Voltammetry (stirred)

- Stationary electrode
- Stirred = mass transport by convection
- Vary potential linearly with time
- Measure current vs time

Theory

- Assume \(\text{Ox} + n \text{e}^- \leftrightarrow \text{Red} \)
 - Both Ox and Red are soluble
 - Reversible reaction (electrochemically)
 - Potential varies
Define - Limiting Current as steady state current when \([\text{Ox}] = 0\) at electrode surface i.e., applied potential is sufficiently cathodic such that all Ox is reduced at electrode.

\[
I = \frac{nFADC_{\text{bulk}}}{\delta}
\]

Gives quantitative information

\[
E = E^o - \frac{RT}{nF} \ln \frac{[\text{Red}]}{[\text{Ox}]}
\]
Linear-scan voltammogram for stirred solution

Limiting current

Quantitative information

Qualitative information

Current, μA

E_{appl} (vs. SCE)

$E_{1/2}$

i_1

$i_1/2$
Linear Scan Voltammetry (stirred)

$\text{Ox} + e^- \rightarrow \text{Red}$

$I_C =$ Capacitive current
$I_L =$ Limiting current
$E_{1/2} =$ Half wave potential

$I_C =$ Capacitive current
$I_L =$ Limiting current
$E_{1/2} =$ Half wave potential
Linear Scan Voltammetry (stirred)

Ox + e⁻ → Red

Half wave potential (E½)
is E when I = I_L/2
Linear Scan Voltammetry (stirred)

Ox + e⁻ → Red

I is proportional to [Red], I_L represents the situation where Red is maximum and Ox is zero.
Linear Scan Voltammetry (stirred)

When $I = I_L/2$, then

$[\text{Red}] = [\text{Ox}]$ and

$E = E_{\frac{1}{2}}$

$$E = E_{\frac{1}{2}} - \frac{RT}{nF} \ln \left(\frac{I_L - I}{I} \right)$$
Linear Scan Voltammetry (stirred)

Can assign rate constants (k) for irreversible processes
Linear Scan Voltammetry (stirred)

For two reversible processes reducing at different potentials

\[I \quad E \quad E_{\frac{1}{2}} \quad I_L \quad E_{\frac{1}{2}} \]
Linear Scan Voltammetry (stirred)

- Normally use Pt or C (graphite) electrodes
- Better to use rotating electrode than stir bar
- LSV can be used for quantitative analysis
- Can measure many metal ions & organics
- Fairly sensitive due to convective mass transport, i.e., I_F is large
- The output signal in the form of a wave is considered a drawback
 - can be difficult to perform data analysis
 - multiple components gives stacked waves
Linear Scan Voltammetry (stirred)

For a two component system it is difficult to measure the second species in the presence of a large concentration of the first species. The second \(I_L \) becomes small since the range is set by the first species.

This problem is inherent for techniques that produce waves.
Voltammetry (unstirred)

- Stationary electrode
- Unstirred solution = mass transfer by diffusion
- Vary potential linearly with time
- Measure current vs time

Theory

\[\text{assume } \text{Ox } + \ n \ e^- \leftrightarrow \text{Red} \]

- both Ox and Red are soluble
- reversible reaction (electrochemically)
- potential varies
Linear Scan Voltammetry (unstirred)

L_{p}

Largely Nernstian controlled region of the curve

Primarily diffusion controlled region from Cottrell Eq.

I_{p} = Peak current

E_{p} = Peak potential

Irreversible

Reversible
Voltammetry (unstirred) - Theory

\[I_P = 0.452 \frac{n^{3/2} F^{3/2}}{R^{1/2} T^{1/2} A D^{1/2} C_{\text{bulk}} V^{1/2}} \]

New term \(V = \) scan rate

Increase scan rate & \(I_P \) increases, however, \(I_C \) is directly proportional to \(V \)

Ratio \(I_F/I_C \) is greatest at slow scan rates

\[E_P = E^{1/2} - 1.1 \frac{R T}{n F} \]
Linear Scan Voltammetry (unstirred)

More than one component

Can be difficult to determine baseline for second peak

I

E

I_p?
Applied Signal for Linear Scan Voltammetry

Slope = scan rate in mV/sec

time
Convention for plotting current & potential

I_{cathodic}
\begin{align*}
\text{Current due to reduction}
\end{align*}

E_{anodic}
\begin{align*}
\text{oxidizing potentials}
\end{align*}

E_{cathodic}
\begin{align*}
\text{reducing potentials}
\end{align*}

$\text{Red} - e^- \rightarrow \text{Ox}$

$\text{Ox} + e^- \rightarrow \text{Red}$

I_{anodic}
\begin{align*}
\text{Current due to oxidation}
\end{align*}
Applied Signal for Linear Scan Voltammetry

Slope = scan rate in mV/sec
Cyclic Voltammetry
Going from A to B to C to D is the same as for LSV in an unstirred solution scanning in one direction.

Convention for plotting current & potential

\[\text{Ox} + e^- \rightarrow \text{Red} \]

\[\text{Red} - e^- \rightarrow \text{Ox} \]
Convention for plotting current & potential

Going from D to E there is a sharp decrease due to the change in sign of the capacitive current.
Convention for plotting current & potential

Going from E to F the current decreases slowly due to capacitive current building (opposite in sign)
Convention for plotting current & potential

Going from F to G the anodic current increases rapidly due to Nernstian control of the system.
Convention for plotting current & potential

Going from H to I to J the current becomes diffusion controlled again as mentioned previously.
<table>
<thead>
<tr>
<th>CV Diagnostics</th>
<th>$I_p/V^{1/2}$</th>
<th>$I_{\text{anodic}}/I_{\text{cathodic}}$</th>
<th>$\Delta E_p/2$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reversible Charge Transfer</td>
<td>Constant with V</td>
<td>1</td>
<td>Constant with V</td>
</tr>
<tr>
<td>Irreversible Charge Transfer</td>
<td>Not constant with V</td>
<td>< 1</td>
<td>$\Delta E_p/2$ increase with V</td>
</tr>
</tbody>
</table>

The diagram shows a cyclic voltammetry (CV) curve with anodic and cathodic peaks. The table summarizes the behavior of different charge transfer processes with respect to V. The graph illustrates the relationship between the anodic and cathodic currents (I_{anodic}, I_{cathodic}) and the applied potential (E). The curvature of the graph indicates the change in $\Delta E_p/2$ with respect to V. The table indicates that for reversible processes, $I_p/V^{1/2}$ is constant with V, while for irreversible processes, $I_{\text{anodic}}/I_{\text{cathodic}}$ decreases with V.
Cyclic Voltammetry of Complex Systems

- $\text{Ox} + e^- \rightarrow \text{Red}$
- $\text{Red} \leftrightarrow \text{A}
- \text{A} - e^- \rightarrow \text{B}$
- $\text{Red} - e^- \rightarrow \text{Ox}$
Cyclic Voltammetry

- Powerful technique for elucidating mechanisms of oxidation & reduction
- Good for studying electrode kinetics
- http://www-biol.paisley.ac.uk/marco/Enzyme_Electrode/Chapter1/Cyclic_Voltammetry1.htm