
 49

CHAPTER 4

BOOLEAN FUNCTIONS AND DIGITAL CIRCUITS

4.1 Canonical Forms

4.1.1 Canonical Sum-of-Products

 In Chapter 3, truth tables and Boolean functions are used to describe the functions

of digital circuits. Truth tables can be constructed easily from Boolean functions. In this

section, the conversion of a truth table to a Boolean function in standard or canonical

forms is introduced.

 A function F of two variables is described by a truth table in Table 4.1(a). When

the function is implemented as a digital circuit, the variables are the inputs and the

function value is the output. Table 4.1(a) is similar to that of an AND operation. Among

the four combinations of values for A, B, only one produces a value of 1 for F. But this

combination is not 11. To transform this table into another table so that F is equal to 1

when the combination of values is 11, the value for B is complemented such that X = B’,

which is shown in Table 4.2(b). Thus

 F = AX = AB’

 Table 4.1 (a) A truth table for two variables. (b) Conversion of

 (a) to a table for AND.

(a) (b)

A B F A X F

0 0 0 0 1 0

0 1 0 X = B’ 0 0 0

1 0 1 1 1 1

1 1 0 1 0 0

 Table 4.2 is an example of three variables. To convert Table 4.2(a) to a truth table

for a 3-variable AND operation, both A and B are complemented and replaced with X

and Y in Table 4.2(b).

 F = XYC = A’B’C

 From the two examples, it is seen that the product can actually be written from the

values of the variables that produce a value of 1 for F without any transformation. Each

variable appears once in the product either in true form or complemented form. The

 50

variable is in true form if its value is 1. It is in complemented form if the value is 0. A

product has n literals if F is a function of n variables. Such a product is called a canonical

product or standard product. When more than one input combination in a truth table

produces a function value of 1, each combination produces one canonical product and the

corresponding Boolean function for the truth table is a sum of all such products.

 Table 4.2 (a) A truth table for three variables. (b) Conversion of

 (a) to a table in comparison with AND.

(a) (b)

A B C F X Y C F

0 0 0 0 1 1 0 0

0 0 1 1 1 1 1 1

0 1 0 0 1 0 0 0

0 1 1 0 X = A’, Y = B’ 1 0 1 0

1 0 0 0 0 1 0 0

1 0 1 0 0 1 1 0

1 1 0 0 0 0 0 0

1 1 1 0 0 0 1 0

Table 4.3 Truth table for prime

 number detector.

Figure 4.1 Block diagram for a

 prime number detector.

A B C F(A,B,C)

0 0 0 0

0 0 1 1

0 1 0 1

0 1 1 1

1 0 0 0

1 0 1 1

1 1 0 0

1 1 1 1

 Figure 4.1 is the block diagram of a circuit called a prime number detector. The

input combination is a binary number ABC. If ABC is a prime number or decimal 1, the

output F is equal to 1; otherwise F = 0. The truth table for the prime number detector is

given in Table 4.3. There are five input states that produce a function value of 1. These

A

B

C

Prime

number

detector

F

 51

input states are 001, 010, 011, 101, and 111. Their respective canonical products are

A’B’C, A’BC’, A’BC, AB’C, and ABC.

Thus F(A,B,C) = A’B’C + A’BC’ + A’BC + AB’C + ABC

The sum-of-products expression in which all products are canonical is called a canonical

or standard sum-of-products expression.

 Table 4.4 List of canonical products for the prime

 number detector.

 A B C Canonical

product

Minterm
Decimal

Binary

1 0 0 1 A’ B’ C m1

2 0 1 0 A’ B C’ m2

3 0 1 1 A’ B C m3

5 1 0 1 A B’ C m5

7 1 1 1 A B C m7

 Since each canonical product is derived from a combination of input values, it

can be easily represented by these input values using their decimal equivalents. If the

decimal equivalent of this combination of input values is i, its corresponding canonical

product is called minterm i, or mi. "i" is a minterm number. For instance, AB’C is

obtained from ABC = 101, which is equal to decimal 5, AB’C can be represented as m5.

The canonical products and their corresponding minterms and input values in both binary

and decimal are listed in Table 4.4. The canonical sum-of-products expression can be re-

written as

 F(A,B,C) = m1 + m2 + m3 + m5 + m7

The expression is called a sum-of-minterms. It can further be simplified to

 F(A,B,C) = m(1, 2, 3, 5, 7)

Such a representation of a Boolean function is called a minterm list representation.

4.1.2 Canonical Product-of-Sums Expressions

 This section shows how a product-of-sums expression can be derived from the

combinations of input values that produce a function value of 0. Table 4.5 is a truth table

for F’, the complement of the function in Table 4.3. There are three minterms for F’. The

minterms for F’ come from those combinations of input values that produce a function

 52

value of 1. A sum-of-minterms expression is readily written from the table for F’. The

purpose is to derive an expression for F, not F’. Therefore, the sum-of-minterms has to be

complemented.

 Table 4.5 Truth table for prime number detector.

A B C F’(A,B,C) Minterm for

F’

0 0 0 1 m0

0 0 1 0

0 1 0 0

0 1 1 0

1 0 0 1 m4

1 0 1 0

1 1 0 1 m6

1 1 1 0

 As shown in the following derivation, taking the complement of F’ results in a

product of m0’, m4’, and m6’ for F. Each of the minterms is replaced with a canonical

product. The complement of a canonical product becomes a sum. It is called a canonical

or standard sum because each variable, either in true form or complemented form,

appears once. A product-of-sums expression is said to be standard or canonical if all the

sums are standard or canonical.

 F’(A,B,C) = m0 + m4 + m6

 F(A,B,C) = (m0 + m4 + m6)’

 = m0’ m4’ m6’

 = (A’B’C’)’ (AB’C’)’ (ABC’)’

 = (A + B + C) (A’ + B + C) (A’ + B’ + C)

 = M0 M4 M6

 = M(0, 4, 6)

 53

 From the derivation, it is seen that a canonical sum can be obtained from a

combination of input values that produces a function value of 0. A variable is in true form

if its input value is equal to 0. On the other hand, the complemented form of a variable

should be adopted if its value is equal to 1. Similar to minterms, a simpler notation can be

used for a canonical sum. If a canonical sum is found from a combination of input values

with a decimal equivalent of i, the canonical sum is called “maxterm i”, or Mi. Therefore,

a canonical product-of-sums can be expressed as a product-of-maxterms. In the last step

of the derivation, a product-of-maxterms is shortened to a list of maxterm numbers. It is

called a maxterm list representation.

 Example 4.1

 F(A,B,C,D) = m(1, 2, 4, 5, 6, 7, 8, 10, 12, 13, 15)

 The function value for an input combination can only be either 1 or 0, not both.

Therefore, a decimal number for a binary input combination is either a minterm number

or maxterm number, not both. Also the range of minterm and maxterm numbers for an n-

variable function is from 0 to 2
n

–1. From the minterm list representation given for F, the

maxterm list representation is

 F(A,B,C,D) = M(0, 3, 9, 11, 14)

The canonical sum-of-products and canonical product-of-sums expressions are derived

below.

 Decimal 1 2 4 5 6 7

 Binary 0 0 0 1 0 0 1 0 0 1 0 0 0 1 0 1 0 1 1 0 0 1 1 1

F(A,B,C,D) = A’B’C’D + A’B’CD’ + A’BC’D’ + A’BC’D + A’BCD’ + A’BCD

 + AB’C’D’ + AB’CD’ + ABC’D’ + ABC’D + ABCD

 Binary 1 0 0 0 1 0 1 0 1 1 0 0 1 1 0 1 1 1 1 1

 Decimal 8 10 12 13 15

 Decimal 0 3 9 11 14

 Binary 0 0 0 0 0 0 1 1 1 0 0 1 1 0 1 1 1 1 1 0

F(A,B,C,D) = (A+B+C+D) (A+B+C’+D’) (A’+B+C+D’) (A’+B+C’+D’)(A’+B’+C’+D)

 54

 Note that if a decimal minterm/maxterm number is the equivalent of a binary input

combination of ABCD if F is expressed as a function of A, B, C, D. The decimal

minterm/maxterm number may change if the order of the variables is changed. For

example, if 7 is a minterm number for the input combination ABCD = 0111. By changing

the order of the variables to D, C, B, A but without changing the values of the variables, it

becomes m14 because DCBA = 1110. Thus the minterm list representation for the

function in Example 4.1 is changed to the following if the function F is a function of A, C,

B, D.

 F(A,C,B,D) = m(1, 4, 2, 3, 6, 7, 8, 12, 10, 11, 15)

4.1.3 Conversion to Canonical Forms

 To convert a Boolean expression to a canonical sum-of-products expression, it is

first changed to a sum-of-product expression and then expanded to the canonical form.

An example is used to demonstrate the conversion.

 Example 4.2

 Find the minterm list representation for

 F(A,B,C,D) = A’B’C + BC’ + AC’D + ABCD’

Since every variable appears once in a canonical product, a product with a missing

variable x0 may be ANDed with (x0’ + x0) and then multiplied out to two canonical

products. For a product with m missing variables x0, x1, …, xm-1, the product is ANDed

with (x0’ + x0) (x1’ + x1) …… (x m-1’ + xm-1) and multiplied out to 2
m

 canonical products.

 A’B’C = A’B’C(D’ + D) = A’B’CD’ + A’B’CD = m2 + m3

 AC’D = AC’D(B’ + B) = AB’C’D + ABC’D = m9+ m13

 BC’ = BC’(A’ + A)(D’ + D) = A’BC’D’ + A’BC’D + ABC’D’ + ABC’D

 = m4 + m5 + m12 + m13

 ABCD’ = m14

 The minterm numbers can also be found directly from a method shown in Table

4.6 without using Boolean algebra. For a product with (n-m) literals, assign a value of 0

to a literal in complemented form and a value of 1 to a literal in true form. As for the m

missing variables, fill in all the possible combinations of values. There are 2
m

combinations for m missing variables. Values for the missing variables in a product are

placed within a rectangle in Table 4.6.

 55

 F(A,B,C,D) = (m2 + m3) + (m9+ m13) + (m4 + m5 + m12 + m13) + m14

 = m(2, 3, 4, 5, 9, 12, 13, 14)

 Similar approach can be used to obtain the canonical product-of-sums or product-of-

maxterms for a Boolean expression. The expression should start with a product-of-sums

expression.

 Table 4.6 Conversion of products to minterms.

Product

Variable

A B C D

Minterm

number

A B C D’ 1 1 1 0

14

A’ B’ C
0 0 1 0 2

0 0 1 1 3

A C’ D
1 0 0 1 9

1 1 0 1 13

B C’

0 1 0 0 4

0 1 0 1 5

1 1 0 0 12

1 1 0 1 13

 Example 4.3

 F(A,B,C,D) = (B’ + C + D) (A + B’) (A’ + D’)

 To find the maxterm list representation of the above expression, the approach in

Example 4.2 can be used to find the minterm numbers by first multiplying out the

product-of-sums to a sum-of products expression.

 F(A,B,C,D) = (B’ + C + D) (A + B’) (A’ + D’)

 = (B’ + C + D) (AD’ + A’B’)

 = AB’D’ + ACD’ + A’B’ + A’B’C + A’B’D

 = AB’D’ + ACD’ + A’B’

The respective minterms for the three products are (m8 + m10), (m10 + m14), and (m0 + m1

+ m2 + m3). The minterm list representation is

 F(A,B,C,D) = m(0, 1, 2, 3, 8, 10, 14)

or F(A,B,C,D) = M(4, 5, 6, 7, 9, 11, 12, 13, 15)

 56

 The maxterm list representation can also be obtained directly from the product-of-

sums expression without getting first the minterms. A sum with m missing variables is

equivalent to the product of 2
m

 canonical sums or maxterms.

 B’ + C + D = A’A + B’ + C + D = (A’ + B’ + C + D) (A + B’ + C + D) = M12 M4

 A + B’ = A + B’ + C’C + D’D = (A + B’ + C’ + D’D) (A + B’ + C + D’D)

 = (A + B’ + C’ + D’)(A + B’ + C’ + D)(A + B’ + C + D’)(A + B’ + C + D)

 = M7 M6 M5 M4

 A’ + D’ = A + B’B + C’C + D’ = (A’ + B’ + C’C + D’) (A’ + B + C’C + D’)

 = (A’ + B’ + C’ + D’)(A’ + B’ + C + D’)(A’ + B + C’ + D’)(A’ + B + C + D’)

 = M15 M13 M11 M9

 F(A,B,C,D) = (M12 M4) (M7 M6 M5 M4) (M15 M13 M11 M9)

 = M(4, 5, 6, 7, 9, 11, 12, 13, 15)

 Table 4.7 Conversion of sums to maxterm numbers.

Sum

Variable

A B C D

Maxterm

number

B’+C+D

0 1 0 0

4

1 1 0 0 12

A+B’

0 1 0 0 4

0 1 0 1 5

0 1 1 0 6

0 1 1 1 7

A’+D’

1 0 0 1 9

1 0 1 1 11

1 1 0 1 13

1 1 1 1 15

Similar to Example 4.2, the maxterm numbers can also be found without using

Boolean algebra. To find the maxterms of a sum with (n-m) literals, assign a value of 1 to

a literal in complemented form and a value of 0 to a literal in true form. The values for

the missing variables consist of all the 2
m

 combinations. Therefore each sum is equivalent

to the product of 2
m

 maxterms. Table 4.7 shows the maxterm numbers obtained from the

three sums in F.

 57

 In general, the minterm list representation of an n-variable Boolean function can be

expressed as follows:

 2n
 1

 F(xn1, xn2, …, x2, x1, x0) = ∑ aimi (4.1)
 0

where ai ε (0, 1) and is called a minterm coefficient. ai = 1 if i is a minterm number. For

the function in Example 4.3, the values of the coefficients are as follows:

 a0 = a1 = a2 = a3 = a8 = a10 = a14 = 1

 a4 = a5 = a6 = a7 = a9 = a11 = a12 = a13 = a15 = 0

4.2 Incompletely Specified Functions

 Certain combinations of input values to a digital circuit sometimes may never

occur. Under such circumstances, the values at the outputs are immaterial. It can be either

0 or 1. An "x" or “d” instead of 0 or 1 is written in the truth table for the function values

of such input combinations. Since the outputs are not specified for those input

combinations, the function for such a circuit is called an incompletely specified function.

An input state with an unspecified function value is called a don't-care term. A don’t-care

term has the option of becoming either a minterm or a maxterm.

 As shown in Figure 4.1, the prime number detector has four inputs w, x, y, and z.

wxyz is a binary-coded-decimal (BCD) code. Therefore the last six combinations of wxyz,

which are 1010, 1011, 1100, 1101, 1110, and 1111, are not valid BCD codes and should

never become inputs to the circuit. The truth table is given in Table 4.8. The minterm list

representation is

 F(w,x,y,z) = m(1, 2, 3, 5, 7) + d(10, 11, 12, 13, 14, 15)

The second list on the right-hand-side of the above equation is for don’t-care term

numbers. They should be listed separately from the minterm numbers. Neither can they be

omitted. They should also be included in the maxterm list representation.

 F(w,x,y,z) = M(0, 4, 6, 8, 9) D(10, 11, 12, 13, 14, 15)

After a circuit is designed or built for an incompletely specified function, the output will

be either 0 or 1 for each input combination, including those combinations of input values

that should never occur. A don't-care term becomes either a minterm or maxterm during

the design process or minimization process for an incompletely specified function. In

other words, each "x" is assigned a value of either 0 or 1, depending on how the design

can be minimized.

 58

 w Prime

 x number F(w, x, y, z)

 y detector

 z

Figure 4.2 Block diagram for prime number detector

 Table 4.8 Truth table for the prime

 number detector in Figure 4.2.

w x y z F(w,x,y,z)

0 0 0 0 0

0 0 0 1 1

0 0 1 0 1

0 0 1 1 1

0 1 0 0 0

0 1 0 1 1

0 1 1 0 0

0 1 1 1 1

1 0 0 0 0

1 0 0 1 0

1 0 1 0 d

1 0 1 1 d

1 1 0 0 d

1 1 0 1 d

1 1 1 0 d

1 1 1 1 d

 To show how don’t-care terms can be utilized to minimize Boolean functions,

the prime number detector is first designed based on the minterms only. The design will

then be compared with one that includes don’t-care terms.

 F(w,x,y,z) = m(1, 2, 3, 5, 7)

 = w’x’y’z + w’x’yz’ + w’x’yz + w’xy’z + w’xyz

 = w’x’y’z + w’x’yz’ + w’x’yz + w’x’yz + w’xy’z + w’xyz

 = (w’x’y’z + w’x’yz) + (w’x’yz’ + w’x’yz) + (w’xy’z + w’xyz)

 = w’x’z + w’x’y +w’xz

 = w’x’y + w’z

If the value of F is given a value of 1 for the input combinations 1010 and 1011, and all

the other don’t-care values remain 0. Two canonical products, wx’yz’ and wx’yz, have

 59

to be added to the sum-of-products expression. By including these two don’t-care terms

as minterms, F is further simplified by eliminating y from the product w’x’y.

 F(w,x,y,z) = w’x’y + w’z + wx’yz’ + wx’yz

 = w’x’y + w’z + wx’y

 = x’y + w’z

4.3 Expansion of Boolean Functions

 A Boolean function can be expanded to or developed into two terms with respect

to a variable using the following theorem known as Shannon’s expansion theorem.

 F(xn-1, xn-2,, xi+1, xi, xi-1,......., x2, x1, x0) = xi’ Fxi = 0 + xi Fxi = 1 (4.2)

where Fxi = 0 = F(xn-1, xn-2,, xi+1, xi = 0, xi-1,......., x2, x1, x0) (4.3a)

and Fxi = 1 = F(xn-1, xn-2,, xi+1, xi = 1, xi-1,......., x2, x1, x0) (4.3b)

are called sub-functions of F and xi is called an expansion variable. The complemented

form of the expansion variable is associated with the sub-function Fxi = 0 and the true

form of the expansion variable with Fxi = 1.

Table 4.9 Proof of Shannon’s expansion theorem.

xi Left-hand-side of (4.2)

Right-hand-side of (4.2)

0

F(xn-1, xn-2,, xi+1, xi = 0, xi-1,......., x2, x1, x0)

= Fxi = 0

(0)’Fxi = 0 + (0)Fxi = 1 = Fxi = 0

1

F(xn-1, xn-2,, xi+1, xi = 1, xi-1,......., x2, x1, x0)

= Fxi = 1

(1)’Fxi = 0 + (1)Fxi = 1 = Fxi = 1

 The 4-variable function in Example 4.2 is used as an illustration of expanding a

function.

 F(A,B,C,D) = m(2, 3, 4, 5, 9, 12, 13, 14) = A’B’C + BC’ + AC’D + ABCD’

The sum-of-products expression can be simplified using the elimination theorem as

show below:

 F(A,B,C,D) = A’B’C + BC’ + AC’D + ABCD’

 60

 = A’B’C + AC’D + B(C’ + ACD’)

 = A’B’C + AC’D + B(C’ + AD’)

 = A’B’C + BC’ + AC’D + ABD’ (4.4)

By selecting B as the expansion variable, the two sub-functions FB = 0 and FB=1 are

 FB = 0 = F(A, B = 0, C, D)

 = A’(0)’C + (0)C’ + AC’D + A(0)D’

 = A’C + AC’D (4.5a)

and FB =1 = F(A, B = 1, C, D)

 = A’(1)’C + (1)C’ + AC’D + A(1)D’

 = C’ + AC’D + AD’ = C’ + AD’ (4.5b)

Thus F(A,B,C,D) = B’(A’C + AC’D) + B(C’ + AD’) (4.6)

where the sub-functions are underlined. The expansion may continue to be applied to

the sub-functions. For instance, the two sub-functions FB = 0 and FB=1 are expanded

with C as the expansion variable.

The two sub-functions of FB = 0 = A’C + AC’D are

 FBC = 00 = F(A, B = 0, C = 0, D) = A’(0) + A(0)’D = AD (4.7a)

 FBC = 01 = F(A, B = 0, C = 1, D) = A’(1) + A(1)’D = A’ (4.7b)

From Equations (4.7a) and (4.7b)

 FB = 0 = A’C + AC’D = C’ (AD) + C (A’) (4.8)

The two sub-functions of FB = 1 = C’ + AD’ are

 FBC = 10 = F(A, B = 1, C = 0, D) = (0)’ + AD’ = 1 (4.9a)

 FBC = 11 = F(A, B = 1, C = 1, D) = (1)’ + AD’ = AD’ (4.9b)

From Equations (4.9a) and (4.9b)

 FB = 1 = C’ + AD’ = C’(1) + C(AD’) (4.10)

By replacing the two sub-functions FB = 0 and FB=1 in Equation (4.6) with Equations

(4.8) and (4.10), F becomes

 61

 F(A,B,C,D) = B’(A’C + AC’D) + B(C’ + AD’)

 = B’ [C’ (AD) + C (A’)] + B [C’(1) + C(AD’)]

 = B’C’ (AD) + B’C (A’) + BC’(1) + BC(AD’)

 = B’C’ FBC = 00 + B’C FBC = 01 + BC’ FBC = 10 + BC FBC = 11 (4.11)

Because a function (or sub-function) is expanded to two sub-functions using Shannon’s

expansion theorem, the expansion of a function with k variables generates 2
k
 sub-

functions. For an n-variable function, each sub-function is a function of (n k)

variables. If an n-variable function is expanded with all the variables, each of the 2
n

sub-

function is a minterm coefficient, a constant of either 0 or 1. The expansion can be

illustrated by a diagram called a binary tree. Equation (4.11) is used as an example for a

binary tree. The function and each sub-function is represented by a dot that is called a

node. Each line that connects two nodes is called a branch.

Figure 4.3 A binary tree for the expansion of a Boolean function.

4.4 Functionally Complete Set

 Since a Boolean function can always be expressed as a sum-of-products or

product-of-sums expression, it is sufficient to use only AND gates, OR gates, and

inverters in implementing Boolean functions. Thus AND, OR, and NOT are called a

functionally complete set. Two other logical operations, NAND and NOR, are

introduced in this section. Each of them is by itself a functionally complete set.

 NAND is a logical operation equivalent to the complement of AND. The device

used to perform a NAND operation is called a NAND gate. The truth table for a 2-

variable NAND is given in Table 4.9 and the logic symbol for a NAND gate is shown

in Figure 4.4. The mathematical expression for NAND is

F(x,y) = (x y)’

F(A,B,C,D)

FB=0 FB=1

FBC=00 FBC=01 FBC=10 FBC=11

 62

In Figure 4.5(a), it shows that a NAND gate can be used as an inverter if both inputs are

connected together because

x’ = (x x)’

A 2-input NAND gate can also generate an output of x’ if one input is x and the other

input has a logic value of 1.

Table 4.9 Truth table for NAND.

x y F(x,y)

0 0 1

0 1 1

1 0 1

1 1 0

In Figure 4.5(b), two cascaded NAND gates are used to implement an AND operation,

with the second NAND gate used as an inverter.

x y = [(x y)’]’

By applying DeMorgan’s theorem,

 x + y = (x’ y’)’

Therefore, OR can be implemented by a NAND gate with inverted inputs, as shown in

Figure 4.5(c).

x x’

 x

 (a) x + y

 y

x xy

y (c)

 (b)

Figure 4.5 Implementation of NOT, AND, OR using NAND gates.

Figure 4.4 Logic symbol for NAND gate.

gate.

F(x,y)
y

x

 63

 NOR is a logical operation equivalent to the complement of OR. The truth table

for a 2-variable NOR function is given in Table 4.10. The algebraic expression for NOR

is

 F(x,y) = (x + y)’

NOR gate is a device used to implement the NOR operation. The logic symbol is shown

in Figure 4.6. The realization of NOT, OR, AND by NOR gates are shown in Figure 4.7

because

 x = (x + x)’

 x + y = [(x + y)’]’

 x y = (x’ + y’)’

A 2-input NOR gate can also generate an output of x’ if one input is x and the other

input has a logic value of 0.

Table 4.10 Truth table for NOR.

x y F(x,y)

0 0 1

0 1 0

1 0 0

1 1 0

 x x’

 x

 (a) (x’ + y’)’

 y

x x + y

y (c)

 (b)

 Figure 4.7 Implementation of NOT, OR, AND using NOR gates.

 Since AND gates, OR gates, and inverters can be replaced with either NAND

gates or NOR gates, NAND and NOR are each a functionally complete set.

4.5 Exclusive-OR and Exclusive-NOR

 Two more logical operations are introduced in this section. The truth table for

exclusive-OR (XOR) is given in Table 4.11. The function of XOR produces a value of

1 when the two variables have different values, and a value of 0 when the values of the

Figure 4.6 Logic symbol for NOR gate.

gate.

y

x
F(x,y)

 64

two variables are equal. The operation is implemented by an XOR gate. The logic

symbol is shown in Figure 4.8. Unlike AND, OR, NAND, and NOR which can have

more than two inputs, XOR gates have only two inputs.

 Mathematically, the XOR function is expressed as follows:

 F(x, y) = x y

Table 4.11 Truth table for

 EXCLUSIVE-OR.

x y F(x,y)

0 0 0

0 1 1

1 0 1

1 1 0

 Exclusive-NOR (XNOR) is the complement of exclusive-OR. As shown by the

truth table in Table 4.12, the operation generates a value of 1 if the values of the two

variables are the same, and a value of 0 if they have different values. Therefore, XNOR

is also known as EQUIVALENCE. The logic symbol for an XNOR gate is shown in

Figure 4.9. The algebraic expression for XNOR is

 F(x, y) = (x y)’ = x y

Table 4.12 Truth table for

 Exclusive-NOR.

x y F(x,y)

0 0 1

0 1 0

1 0 0

1 1 1

Some of the basic laws for XOR are given below.

(1) Law of 0 x 0 = x

(2) Law of 1 x 1 = x’

(3) Idempotency law x x = 0

(4) Complementary law x x’ = 1

(5) Commutative law x y = y x

Figure 4.8 Logic symbol for

 Exclusive-OR gate.

y

x
F(x,y)

Figure 4.9 Logic symbol for

 Exclusive-NOR gate.

y

x
F(x,y)

 65

 The canonical sum-of-products and canonical product-of-sums for XOR and

XNOR can be obtained from Tables 4.11 and 4.12.

 x y = x’y + xy’ = (x’ + y’)(x + y)

 x y = (x y)’ = x’y’ + xy = (x’ + y)(x + y’)

The following identity can be derived mathematically or by logic reasoning.

 (x y)’ = x y’ = x’ y

If the operation is x y, x y’ and x’ y suggest that the value of one of the two

inputs to an XOR gate is changed. If the values of x and y were equal, now they are

different. If they were different, now they are equal. The change of one of the two

values at the inputs definitely changes the value at the output. This is equivalent to

changing the value of (x y). That is, the output (x y) has to change to (x y)’.

4.6 Timing Diagram and Propagation Delay

 It has been illustrated so far that the function of a digital circuit can be described

using words, a truth table, Boolean expressions, or circuit diagrams. This section

introduces one more way of describing a digital circuit: timing diagram. A timing

diagram shows the response of the circuit output due to temporal changes at the inputs.

A 2-input AND gate is used as an example. The two inputs are A, B, and the output is

AB.

 A
 AB
 B

A

B

AB

 t0 t1 t2 t3 t4 t5

 t1 t2

Figure 4.10 Timing diagrams for a 2-input AND gate with propagation delay.

 66

 As shown in Figure 4.10, both A and B are 0 at t0 and the output AB is 0. At t1,

the value of A changes from 0 to 1 and AB is still 0. At t2, B becomes 1 and AB is

expected to become 1. However, the output does not become 1 until t3, a delay of t3 – t2

= t1 seconds. At t4, B returns to 0. Again, the output does not become 0 until t5, a delay

of t5 – t4 = t2 seconds. The time delay between the input change and the actual output

change is called propagation delay. Propagation delays for the output transition from

high to low and low to high are not the same. Figure 4.11 is the timing diagram for the

AND gate without showing propagation delay. This is not a realistic, but rather

idealistic, situation. For convenience, all the timing diagrams used in later chapters and

sections will not show the delays unless otherwise stated.

A

B

AB

Figure 4.11 Timing diagram for a 2-input AND gate without propagation delay.

A 0 0 0 0 1 1 1 1 0

B 0 0 1 1 0 0 1 1 0

C 0 1 0 1 0 1 0 1 0

F 0 1 1 1 0 1 0 1 0

 t0 t1 t2 t3 t4 t5 t6 t7 t8

Figure 4.11 Timing diagrams for prime number detector.

 67

 Timing diagrams can be used to describe the behavior of a function or circuit.

The truth table in Table 4.3 for a prime number detector is used as an example. As

shown in Figure 4.12, the input changes to the circuit are in the same order as the values

listed in the truth table.

4.7 Analysis of Combinational Circuits

 In designing a digital circuit, a statement describing the function of the circuit is

usually given. The process will end up with a circuit diagram. Analysis is the reverse

process trying to find the function of a given circuit. The function of the circuit can be

described by a Boolean expression, truth table, timing diagram, or verbally.

 Example 4.4

 The circuit in Figure 4.13 is used as an example for analysis. Instead of writing one

complex expression for F, some intermediate signals in the circuit, such as P1, P2, P3,

and P4, are derived first.

 P1 = BC’ + D’

 P2 = (BD)’ = B’ + D’

 P3 = (A P1)’ = [A (BC’ + D’)]’

 P4 = (C P2)’ = [C (B’ + D’)]’

 F(A,B,C,D) = (P3 P4)’

 = {[A (BC’ + D’)]’ [C (B’ + D’)]’}’

 = A (BC’ + D’) + C (B’ + D’)

 = ABC’ + AD’ + B’C + CD’

A

B

C P3

D P1

 P4
 P2

Figure 4.13 Circuit for Example 4.4.

F

 68

 When a circuit have internal inversions and inversions at the outputs, finding a

Boolean expression in the form of sum-of-products or product-of-sums requires

frequent applications of DeMorgan’s theorem, which makes the analysis more tedious.

Analysis can be made easier by first eliminating as many internal/output inversions as

possible using the gate equivalencies derived from DeMorgan’s theorem as shown in

Figure 4.14. Elimination of inversions should start from the outputs and proceed

towards the inputs.

 (a) (b)

 (c) (d)

Figure 4.14 Gate equivalencies using DeMorgan’s theorem.

 Based on DeMorgan’s theorem in Chapter 3, which is repeated below.

 (a) (x1•x2•x3• •xn-1•xn)’ = x1’+x2’+x3’+ +xn-1’+xn’

 (b) (x1+x2+x3+ +xn-1+xn)’ = x1’•x2’•x3’+ •xn-1’•xn’

A NAND gate is equivalent to an OR gate with all the inputs inverted. A NOR gate is

the same as an AND gate with inverted inputs. The equivalencies are shown in Figures

4.14 (a) and 4.14(b) for 3-input gates. The applications of DeMorgan’s theorem to AND

and OR are shown in Figures 4.14(c) and 1.14(d).

 69

 Example 4.5

Figure 4.15 Circuit for Example 4.5.

 To analyze the circuit in Figure 4.15(a), each of the two highlighted NAND gates

are replaced with an OR gate with inverted inputs using the gate equivalency shown in

Figure 4.14(a). The highlighted NOR gate is changed to an AND gate with inverted

inputs as shown in Figure 4.14(b). The circuit after conversion is shown in Figure

4.15(b). Since two cascaded inversions offset each other, the circuit in Figure 4.15(b) is

simplified by removing three pairs of inversion, which is shown in Figure 4.15(c). The

circuit in Figure 4.15(c) does not have any internal and output inversion. A Boolean

expression can be readily written and multiplied out without mathematical

manipulations using DeMorgan’s theorem.

(c)

(a)

(b)

F

A

B

C

D

A

B

C

D F

A

B

C

D F

 70

 F = A(D + BC’) + A’D’(B + C’)

 = AD + ABC’ + A’BD’ + A’C’D’

Figure 4.16 Circuit for Example 4.6.

(c)

A

B

C

D

F1

F2

G4

(b)

A

B

C

D

F1

F2

G3

G2 G1

G4

(a)

A

B

C

D

F1

F2

G1
G2

G3

G4

 71

 Example 4.6

 To analyze the circuit in Figure 4.16(a), each of the two highlighted NAND gates at

the outputs are replaced by an OR gate with inverted inputs. It is noted that the bubble

of the NAND gate labeled as G1 is highlighted. Because gate G1 is connected to gates

G2 and G3, it is not clear at this point if this bubble can be completely offset by another

bubble without affecting the inputs to G2 and G3. Therefore the bubble is detached from

G1 and placed in each of the two paths to G2 and G3. The circuit after conversion is

shown in Figure 4.16(b). It is seen that the bubble detached from G1 and placed in the

path to G2 can be offset by one of the two input bubbles of G2. The bubble to G3 cannot

be offset and will remain there. After removing all the other bubble pairs in Figure

4.16(b), only gate G4 needs to be taken care of. As shown in Figure 4.16(c), G4 can be

replaced by a NOR gate with inverted inputs. The Boolean expressions for F1 and F2

can be easily obtained from Figure 4.16(c).

 F1 = AB’ + (B + D’)C = AB’ + BC + CD

 F2 = (AB’)’C + C’D = (A’ + B)C + C’D = A’C + BC + C’D

4.8 Assertion and Signal Level

 A descriptive name may be given to a signal in a logic circuit to indicate a certain

condition or an operation to be executed. If the condition is true or the operation is to be

executed, the signal is said to be asserted. When an asserted signal is 1, the signal is

said to have an active-high signal level. If the assertion of a signal requires a value of 0

for the signal, the signal is called an active-low signal. When an active-high signal has a

value of 0, it is said to be de-asserted. A de-asserted signal indicates that the condition

is false or the operation is not to be executed. An active-low signal is de-asserted if it

has a value of 1. The name of an active-low signal is usually preceded by a slash. A

bubble is also placed at the input of a gate or the output of a circuit for an active-low

signal.

 An illustration of assertion and signal levels is given in Table 4.13 and Figure

4.17. Suppose there is a request to provide service from a device, such a printer. The

service will be delivered if the device is not busy or is idle. The truth table is given in

Table 4.13 (a) for active-high inputs and outputs. The function can be implemented by

an AND gate as shown in Figure 4.17(a). Table 4.13(b) is the truth table for active-high

inputs and active-low output. A slash is added to the signal name that becomes /Print

and the values are inverted. The implementation is shown in Figure 4.17(b). The truth

table for active-low inputs and active-high output is given in Table 4.13(c). This table is

actually a truth table for NOR. A NOR gate can be used for implementation. The

diagram shown in Figure 4.17(c) is an AND gate with inverted inputs, which is

equivalent to a NOR gate.

 (/Idle)’ (/Request)’ = (/Idle + /Request)’

 72

 The bubbles at the inputs /Idle and /Request indicate that the inputs are active-

low signals. The absence of a bubble at the output suggests that the output is active-

high. Similarly, a truth table for active-low inputs and active-low output is given in

Table 4.13(d). The function can be implemented by an OR gate. But an AND gate with

inverted inputs and output is drawn in Figure 4.17(d) to indicate that all the inputs and

the output are active-low.

 By examining the circuits in Figure 4.17, it is seen that an active-high signal can

easily be converted to active-low by adding a bubble to the input/output and a slash in

front of the name. An active-low signal can be changed to active-high by removing the

bubble and the slash.

 Table 4.13 Truth table for providing service by a printer.

 (a) (b)

Idle Request Print Idle Request /Print

0 0 0 0 0 1

0 1 0 0 1 1

1 0 0 1 0 1

1 1 1 1 1 0

 (c) (d)

/Idle /Request Print /Idle /Request /Print

0 0 1 0 0 0

0 1 0 0 1 1

1 0 0 1 0 1

1 1 0 1 1 1

Idle Print Idle /Print

Request Request

 (a) (b)

 /Idle Print /Idle /Print

 /Request /Request

 (c) (d)

Figure 4.17 Implementation of the truth tables in Table 4.13.

 73

PROBLEMS

1. Expand each of the following functions into a canonical sum-of-products

expression.

 (a) F(x, y, z) = xy’ + y’z’ + x’

 (b) F(w, x, y, z) = x’y’ + wxy’ + w’yz’

 (c) F(A,B,C,D) = ABC + B’CD + C’D’

 (d) F(A,B,C,D) = A’B + B’CD + D’

2. Expand each of the following functions into a canonical product-of-sums

expression.

 (a) F(x, y, z) = (x + y’)(x’ + z’)

 (b) F(w, x, y, z) = (x + y’ + z’)(w + z)

3. Find the minterm and maxterm list forms for each of the following functions.

 (a) F(A,B,C,D) = A B + C D + A' B D

 (b) F(A,B,C,D) = (A + B + C') (A + C' + D') (A' + BD)

 (c) F(A,B,C,D) = (A + B)(C + B’ + D)(C’ + D)

 (d) F(A,B,C,D) = (B’ + C’)(A + B + C’)D’

 (e) F(A,B,C,D,E) = (A’ + B)(B’ + C + D + E)(C’ + E’)

 (f) F(A,B,C,D,E) = (A B)D’ + BC’DE + AD’

4. Find the minterm and maxterm list forms for the complement of each of the

functions in Problem 3.

5. Given f(w,x,y,z) = m(0, 1, 2, 4, 6, 8, 10, 12, 14), find

 (a) the canonical sum-of-products expression for f.

 (b) the canonical product-of-sums expression for f.

 (c) the simplest sum-of-products expression for f.

 (d) the simplest product-of-sums expression for f.

6. Find the minterm list form for F(A,D,B,C) if

 F(A,B,C,D) = m(0, 1, 3, 5, 7, 9, 10, 13, 14)

7. Find the minterm and maxterm list forms for f(a,b,c,d) if a b = 11 (both a and b

are 1) never occur in input states.

 f(a,b,c,d) = a' b + a c d + a' d' + c' d

8. Given f(w,x,y,z) = m (1,2,4,5,7,11,12,15)

 and g(w,x,y,z) = m (0,1,2,7,8,9,12,14,15),

 74

 find the minterm list forms for

 (a) f ‘ (b) g’ (c) f•g (d) f + g,

 (e) f ‘•g (f) f •g’ (g) f ‘ + g’ (h) f g

9. Simplify each of the following expressions to a sum-of-products expression.

 (a) a' b' c

 (b) a (a b + c')

 (c) (a' b 1) (a b)+ (c c' 0) (a + d e) (a + b')

10. Find the minterm list form for each of the following functions.

 (a) f(a,b,c,d) = a'b b'cd cd’

 (b) f(a,b,c,d) = (a' + b) (c + d) (a + c’ + d’)

 (c) f(a,b,c,d) = 1 bcd acd’

11. Given F(A,B,C,D) = (AB C’D) + BD + A’B’CD’

find all the sub-function of F with A and D as expansion variables. Express each

sub-function as a simplest sum-of-products expression.

12. Find the simplest sum-of-products expression for F(A,B,C,D,E) using the

following sub-functions.

 FBD = 00 = A’ + E’

 FBD = 01 = AE’

 FBD = 10 = 0

 FBD = 11 = A(C + E’)

13. Find the simplest sum-of-products expression for the sub-function FAC = 00 of a 5-

variable function F(A,B,C,D,E) if

 FACD = 000 = B’E

 FACD = 001 = B + E

14. Find the minterm list form for F(A,B,C,D,E) using the following sub-functions.

 FAB = 00 = DE + C’D’

 FAB = 01 = (C + D’)E

 FAB = 10 = C + D’E

 FABD = 110 = C

 FABD = 111 = C + E

15. Given in Figure P4.1 is the timing diagrams of a Boolean function F(A,B,C), find

the simplest product-of-sums expression for F.

 75

A

B

C

F

Figure P4.1

16. Find the simplest sum-of-products expressions for X, Y, and Z in each of the logic

circuits in Figure P4.2.

X

Z

Y

c

b

a

d

X

Z

Y

c

b

a

d

X

Z

Y

c

b

a

Figure P4.2

Circuit (a)

Circuit (c)

Circuit (b)

 76

17. Find the simplest sum-of-products and product-of-sums expressions for the logic

circuits in Figure P4.3 without eliminating the internal and output inversions.

18. Minimize the number of internal and output inversions for the circuit in Figure

P.4.3 and then determine the simplest sum-of-products expression for F.

19. A switching circuit has four inputs a, b, c, d and an output /V. The input

combination abcd is a (6, 3, 1, 1) weighted-code given in the rightmost column of

Table 2.3. /V is an active-low output which is asserted if and only if the input

combination is a valid (6, 3, 1, 1) weighted code. Construct a truth table for /V

and find the simplest sum-of-products and simplest product-of-sums expressions

for /V.

20. A switching circuit has four inputs a, b, c, d and an output V. The input

combination abcd is the reflected code given in Table 2.4. V is an active-high

output which is asserted if and only if the input combination is a valid reflected

code. Find the minterm and maxterm list forms for V.

21. A switching circuit has four inputs a, b, c, d and four outputs W, X, Y, Z. The

input combination abcd is an excess-3 code and the output combination WXYZ is

the reflected code given in Table 2.4. Find the minterm and maxterm list forms for

W, X, Y, and Z.

A’

B

C’

D’

D

B

C

F

Figure P4.3

