Problem 1. (15 pts.)
Solve the following initial value problem: \(y' + y = x, \ y(0) = 1 \).

This is a linear d.e., and it is already in standard form. 5 pts.

Find the integrating factor: \(\rho(x) = e^{\int 1 \, dx} = e^x \). 4 pts.

Multiply both sides of the standard form of the d.e. by the integrating factor:
\(e^x [y' + y] = xe^x \). 1 pt.

Use the Product Rule backwards to rewrite the d.e. as
\(\frac{d}{dx} [e^x y] = xe^x \). 2 pts.

Integrating both sides, we obtain
\(e^x y = \int xe^x \, dx = (x - 1)e^x + c \) using formula 46 from the Table of Integrals. 2 pts.

\(y(0) = 1 \Rightarrow e^0(1) = (0 - 1)e^0 + c \Rightarrow c = 2 \). 1 pt.

Therefore, \(e^x y = (x - 1)e^x + 2 \), so
\[y = x - 1 + 2e^{-x}. \]

Problem 2. (10 pts.)
Solve the following initial value problem:
\(xy' + y^2 = xy^2, \ y(1) = 1 \)

\(xy' + y^2 = xy^2 \Rightarrow y' = \frac{2xy^2 - y^2}{x} = y^2 \left(\frac{2x - 1}{x} \right) \). This is a separable d.e. 3 pts.

Multiply by \(dx \) and divide by \(y^2 \):
\(\frac{dy}{y^2} = \left(\frac{2x - 1}{x} \right) \, dx \Rightarrow \int y^{-2} \, dy = \int \left(2 - \frac{1}{x} \right) \, dx \Rightarrow y^{-1} = 2x - \ln(x) + c \). 4 pts.

\(y(1) = 1 \Rightarrow -1^{-1} = 2(1) - \ln(1) + c \Rightarrow c = -3 \). 1 pt.

Therefore, \(-y^{-1} = 2x - \ln(x) - 3 \Rightarrow y^{-1} = -2x + \ln(x) + 3 \Rightarrow y = [3 + \ln(x) - 2x]^{-1} \)

Problem 3. (10 pts.)
A tank initially contains 100 grams of a radioactive substance. After 1 hour there are 90 grams of the substance remaining in the tank. What is the half-life of the substance? In other words, when will there be 50 grams of the substance remaining in the tank?

Let \(t \) denote time (in hours) and let \(x \) denote the amount (in grams) of radioactive substance in the tank. Then \(x = x_0 e^{-kt} \) where \(x_0 = x(0) \). 5 pts.

\(x_0 = 100 \) so \(x = 100e^{-kt} \). 1 pt.

\(x(1) = 90 \Rightarrow 90 = 100e^{-k(1)} \Rightarrow 0.9 = e^{-k} \Rightarrow \ln(0.9) = \ln(e^{-k}) = -k \Rightarrow k = -\ln(0.9) \). 2 pts.

Let \(\tau \) denote the half-life. \(x(\tau) = 50 \Rightarrow 50 = 100e^{-k\tau} \Rightarrow 0.5 = e^{-k\tau} \Rightarrow \ln(0.5) = \ln(e^{-k\tau}) = -k\tau \Rightarrow \tau = -\frac{\ln(0.5)}{\ln(0.9)} \approx 6.6 \) hours. 2 pts.
Problem 4. (10 pts.) Find the general solution to each of the following linear homogeneous differential equations:

a. (5 pts.) \(y^{(4)} - 4y''' + 3y'' = 0\)

The characteristic equation is \(r^4 - 4r^3 + 3r^2 = 0 \Rightarrow r^2 (r^2 - 4r + 3) = 0 \Rightarrow r^2(r - 1)(r - 3) = 0 \Rightarrow r = 0, 1, 2\) \(2 \text{ pts.}\)

Therefore, \(y = c_1e^{0x} + c_2xe^{0x} + c_3e^{1x} + c_4e^{3x}\), or \(y = c_1 + c_2x + c_3e^x + c_4e^{3x}\) \(3 \text{ pts.}\)

b. (5 pts.) \(y'''' - 4y'' + 4y' = 0\)

The characteristic equation is \(r^3 - 4r^2 + 4r = 0 \Rightarrow r(r - 2)^2 = 0 \Rightarrow r = 0, 2\) \(2 \text{ pts.}\)

Therefore, \(y = c_1e^{0x} + c_2e^{2x} + c_3xe^{2x}\), or \(y = c_1 + c_2e^{2x} + c_3xe^{2x}\) \(3 \text{ pts.}\)

Problem 5. (15 pts.)

Solve the following initial value problem: \(y'' + y' - 2y = 8x^2\), \(y(0) = 4\), \(y'(0) = 0\).

Step 1. Find \(y_c\) by solving the d.e. \(y'' + y' - 2y = 0\).

Characteristic equation: \(r^2 + r - 2 = 0 \Rightarrow (r + 2)(r - 1) = 0 \Rightarrow r = -2, 1\).

Therefore, \(y_c = c_1e^{-2x} + c_2e^{x}\). \(3 \text{ pts.}\)

Step 2. Find \(y_p\). You can use either of the following methods.

Method 1: Undetermined Coefficients. The nonhomogeneous term in the d.e is \(8x^2\), a polynomial of degree 2. We should therefore guess that \(y_p\) is a polynomial of degree 2: \(y_p = Ax^2 + Bx + C\). No term in this guess duplicates a term in \(y_c\), so there is no need to modify this guess. \(3 \text{ pts.}\)

\(y = Ax^2 + Bx + C \Rightarrow y' = 2Ax + B \Rightarrow y'' = 2A\).

Therefore, the left side of the d.e. is \(y'' + y' - 2y = 2A + [2Ax + B] - 2 [Ax^2 + Bx + C] = -2Ax^2 + (2A - 4B)x + (2A + B - 2C)\).

We want this to equal the nonhomogeneous term \(8x^2\):

\[-2Ax^2 + (2A - 4B)x + (2A + B - 2C) = 8x^2 \Rightarrow -2A = 8, 2A - 4B = 0, 2A + B - 2C = 0\]

\(A = -4, B = -4, C = -6\). Thus, \(y_p = -4x^2 - 4x - 6\). \(6 \text{ pts.}\)

Method 2: Variation of Parameters. From \(y_c\) we obtain two independent solutions of the homogeneous d.e: \(y_1 = e^{-2x}\) and \(y_2 = e^{x}\). \(1 \text{ pt.}\)

The Wronskian is given by

\[W(x) = \begin{vmatrix} y_1 & y_2 \\ y_1' & y_2' \end{vmatrix} = \begin{vmatrix} e^{-2x} & e^x \\ -2e^{-2x} & e^x \end{vmatrix} = e^{-2x}(e^x) - (-2e^{-2x}) = 3e^{-x}. \]

Therefore, \(y_p = u_1y_1 + u_2y_2\), \(y_p = \left(-\frac{1}{3} (4x^2 - 4x + 2) e^{2x} \right) e^{-x} + \left(-\frac{8}{3} (x^2 + 2x + 2) e^{-x} \right) e^x = -4x^2 - 4x - 6\) \(1 \text{ pt.}\)

Step 3. \(y = y_c + y_p\), so \(y = c_1e^{-2x} + c_2e^{x} - 4x^2 - 4x - 6\). \(1 \text{ pt.}\)

Step 4. Use the initial conditions to determine the values of \(c_1\) and \(c_2\). \(y = c_1e^{-2x} + c_2e^{x} - 4x^2 - 4x - 6 \Rightarrow y' = -2c_1e^{-2x} + c_2e^{x} - 8x - 4\)
Problem 6. (15 points)

Consider a forced, damped mass-spring system with mass 1 kg, damping coefficient 2 Ns/m, spring constant 9 N/m, and an external force \(F_{\text{ext}}(t) = 12 \cos(3t) \)N. Find the steady periodic solution (steady-state solution) for this system.

The d.e. modeling this system is \(m \ddot{x} + c \dot{x} + kx = F_{\text{ext}}(t) \), or \(\ddot{x} + 2\dot{x} + 9x = 12 \cos(3t) \). The steady-state (steady periodic) solution \(x_{sp} \) is the particular solution \(x_p \). You can find \(x_p \) using either the Method of Undetermined Coefficients the Method of Variation of Parameters. Here we use the Method of Undetermined Coefficients to save the work of finding \(x_c \).

Since the nonhomogeneous term in the d.e. \(12 \cos(3t) \) is a cosine, we guess that \(x_p \) is the sum of a cosine and sine with the same frequency: \(x_p = A \cos(3t) + B \sin(3t) \). The complementary solution \(x_c \) will contain decaying exponential terms because of the damping term in the d.e., so we know that no term in our guess for \(x_p \) duplicates a term in \(x_c \). Therefore, there is no need to modify the guess. \(x = A \cos(3t) + B \sin(3t) \Rightarrow \dot{x} = -3A \sin(3t) + 3B \cos(3t) \Rightarrow x'' = -9A \cos(3t) - 9B \sin(3t) \).

Therefore, the left side of the d.e. is \(x'' + 2x' + 9x = -9A \cos(3t) - 9B \sin(3t) + 2 [-3A \sin(3t) + 3B \cos(3t)] + 9 [A \cos(3t) + B \sin(3t)] = 6B \cos(3t) - 6A \sin(3t) \). We want this to equal the nonhomogeneous term \(12 \cos(3t) \), so \(6B = 12 \) and \(-6A = 0 \Rightarrow A = 0 \) and \(B = 2 \). Therefore, \(x_{sp} = 2 \sin(3t) \).

Problem 7. (10 points)

a. (3 pts.) Find the Laplace transform of \(e^{-t} \cos(2t) \)

Using the Laplace transform table entry for \(\mathcal{L} \{ e^{at} \cos(bt) \} \) we have \(\mathcal{L} \{ e^{-t} \cos(2t) \} = \frac{s + 1}{(s + 1)^2 + 4} \)

b. (7 pts.) Find the inverse Laplace transform of \(\frac{s + 1}{s^2 - 3s + 2} \).

Use a partial fraction decomposition: \(\frac{s + 1}{s^2 - 3s + 2} = \frac{s + 1}{(s-1)(s-2)} = \frac{A}{s-1} + \frac{B}{s-2} \)

\((s-1)(s-2) \left[\frac{s + 1}{(s-1)(s-2)} \right] = (s-1)(s-2) \left[\frac{A}{s-1} + \frac{B}{s-2} \right] \Rightarrow s + 1 = A(s-2) + B(s-1) = (A + B)s + (-2A - B) \Rightarrow A + B = 1, -2A - B = 1 \Rightarrow A = -2, B = 3 \)

Therefore, \(\mathcal{L}^{-1} \left\{ \frac{s + 1}{s^2 - 3s + 2} \right\} = \mathcal{L}^{-1} \left\{ \frac{-2}{s-1} + \frac{3}{s-2} \right\} = -2 \mathcal{L}^{-1} \left\{ \frac{1}{s-1} \right\} + 3 \mathcal{L}^{-1} \left\{ \frac{1}{s-2} \right\} = -2e^t + 3e^{2t} \)

Problem 8. (15 points)

Use the Laplace Transform to solve the following IVP: \(x'' + x = 2e^t, \ x(0) = 1, \ x'(0) = 0 \). Solutions not using the Laplace transform method will not receive any credit.
\[x'' + x = 2e^t \Rightarrow \mathcal{L}\{x'' + x\} = \mathcal{L}\{2e^t\} \Rightarrow \mathcal{L}\{x''\} - \mathcal{L}\{x'\} = 2\mathcal{L}\{e^t\} = \frac{2}{s-1} \quad \text{3 pts.} \]

\[\Rightarrow \left[s^2\mathcal{L}\{x\} - sx(0) - x'(0) \right] + \mathcal{L}\{x\} = \frac{2}{s-1} \quad \text{3 pts.} \]

\[\left[s^2\mathcal{L}\{x\} - s \cdot 1 - 0 \right] + \mathcal{L}\{x\} = \frac{2}{s-1} \Rightarrow \left(s^2 + 1\right) \mathcal{L}\{x\} = \frac{2}{s-1} + s = \frac{2 + s^2 - s}{s-1} = \frac{s^2 - s + 2}{s-1} \Rightarrow \]

\[\mathcal{L}\{x\} = \frac{s^2 - s + 2}{(s-1)(s^2 + 1)} \quad \text{1 pt.} \Rightarrow x = \mathcal{L}^{-1}\left\{ \frac{s^2 - s + 2}{(s-1)(s^2 + 1)} \right\}. \]

Use a partial fraction decomposition:

\[\frac{s^2 - s + 2}{(s-1)(s^2 + 1)} = \frac{A}{s-1} + \frac{Bs + C}{s^2 + 1} \]

\[(s-1) \left(s^2 + 1\right) \left[\frac{s^2 - s + 2}{(s-1)(s^2 + 1)} \right] = (s-1) \left(s^2 + 1\right) \left[\frac{A}{s-1} + \frac{Bs + C}{s^2 + 1} \right] \Rightarrow \]

\[s^2 - s + 2 = A \left(s^2 + 1\right) + (Bs + C) (s-1) = As^2 + A + Bs^2 + Cs - Bs - C = (A + B)s^2 + (C - B)s + (A - C) \]

\[\Rightarrow A + B = 1, \quad C - B = -1, \quad A - C = 2 \Rightarrow A = 1, \quad B = 0, \quad C = -1. \quad \text{6 pts.} \]

Therefore, \[x = \mathcal{L}^{-1}\left\{ \frac{1}{s-1} + \frac{0s - 1}{s^2 + 1} \right\} = \mathcal{L}^{-1}\left\{ \frac{1}{s-1} \right\} - \mathcal{L}^{-1}\left\{ \frac{1}{s^2 + 1} \right\} \Rightarrow x = e^t - \sin(t) \quad \text{2 pts.} \]