Problem 2.17 At an operating frequency of 300 MHz, a lossless 50-Ω air-spaced transmission line 2.5 m in length is terminated with an impedance $Z_L = (40 + j20)$ Ω. Find the input impedance.

Solution: Given a lossless transmission line, $Z_0 = 50$ Ω, $f = 300$ MHz, $l = 2.5$ m, and $Z_L = (40 + j20)$ Ω. Since the line is air filled, $u_p = c$ and therefore, from Eq. (2.48),

$$\beta = \frac{\omega}{u_p} = \frac{2\pi \times 300 \times 10^6}{3 \times 10^8} = 2\pi \text{ rad/m}.$$

Since the line is lossless, Eq. (2.79) is valid:

$$Z_{in} = Z_0 \left(\frac{Z_L + jZ_0 \tan \beta l}{Z_0 + jZ_L \tan \beta l} \right) = 50 \left[\frac{(40 + j20) + j50 \tan (2\pi \text{ rad/m} \times 2.5 \text{ m})}{50 + j(40 + j20) \tan (2\pi \text{ rad/m} \times 2.5 \text{ m})} \right]$$

$$= 50 \left[(40 + j20) + j50 \times 0 \right] 50 + j(40 + j20) \times 0$$

$$= (40 + j20) \Omega.$$
Problem 2.37 On a lossless transmission line terminated in a load $Z_L = 100 \, \Omega$, the standing-wave ratio was measured to be 2.5. Use the Smith chart to find the two possible values of Z_0.

Solution: Refer to Fig. P2.52. $S = 2.5$ is at point $L1$ and the constant SWR circle is shown. z_L is real at only two places on the SWR circle, at $L1$, where $z_L = S = 2.5$, and $L2$, where $z_L = 1/S = 0.4$. so $Z_{01} = Z_L/z_{L1} = 100 \, \Omega / 2.5 = 40 \, \Omega$ and $Z_{02} = Z_L/z_{L2} = 100 \, \Omega / 0.4 = 250 \, \Omega$.

Figure P2.37: Solution of Problem 2.37.
Problem 2.38 A lossless 50-Ω transmission line is terminated in a load with $Z_L = (50 + j25) \, \Omega$. Use the Smith chart to find the following:

(a) The reflection coefficient Γ.

(b) The standing-wave ratio.

(c) The input impedance at 0.35λ from the load.

(d) The input admittance at 0.35λ from the load.

(e) The shortest line length for which the input impedance is purely resistive.

(f) The position of the first voltage maximum from the load.
Solution: Refer to Fig. P2.53. The normalized impedance

\[z_L = \frac{(50 + j25) \, \Omega}{50 \, \Omega} = 1 + j0.5 \]

is at point Z-LOAD.

(a) \(\Gamma = 0.24e^{j76.0^\circ} \) The angle of the reflection coefficient is read off of that scale at the point \(\theta_r \).

(b) At the point SWR: \(S = 1.64 \).

(c) \(Z_{\text{in}} \) is 0.350\(\lambda \) from the load, which is at 0.144\(\lambda \) on the wavelengths to generator scale. So point Z-IN is at 0.144\(\lambda \) + 0.350\(\lambda \) = 0.494\(\lambda \) on the WTG scale. At point Z-IN:

\[Z_{\text{in}} = z_{\text{in}}Z_0 = (0.61 - j0.022) \times 50 \, \Omega = (30.5 - j1.09) \, \Omega. \]
(d) At the point on the SWR circle opposite $Z-IN$,

$$
Y_{in} = \frac{y_{in}}{Z_0} = \frac{(1.64 + j0.06)}{50 \, \Omega} = (32.7 + j1.17) \text{ mS}.
$$

(e) Traveling from the point $Z-LOAD$ in the direction of the generator (clockwise), the SWR circle crosses the $x_L = 0$ line first at the point SWR. To travel from $Z-LOAD$ to SWR one must travel $0.25\lambda - 0.144\lambda = 0.106\lambda$. (Readings are on the wavelengths to generator scale.) So the shortest line length would be 0.106λ.

(f) The voltage max occurs at point SWR. From the previous part, this occurs at $z = -0.106\lambda$.