1) Find the equation of the line passing through the two points:
 a) \((2, -3)\) and \((4, 7)\)
 b) \((1, 2)\) and \((6, -2)\)

2) Find the equation of the line passing through the point \((4, -3)\) parallel to the line \(y = -\frac{1}{2}x + 6\).

3) Find the equation of the line passing through the point \((-2, 2)\) parallel to the line \(y + 3x = 6\).

4) Find the equation of the line passing through the point \((-2, 5)\) perpendicular to the line \(y = -\frac{1}{3}x - 10\).

5) Find the equation of the line passing through the point \((2, 3)\) perpendicular to the line \(2y - x = 3\).

6) Graph the functions \(f(x) = 2x + 4\), and \(f(x) = 2x + 3\) indicating appropriate scales and labeling intercepts. Now graph \(4y + 8x = 16\) and \(4y - 2x = 8\) labeling intercepts.
7) What are the line of symmetry and vertex of the parabola \(y = x^2 - 2x - 3 \). What are the intercepts? Graph the parabola.

8) Graph the function \(f(x) = x^2 + 2x - 15 \) indicating appropriate scales and labeling important points.

9) Graph the parabola \(y = -x^2 + 4x + 5 \) indicating appropriate scales and labeling important points.