up' to graphene sheet to make the nanotube. T denotes the tube axis, and a1 and a2 are the unit vectors of graphene in real space. It is based upon similar diagrams found in the literature (for instance, Odom et al. Topics Appl. Phys., 2001, 80, 173).

Science, 297, 2 Aug 2002

Single Wall and Multi Wall Nanotubes

Methods for Fabricating Nanotubes

Arc Vaporization

Laser Vaporization

CVD

✤ Flame

Arc Discharge

~ 1mm spaced carbon electrodes

Metal doped electrodes (Fe, Co, Ni, Mo): SWNT

Pure Graphitic electrodes: MWNT (other fullerenes etc)

During this process, the carbon contained in the negative electrode sublimates because of the high temperatures caused by the discharge. Because nanotubes were initially discovered using this technique, it has been the most widely used method of nanotube synthesis.

The yield for this method is up to 30 percent by weight and it produces both singleand multiwall nanotubes, however they are quite short (50 microns)

CVD: Metal Catalysts

HiPco: CO, $Fe(CO)_5$ Commercial Process 97% Pure, 450 mg /hr

Laser Ablation, pulsed laser, 500 Torr Ar.

Mechanism Ablation, arc discharge: Still Controversial

- Atomize Carbon (Explode or Dissociate on Metal)
- Preclude initial recombination (metal-C bond, high energy)
- Confinement (Prevent over expansion, Background Pressure Key * Note deposition is not in vacuum)
- Cooling (crucial for SWNT, MWNT) (In a metal Dissolution to form a supersaturated solution)
- sp₂ hybridization, sheet bends to reduce dangling bonds (high energy)

In the laser ablation process, a pulsed laser vaporizes a graphite target in a high temperature reactor while an inert gas is bled into the chamber. The nanotubes develop on the cooler surfaces of the reactor, as the vaporized carbon condenses. A water-cooled surface may be included in the system to collect the nanotubes.

Self-assembly and Nanotechnology

Journal of Cluster Science (2003), 14(2), 135-185.

Role of Catalytic Particles in Nanotube Growth

Explains Hollow Tube

• Oxidation: Damage to SWNT (closed structure less reactive) less than other carbon / metal compounds

- Acid treatment, Ultrasonication (Metal removal)
- Magnetic removal of catalysts
- Microfiltration (SNWT trapped), fullerenes solvated in CS2
- Functionalization, Cutting using fluorination and pyrolysis
- Chromatography (HPLC-SEC)

Section III: Synthesis of Nanowires

Most commonly used methods

- CVD (Chemical Vapor Deposition)
- Solution phase synthesis
- Electrodeposition

Vapor Liquid Solid (VLS) growth (in CVD)

I : Metal catalyst reacts with vapor of Ge (from the decomposition of Gel₂)
II: Au and Ge form a liquid eutectic when temp above (361 C)
III: Droplet becomes supersaturated in Ge, Ge starts to precipitate on liquid Au, at the solid liquid interface.

R. S. Wagner, W. C. Ellis, Applied Physics Letters, 1964, 4, 89; Y. Xia et al, Advanced Matierals, 2003, 15, 353-387.

Example: Birth of a Ge Nanowire from an Au Catalyst Particle

Au catalyst + Gel₂ vapour

SEM images of Ge nanowires

Y. Wu, P. Yang, JACS 2001, 123, 3165

Case Study II:

Electrodeposition of Nanowires/Nanorods in Nanoporous Templates

Lab Session II (after spring break)

Relatively easy to fabricate and very good to pattern

Fabrication of Large-scale One- and Multi-component Nanowires

Nanowires with one- and multi-component segments

One-component nanowires (gold nanowires, d=50nm)

Multi-component nanowires

Gu, Ye, Gracias. Journal of Materials (JOM) 2005, 57, 60-64

Hybrid Nanowires with Controlled Size and Functionality

Summary and perspective

- Section I: Nanoparticles synthesis
- Section II: Carbon Nanotube synthesis
- Section III: Nanowires/nanorods
- Molecular based nanomaterials (organic molecules, polymers,...)
- Bio-related nanomaterials and nanostructures (DNA, peptide, virus, etc)
- New nano-building blocks •••

