4.4 The DC-motor speed control in Fig. 4.38 is described by the differential equation
\[\dot{y} + 60y = 600v_a - 1500w, \]
where \(y \) is the motor speed, \(v_a \) is the armature voltage, and \(w \) is the load torque. Assume the armature voltage is computed using the PI control law
\[v_a = \left(k_p e + k_i \int_0^t e dt \right), \]
where \(e = r - y \).

(a) Compute the transfer function from \(W \) to \(Y \) as a function of \(k_p \) and \(k_i \).

(b) Compute values for \(k_p \) and \(k_i \) so that the characteristic equation of the closed-loop system will have roots at \(-60 \pm 60j\).

\[\begin{align*}
W & \quad 1500 \\
\Sigma & \quad e^+ \\
D & \quad v_a \\
\Sigma & \quad 600 \\
\frac{1}{s + 60} & \quad Y \\
\end{align*} \]

Figure 4.38: Unity feedback system with prefilter for Problem 4.4

Solution:

(a) Transfer function: Set \(R(s) = 0 \), then \(E(s) = -Y(s) \)
\[Y(s) = \frac{-600 \left(k_p + \frac{k_i}{s} \right) Y(s) - 1500W(s)}{(s + 60)} \]
\[Y(s) = \frac{-1500s}{s^2 + 60(1 + 10k_p)s + 600k_i} \]

(b) For roots at \(s_{1,2} = -60 \pm j60 \),
\[\begin{align*}
\{s_1 + s_2 &= -60(1 + 10k_p) = -120 \\
s_1s_2 &= 7200 = 600k_i \}
\end{align*} \]
\[\Rightarrow \quad k_p = 0.1, \quad k_i = 12 \]

4.26 Consider the system shown in Fig. 4.49 with PI control.

(a) Determine the transfer function from \(R \) to \(Y \).

(b) Determine the transfer function from \(W \) to \(Y \).

(c) Use Routh’s criteria to find the range of \((k_p, k_i) \) for which the system is stable.

(d*) Pick \(k_p \) and \(k_i \) so that the closed-loop system is stable. What is the steady state error when \(r(t) = 1(t) \) and \(w(t) = 1(t) \)?
Solution:

\[\frac{Y(s)}{R(s)} = \frac{10 + \frac{k_p s + k_i}{s^2 + s + 20}}{1 + \frac{10 + \frac{k_p s + k_i}{s^2 + s + 20}}{s^3 + s^2 + 10(2 + k_p)s + 10k_i}} = \frac{10(k_p s + k_i)}{s^3 + s^2 + 10(2 + k_p)s + 10k_i} \]

\[\frac{Y(s)}{W(s)} = \frac{\frac{s^2 + s + 20}{10}}{1 + \frac{10 + \frac{k_p s + k_i}{s^2 + s + 20}}{s^3 + s^2 + 10(2 + k_p)s + 10k_i}} = \frac{10s}{s^3 + s^2 + 10(2 + k_p)s + 10k_i} \]

(c) The characteristic equation is \(s^3 + s^2 + 10(2 + k_p)s + 10k_i = 0 \). The Routh's array is

\[
\begin{array}{ccc}
 s^3 & 1 & 10(2 + k_p) \\
 s^2 & 1 & 10k_i \\
 s^1 & 10(2 + k_p - k_i) \\
 s^0 & 10k_i \\
\end{array}
\]

For stability we must have \(k_i > 0 \) and \(k_p > k_i - 2 \).

\(\text{P}^* \) Choose \(k_i = 1, \ k_p = 1 \), The transfer functions become,

\[\frac{Y(s)}{R(s)} = \frac{10s + 10}{s^3 + s^2 + 30s + 10}, \quad \frac{Y(s)}{W(s)} = \frac{10s}{s^3 + s^2 + 30s + 10} \]

Since \(\frac{Y(0)}{R(0)} = 1, \ \frac{Y(s)}{W(s)} = 0 \), the steady state error is 0.

As a verification, let \(r(t) = 1(t) \) and \(w(t) = 1(t) \), using matlab, we can get the following response,