1. A biased coin, \(P(H) = 0.3 \), is tossed 100 times. Let \(X \) be the number of heads that result.
 (a) Set up a sum for the exact probability that \(X \leq 20 \), using the binomial distribution, but do not attempt to add up the sum.
 (b) Use a normal approximation to compute the probability that \(X \leq 20 \).

2. A sequence of random points \(X_1, X_2, \ldots, X_{500} \) are independently chosen from interval \([0, 2]\), where each \(X_i \) has density (pdf) given by
 \[
 f(x) = \frac{x}{2}.
 \]
 (a) Set \(\mu = E(X_1) \). What is \(\mu \)?
 (b) Set \(\sigma = \sigma(X_1) \). What is \(\sigma \)?
 (c) Let \(\bar{x} \) be the average of the values \(X_1, X_2, \ldots, X_{500} \). What is the probability that \(|\bar{x} - \mu| < 0.05 \).
 \[\text{Hint: By the central limit theorem, you can use a normal approximation.}\]

3. A biased coin, \(P(H) = p \), is tossed 40 times, resulting in 12 heads and 28 tails.
 (a) Estimate \(p \), and find an 80% confidence interval for this estimate.
 (b) What is the margin of error in part (a)?
 (c) Find a 99% confidence interval for your estimate for \(p \) in part (a).
 (d) Suppose you can toss the coin as many times as you want in order to estimate \(p \). What is the minimum number of times one should toss the coin in order to estimate \(p \) accurately to two decimal places with 95% confidence?

4. An article claims that 63% of all scientific studies use statistics incorrectly. The article gives this percentage along with a margin of error of 2%. Assuming that the assertion was made with 95% confidence, how many scientific studies were actually checked for correctness by the authors of this article?

\[\text{Solutions on the next page} \rightarrow\]
Solutions:

1. (a) \(X \) has a binomial distribution with \(p = 0.3 \) and \(n = 100 \), so that \(P(0 \leq X \leq 20) = \sum_{k=0}^{20} \binom{100}{k}(0.3)^k(0.7)^{100-k} \).

(b) We have \(np = 30 \) and \(np(1-p) = 21 \). A normal approximation (with continuity correction) yields

\[
P(X \leq 20.5) = P \left(\frac{X - 30}{\sqrt{21}} \leq \frac{20.5 - 30}{\sqrt{21}} \right) \approx P \left(Z \leq \frac{-9.5}{\sqrt{21}} \right) = F_Z(-0.2073) = 0.0192 \approx 1.92%\]

Remark: In case you were wondering, the (correct) probability from the sum in part (a) is 0.01646 or about 1.65%.

2. (a) \(\mu = E(X_1) = \int_0^x \frac{x}{2} \, dx = \frac{x^2}{4} \)

(b) Since \(E(X_i^2) = \int_0^x x^2 \, dx = 2 \), we have \(\sigma = \frac{x^2}{2} \)

(c) Note that \(n = 500 \). We then have

\[
P(|\bar{x} - \mu| < 0.05) = P \left(\frac{|\bar{x} - \mu|}{\sigma / \sqrt{n}} < 0.05 \right) \approx P \left(Z < \frac{0.05}{\sqrt{\frac{2}{500}}} \right) = F_Z(2.37) = 0.9911 \approx 99.1\%
\]

3. (a) Estimate \(p \) by \(\bar{x} = \frac{12}{40} = 0.3 \).

At 80% confidence (\(C = 0.8 \)), we choose \(z^* \) so that \(1 - F_Z(z^*) = \frac{1-C}{2} = 0.1 \) or \(F_Z(z^*) = 0.9 \). This occurs when \(z^* = 1.28 \). We then have

\[
0.8 \approx P \left(|p - \bar{x}| < \frac{z^* \sqrt{\bar{x}(1-\bar{x})}}{\sqrt{n}} \right) = P \left(|p - 0.3| < \frac{1.28 \sqrt{(0.3)(0.7)}}{\sqrt{400}} \right) = P \left(|p - 0.3| < 0.093 \right).
\]

So we are 80% confident that \(0.207 \leq p \leq 0.393 \)

(b) From part (a) we have a margin of error \(m \) is \(m = \frac{z^* \sqrt{\bar{x}(1-\bar{x})}}{\sqrt{n}} = \frac{1.28 \sqrt{0.37}}{\sqrt{400}} \approx 0.093 \).

However, in experimental design the value of \(\bar{x} \), and therefore of \(\sqrt{\bar{x}(1-\bar{x})} \) is not known in advance, so the more conservative formula

\[
m = \frac{z^*}{2 \sqrt{n}} = \frac{1.28}{2 \sqrt{400}} = 0.101
\]

may be used.

(c) For 99% confidence, we must proceed as in part (a), using \(z^* \) so that \(1 - F_Z(z^*) = \frac{1-0.99}{2} = 0.005 \) or \(F_Z(z^*) = 0.995 \). This occurs when \(z^* = 2.58 \). We then have

\[
0.99 \approx P \left(|p - 0.3| < \frac{2.58 \sqrt{(0.3)(0.7)}}{\sqrt{40}} \right) = P \left(|p - 0.3| < 0.187 \right).
\]

So we are 99% confident that \(0.113 \leq p \leq 0.487 \)

(d) For a 95% confidence estimate we use \(z^* = 1.96 \). To achieve 0.01 accuracy, we need

\[
m = \frac{z^*}{2 \sqrt{n}} = \frac{1.96}{2 \sqrt{n}} = 0.01,
\]

so that \(n = 9604 \) is the minimum number of coin tosses required.

4. If the precise margin of error (at 95% confidence) is 2%, where \(\bar{x} = 0.63 \)

\[
0.02 = \frac{1.96 \sqrt{0.63 \cdot 0.37}}{\sqrt{n}},
\]

so that \(n = 2239 \).

However, the experimenters did not know the value \(\bar{x} = 0.63 \) at the start of their experiment. If they designed the experiment to achieve \(m = 0.02 \) at 95% confidence, they would choose \(n \) via the more conservative formula

\[
0.02 = \frac{1.96}{2 \sqrt{n}} \text{ or, equivalently, } n = \left(\frac{1.96}{2 \cdot 0.02} \right)^2,
\]

so that \(n = 2401 \).