Other Geological Applications to Forensic Investigations – Rocks, Geologic Maps, and Building Materials

Rocks

Geologic maps
Characterizing Rocks

There are 3 major types of rocks

IGNEOUS formed from molten magma

SEDIMENTARY formed from sediment (soil, sand, etc.)

METAMORPHIC formed by applying heat and pressure to existing rocks
Characterizing Rocks

The three major characterizing features of rocks are:

- Color
- Composition (Mineralogy/Chemistry)
- Texture

Note: Even the most sophisticated geological classification schemes are based on these features.
Characterizing Rocks

Classification by Color

Color Index (used mainly for igneous rocks)

- Leucocratic
- Mesocratic
- Melanocratic
- Felsic
- Mafic
Characterizing Rocks

Textures of Igneous Rocks

- Aphanitic
- Phaneritic
- Porphyritic
- Inclusions
 - Xenoliths
 - Xenocrysts
Phaneritic Texture
Aphanitic Texture
Porphyritic Texture

- Phenocrysts
- Groundmass

porphyritic andesite

- phenocrysts
- matrix
Vesicular & Glassy Textures
Table 2.1 Igneous rock identification key. Color, with associated mineral composition, is shown along the top axis. Each rock in a column has the color and composition indicated at the top of the column. Texture is shown along the left side of the key. Each rock in a row has the texture indicated for that row. To determine the name of a rock, intersect the appropriate column (color & mineral composition) with the appropriate row (texture) and read the name at the place of intersection.

IGNEOUS ROCK IDENTIFICATION KEY

<table>
<thead>
<tr>
<th>COLOR</th>
<th>CHEMICAL COMPOSITION</th>
<th>DOMINANT MINERALS</th>
<th>TEXTURE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Light</td>
<td>Increasing silica content</td>
<td>Quartz/K-feldspar</td>
<td>Coarse Grained<sup>1</sup></td>
</tr>
<tr>
<td>Medium</td>
<td>Intermediate increasing iron and magnesium</td>
<td>Amphibole/P-basalt</td>
<td>Fine Grained<sup>2</sup></td>
</tr>
<tr>
<td>Dark</td>
<td>Ultramafic</td>
<td>Olivine/P-lysite</td>
<td>Porphyritic<sup>3</sup></td>
</tr>
<tr>
<td>Very dark</td>
<td></td>
<td>Pyroxene</td>
<td>Glassy</td>
</tr>
<tr>
<td>85%</td>
<td></td>
<td></td>
<td>Fragmental</td>
</tr>
<tr>
<td>100%</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Percent by volume</th>
</tr>
</thead>
<tbody>
<tr>
<td>100%</td>
</tr>
<tr>
<td>80%</td>
</tr>
<tr>
<td>60%</td>
</tr>
<tr>
<td>40%</td>
</tr>
<tr>
<td>20%</td>
</tr>
<tr>
<td>10%</td>
</tr>
<tr>
<td>5%</td>
</tr>
<tr>
<td>2%</td>
</tr>
</tbody>
</table>

- **Textural Terms:**
 - Coarse Grained: Crystals generally 1-10 mm (1 cm).
 - Fine Grained: Crystals generally less than 1 mm.
 - Porphyritic: “Porphyritic” precedes any of the above names whenever there are appreciable phenocrysts.
 - Glassy: Obsidian (compact glass), Pumice (frothy glass)
 - Fragmental: Tuff (fragments less than 2 mm), Volcanic Breccia (fragments greater than 2 mm)

¹ Also called phaneritic. Crystals generally 1-10 mm (1 cm). The term pegmatite is added to the rock name when crystals are greater than 1 cm; e.g., granite-pegmatite.

² Also called aphanitic. Crystals generally less than 1 mm.

³ For example, a granite with phenocrysts is called porphyritic granite.

⁴ Basalt with a cinder-like appearance that develops from gas bubbles trapped in cooling lava (a texture referred to as vesicular) is called scoria.
Sedimentary Rocks

Detrital & Chemical Rock Classification

Detrital Rocks
- Conglomerate
- Sandstones
- Siltstone
- Shale

Chemical Rocks
- Limestone
- Chert (Flint)
- Salt (Evaporite)
Detrital Sedimentary Rocks

- Conglomerates
 - Poorly Sorted particle sizes
 - Well-rounded particles
 - Usually particles are gravel sized
Detrital Sedimentary Rocks

- Breccia
 - Poorly sorted grains
 - Angular grains
 - Gravel sized grains
Breccia

Close up
Detrital Sedimentary Rocks

- Sandstone
 - Well sorted particles
 - Particles can be angular to rounded
 - Sand-sized Particles
Other types of sandstone

Graywacke – contains rock fragments

Arkose – contains significant feldspar
Detrital Rocks

- **Shale**
 - Microscopic grain size
 - Consist of silt and clay size grains
 - Cannot see grains with naked eye
 - Occur in “quiet” depositional environments
Shale
Chemical Rocks

Classification

- **Inorganic** - Not produced by living things.
- **Biochemical** - Are produced by or are remnants of living things (e.g. shell fragments, coral reefs, etc)
Chemical Rocks

● Limestone
 ● Most abundant chemical rock
 ● Inorganic (oolitic limestone, Travertine) or Biochemical (Chalk, Coquina)
Limestone (Chemical Rocks)

- Travertine
 - Common in caves
 - Happen when calcium carbonate is precipitated out of groundwater
Limestone (Chemical Rocks)

- **Coquina**
 - Consists of loosely cemented shell fragments

![Image of a rock sample](image-url)
Limestones
Chemical Sedimentary Rocks

- **Chert (Flint)**
 - Consists of Microcrystalline Silica
 - Two major occurrences of chert
 - Irregular shaped nodules in limestone
 - Layers of rock
 - Most likely Biochemical
Table 2.3 Sedimentary rock identification key. Sedimentary rocks are divided into two groups, detrital and chemical, depending upon the type of material that composes them. Detrital rocks are further subdivided by the size of their grains, while the subdivision of the chemical rocks is determined by composition.

<table>
<thead>
<tr>
<th>DETRITAL ROCKS</th>
<th>CHEMICAL ROCKS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Texture</td>
<td>Composition</td>
</tr>
<tr>
<td>(grain size)</td>
<td>(grain size)</td>
</tr>
<tr>
<td>Coarse (over 2 mm) with large grains</td>
<td>Rounded fragments of quartz and/or chert</td>
</tr>
<tr>
<td>Medium (1/16 to 2 mm) feels “sandy”</td>
<td>Quartz usually dominates (If abundant feldspar is present the rock is called Arkose)</td>
</tr>
<tr>
<td>Fine (1/16 to 1/256 mm)</td>
<td>Quartz and clay</td>
</tr>
<tr>
<td>Very fine (less than 1/256 mm)</td>
<td>Quartz and clay</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Calcite, CaCO₃ (will effervesce)</td>
</tr>
<tr>
<td></td>
<td>Dolomite CaMg(CO₃)₂ (will effervesce if powdered)</td>
</tr>
<tr>
<td></td>
<td>Quartz, SiO₂</td>
</tr>
<tr>
<td></td>
<td>Gypsum CaSO₄·2H₂O</td>
</tr>
<tr>
<td></td>
<td>Halite, NaCl</td>
</tr>
<tr>
<td></td>
<td>Altered plant fragments</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Metamorphic Rocks

- Classified into two main groups
 - Foliated Rocks
 - Non-foliated Rocks
Foliated Rocks

- Progression of Shale to Gneiss
 - Slate Low Metamorphic Grade
 - Phyllite
 - Schist
 - Gneiss High Metamorphic Grade
Foliated Textures

- Slaty
- Phyllitic
- Schistosity
- Gneissic
Slate

- Parent Rock
- Shale
- Slaty Cleavage
Phyllite

- Parent Rock
- Slate
- Characteristic sheen/shine
- Phyllitic Texture
Schist

- Parent Rock
- Phyllite
- Characteristic scaly appearance
- Schistosity
Gneiss

- Parent Rock
 - Schist
- Characteristic of light and dark banding
- Gneissic Texture
Non-foliated Rocks

- Rocks that show no Foliation
 - Crystalline Rocks
 - Marble
 - Quartzite
 - Anthracite
Marble

- Parent Rock
 - Limestone or Dolostone
- Reacts to Acid

(b) Marble
Quartzite

- Parent Rock
 - Sandstone
- Moderate to high metamorphism
- Very Hard
Table 2.5 Metamorphic rock identification key. Metamorphic rocks are divided into the two textual groups, foliated and nonfoliated. Foliated rocks are further subdivided based upon the size of the mineral grains.

<table>
<thead>
<tr>
<th>Foliated</th>
<th>Very fine</th>
<th>Fine</th>
<th>Medium to Coarse</th>
<th>Medium to Coarse</th>
<th>Medium to Coarse</th>
<th>Medium to Coarse</th>
<th>Fine</th>
<th>Fine</th>
<th>Medium to very coarse</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oriented</td>
<td>Slate</td>
<td>Phyllite</td>
<td>Schist</td>
<td>Gneiss</td>
<td>Migmatite</td>
<td>Marble</td>
<td>Quartzite</td>
<td>Hornfels</td>
<td>Anthracite</td>
</tr>
<tr>
<td>Banded</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Interlocking calcite or dolomite grains</td>
<td>Fused quartz grains, massive, very hard</td>
<td>Usually, dark massive rock with dull luster</td>
<td>Shiny black rock that may exhibit conchoidal fracture</td>
</tr>
<tr>
<td>Nonfoliated</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- Excellent rock cleavage, smooth dull surfaces
- Breaks along wavy surfaces, glossy sheen
- Micaceous minerals dominate, scaly foliation
- Compositional banding due to segregation of minerals
- Banded rock with zones of light-colored crystalline minerals
- Shale, mudstone, or siltstone
- Slate
- Phyllite
- Schist, granite, or volcanic rocks
- Gneiss
- Limestone, dolostone
- Quartz sandstone
- Any rock type
- Bituminous coal
- Any rock type
Rock Identification

<table>
<thead>
<tr>
<th>Rock chemistry</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>SiO₂</td>
<td>74.89</td>
</tr>
<tr>
<td>TiO₂</td>
<td>0.13</td>
</tr>
<tr>
<td>Al₂O₃</td>
<td>12.02</td>
</tr>
<tr>
<td>Fe₂O₃</td>
<td>1.11</td>
</tr>
<tr>
<td>FeO</td>
<td>1.27</td>
</tr>
<tr>
<td>MnO</td>
<td>0.06</td>
</tr>
<tr>
<td>MgO</td>
<td>0.02</td>
</tr>
<tr>
<td>CaO</td>
<td>0.69</td>
</tr>
<tr>
<td>Na₂O</td>
<td>3.61</td>
</tr>
<tr>
<td>K₂O</td>
<td>4.89</td>
</tr>
</tbody>
</table>

Chondrite normalized REE pattern for rock (granite) from the crime scene
<table>
<thead>
<tr>
<th>Eon</th>
<th>Era</th>
<th>Period</th>
<th>Epoch</th>
<th>m.y.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Precambrian</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Proterozoic</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Archean</td>
<td></td>
<td>2500</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Hadean</td>
<td></td>
<td>4600</td>
</tr>
<tr>
<td>Proterozoic</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Paleozoic</td>
<td></td>
<td>Cambrian</td>
<td></td>
<td>540</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Ordovician</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Silurian</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Devonian</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Carboniferous</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Pennsylvanian</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Mississippian</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Permian</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Triassic</td>
<td></td>
<td>250</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Jurassic</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Cretaceous</td>
<td></td>
<td>65</td>
</tr>
<tr>
<td>Cenozoic</td>
<td></td>
<td>Paleogene</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Neogene</td>
<td></td>
<td>23</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Quaternary</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Holocene</td>
<td></td>
<td>1.5</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Pleistocene</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Pliocene</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Miocene</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Oligocene</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Eocene</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Paleocene</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
On a geologic map the various rock units are arranged in order of their formation – i.e., according to the geologic time scale.
The identification of a rock and linking the sample with a particular location using a geologic map can be useful in solving certain kinds of crimes.
Mysterious Glacial Boulders

- At a gas works in Massachusetts igneous boulders showing up in the coal the plant was importing were damaging plant equipment.

- When the rocks were examined they were found to be of local origin.

- It turned out that a shovel operator that drank on the job was scooping the coal with too deep a setting and picking up the local glacial boulders in the soil under the coal pile.

(Thanks to Ray Murray)
Rawalt/Fiedler Case

Victim: Enrique Camarena
Location: Mexico
Crime: Homicide/Cover-up

Evidence: Rocks from the body recovered during a MFJP raid on a Michoacan farm were shown through a study of Mexican volcanic rocks to have come from near Guadalajara. This information led to the finding of the original burial site and thus exposed the cover-up.
(Thanks to Ray Murray)
Rocky Scotch Whiskey Case

- When a Canadian importer opened some cases of expensive scotch whiskey he found that the whiskey had been replaced with limestone rocks.
- The rocks were traced to their point of origin in central England in a specific limestone quarry.
- A specific worker for liquor company had access to the quarry and had been seen taking rocks home.

(Thanks to Ray Murray)
Many building materials are made of or derived from geological materials:

- Stone, gravel, sand, slate, etc.
- Roofing granules
- Bricks, roof and floor tiles
- Cement, concrete, cinder blocks
- Wallboard, plaster
- Glass
- Cleansing powders, abrasives
- Insulation
Brick Making

Bricks have been made since the beginning of civilization.

The basic process is to:

* Find a suitable clay
* Press it into a brick mold
* Dry the bricks
* Fire the bricks to 1000°C
Cement Manufacture

- Cement is made by mixing limestone, sand, clay, and sometimes coal fly ash, with minor amounts of iron and aluminum compounds.
- The mixture is fired in a kiln to ~1500°C where the limestone is calcined into lime which reacts with the silicates to form di- and tri-calcium silicates, and tri- and tetra calcium aluminates.
Concrete Manufacture

- Concrete is made by mixing cement with sand, gravel, and water.
- This cement slurry coats the aggregate and hardens into a solid mix.
Plaster Manufacture

- Plaster is made by calcining gypsum $\text{CaSO}_4 \cdot 2\text{H}_2\text{O}$ at $\sim 150^\circ\text{C}$ to its hemi-hydrate $\text{CaSO}_4 \cdot \frac{1}{2}\text{H}_2\text{O}$

- This is an ancient process again going back to the beginning of civilization
Plaster Manufacture

- After the great fire of London in 1666 the king of France ordered that all of the wooden structures be coated with plaster to make them fire resistant.
- In modern processing various additives, filler, conditioners are added with the result that most plasters can be differentiated from each other.
Today ~88% of the gypsum mined is used in the manufacture of wallboard (39 millions tons/year).
Glass Manufacture

- Glass making again goes back into ancient times

- Crushed recycled glass, silica sand, soda ash (Na$_2$CO$_3$), limestone, and various additives are melted together at temperatures from 1250°C to 1550°C

- The molten glass is then rolled, blown, molded into glass products.

Ancient Roman Glass
Abrasives

- Abrasive materials are used in a variety of ways from sanding wood to polishing diamonds to cutting steel.

- While diamonds are the hardest abrasives, corundum, garnet, SiC, cubic boron nitride, Zi/Al alloys, pumice, and colloidal silica as well as other materials are also used.
The Role of the Forensic Geologist

• All of these materials have textural and compositional properties well suited to petrographic, chemical, isotopic, x-ray diffraction (except for glass), and spectral analytical methods familiar to geologists.

• In fact, it can be argued that the geologist is the ideal scientist to do such a variety of analysis.
In an attempted rape case the rescuer of the victim was followed by the suspect and beaten with an aluminum baseball bat and had the windows of his car smashed out.

Glass adhering to the suspect's bat matched the glass from the rescuer's car.

(Murray, 2004, page 101)
In a classic case a home owner who had insulated his attic with a variety of glass wool insulation bought at various sales.

An intruder who entered the home through the attic was found to have a similar variety of insulation particles on his clothes tying him to the scene.

(Murray, 2004, page 103)
In a diplomatic case the neutral Dutch were accused by the British in WW1 of letting the Germans ship sand and gravel for the construction of military sites through their country.

A British geologist, Capt. W. B. R. King took 39 samples of concrete aggregate from captured German pillboxes and found that 32 of them came from German and not Dutch sources.

(Murray, 2004, page 107)
In a Japanese case, an arsonist tried to conceal his crime by poking a small hole in the outside wall of a building and injecting fuel into the hole. Investigators found a suspect’s screwdriver with fragments of paint and gypsum, that matched the stucco on the house. (Murray, 2004, page 109)
In a case in Israel a safe cracker stole a safe tried to cut into it using a carbide grinding wheel with two different abrasive discs.

Investigators recovered the grinder and were able to match the grinder to the grinding marks on the safe as well as matching metal particles found on the suspects’ shirts to the grinding debris at the scene.

(Zeichner et al., 1993, J. For. Sci., p. 1516-1522)
Acknowledgements

Many thanks to Jack Crelling (retired), Southern Illinois University, who’s classroom PowerPoint presentations form the basis of much of this presentation.