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Abstract

The fundamental mathematical problem in tomographic image reconstruc-

tion is the solution, often approximate, of large systems of linear equations,

which we denote here as Ax = b. The unknown entries of the vector x often

represent intensity levels, of beam attenuation in transmission tomography, of

radionuclide concentration in emission tomography, and so are naturally non-

negative. The entries of the vector b are typically counts of detected photons,

the entries of the matrix A are lengths or probabilities, and so these quantities

are also nonnegative. The size of these systems, typically thousands of equa-

tions and thousands of unknowns, preclude the use of Gauss elimination and

necessitate iterative methods of solution. We survey a variety of such methods

and present some open questions concerning their behavior.

The step sizes for iterative algorithms such as the Landweber method involve

parameters that depend on the largest eigenvalue λmax of the matrix A†A.

Because of the size of A, calculating A†A, let alone finding its largest eigenvalue,

is out of the question. Easily calculated upper bounds for λmax are available

that are particularly useful when A is sparse, that is, most of the entries of

A are zero, which is typically the case in tomography. These bounds become

tighter as the size of A increases.

1 Introduction

Image reconstruction from tomographic data is a fairly recent, and increasingly im-

portant, area of applied numerical linear algebra, particularly for medical diagnosis

[36, 39, 47, 58, 59, 67, 68] . Fundamentally, the problem is to solve, at least approx-

imately, a large system of linear equations, Ax = b. The vector x is large because

it is usually a vectorization of a discrete approximation of a function of two or three

continuous spatial variables. The size of the system necessitates the use of iterative

solution methods [52]. Because the entries of x usually represent intensity levels, of

beam attenuation in transmission tomography, and of radionuclide concentration in
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emission tomography, we require x to be nonnegative; the physics of the situation

may impose additional constraints on the entries of x. In practice, we often have

prior knowledge about the function represented, in discrete form, by the vector x

and we may wish to include this knowledge in the reconstruction. In tomography

the entries of A and b are also nonnegative. Iterative algorithms tailored to find

solutions to these special, constrained problems may out-perform general iterative

solution methods [57]. To be medically useful in the clinic, the algorithms need to

produce acceptable reconstructions early in the iterative process.

Exact solutions of Ax = b may not exist, so we need appropriate measures of

distance between vectors to obtain suitable approximate solutions. The entries of the

vector b are data obtained by measurements, and so are noisy. Consequently, exact

solutions of Ax = b, even when available, may be too noisy to be useful. Bayesian or

penalized optimization algorithms are used to obtain reconstructions displaying the

desired smoothness [31, 35, 37, 38, 53, 54].

Certain iterative algorithms require that we select a parameter that governs the

size of the steps taken at each iteration. For the Landweber and projected Landwe-

ber methods [1], this parameter is dependent on the largest eigenvalue, λmax, of the

matrix A†A. Because the system is large, calculating A†A, let alone computing λmax,

is impractical. If we overestimate λmax, the step lengths become too small and the

algorithm is too slow to be practical; tight upper bounds for λmax that can be ob-

tained from A itself help to accelerate these algorithms. Upper bounds exist that

are particularly useful for the common case in which A is sparse, that is, most of its

entries are zero [13]. These upper bounds are shown to become tighter as the size of

the system increases [18].

Our purpose here is to discuss various algorithms that are employed in tomo-

graphic image reconstruction, and to present several open questions concerning these

algorithms.

2 Tomography

These days, the term tomography is used by lay people and practitioners alike to de-

scribe any sort of scan, from ultrasound to magnetic resonance. It has apparently lost

its association with the idea of slicing, as in the expression three-dimensional tomog-

raphy. In this paper we focus on two important modalities, transmission tomography

and emission tomography. An x-ray CAT scan is an example of the first, a positron-

emission (PET) scan is an example of the second. Although there is some flexibility
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in the mathematical description of the image reconstruction problem posed by these

methods, we shall concentrate here on the algebraic formulation of the problem. In

this formulation, the problem is to solve, at least approximately, a large system of

linear equations, Ax = b. What the entries of the matrix A and the vectors x and b

represent will vary from one modality to another; for our purposes, the main point is

simply that all of these entries are nonnegative.

In both modalities the vector x that we seek is a vectorization, that is, a one-

dimensional encoding, of an unknown two- or three-dimensional discrete function. It

is this transition from higher dimensions to a single dimension that causes x to be

large. The quantity xj, the j-th entry of the vector x, represents the value of the

function at the pixel or voxel corresponding to the index j. The quantity bi, the

i-th entry of the vector b, is measured data, the discrete line integral of x along the

i-th line segment, in the transmission case, and photon counts at the i-th detector

in the emission case. The entries of the matrix A describe the relationship that

holds between the various pixels and the various detectors, that is, they describe the

scanning process whereby the information about the unknown function is translated

into measured data. In the transmission case, the entries of A describe the geometric

relationship between the patient and the scanner, as well as the paths taken by the

beams. In the emission case, the entries of A are the probabilities of a photon being

detected at the various detectors, given that it was emitted at a particular pixel. In

both cases, there is a certain amount of simplification and guesswork that goes into

the choice of these entries. In the emission case, the probabilities depend, in part, on

the attenuation encountered as the photons pass from within the body to the exterior,

and so will depend on the anatomy of the particular patient being scanned.

2.1 Transmission Tomography

When an x-ray beam travels along a line segment through the body it becomes pro-

gressively weakened by the material it encounters. By comparing the initial strength

of the beam as it enters the body with its final strength as it exits the body, we can

estimate the integral of the attenuation function, along that line segment. The data

in transmission tomography are these line integrals, corresponding to thousands of

lines along which the beams have been sent. The image reconstruction problem is to

create a discrete approximation of the attenuation function. The inherently three-

dimensional problem is usually solved one two-dimensional plane, or slice, at a time,

hence the name tomography [39].

The beam attenuation at a given point in the body will depend on the material
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present at that point; estimating and imaging the attenuation as a function of spatial

location will give us a picture of the material within the body. A bone fracture will

show up as a place where significant attenuation should be present, but is not.

The attenuation function is discretized, in the two-dimensional case, by imagining

the body to consist of finitely many squares, or pixels, within which the function

has a constant, but unknown, value. This value at the j-th pixel is denoted xj. In

the three-dimensional formulation, the body is viewed as consisting of finitely many

cubes, or voxels. The beam is sent through the body along various lines and both

initial and final beam strength is measured. From that data we can calculate a discrete

line integral along each line. For i = 1, ..., I we denote by Li the i-th line segment

through the body and by bi its associated line integral. Denote by Aij the length of

the intersection of the j-th pixel with Li; therefore, Aij is nonnegative. Most of the

pixels do not intersect line Li, so A is quite sparse. Then the data value bi can be

described, at least approximately, as

bi =
J

∑

j=1

Aijxj. (2.1)

Both I, the number of lines, and J , the number of pixels or voxels, are quite large,

although they certainly need not be equal, and are typically unrelated.

The matrix A is large and rectangular. The system Ax = b may or may not have

exact solutions. We are always free to select J , the number of pixels, as large as we

wish, limited only by computation costs. We may also have some choice as to the

number I of lines, but within the constraints posed by the scanning machine and

the desired duration and dosage of the scan. When the system is underdetermined

(J > I), there may be infinitely many exact solutions; in such cases we usually

impose constraints and prior knowledge to select an appropriate solution. As we

mentioned earlier, noise in the data, as well as error in our model of the physics of

the scanning procedure, may make an exact solution undesirable, anyway. When the

system is overdetermined (J < I), we may seek a least-squares approximate solution,

or some other approximate solution. We may have prior knowledge about the physics

of the materials present in the body that can provide us with upper bounds for xj,

as well as information about body shape and structure that may tell where xj = 0.

Incorporating such information in the reconstruction algorithms can often lead to

improved images [57].
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2.2 Emission Tomography

In single-photon emission tomography (SPECT) and positron emission tomography

(PET) the patient is injected with, or inhales, a chemical to which a radioactive

substance has been attached [68]. The chemical is designed to become concentrated

in the particular region of the body under study. Once there, the radioactivity results

in photons that travel through the body and, at least some of the time, are detected

by the scanner. The function of interest is the actual concentration of the radioactive

material at each spatial location within the region of interest. Learning what the

concentrations are will tell us about the functioning of the body at the various spatial

locations. Tumors may take up the chemical (and its radioactive passenger) more

avidly than normal tissue, or less avidly, perhaps. Malfunctioning portions of the

brain may not receive the normal amount of the chemical and will, therefore, exhibit

an abnormal amount of radioactivity.

As in the transmission tomography case, this nonnegative function is discretized

and represented as the vector x. The quantity bi, the i-th entry of the vector b, is

the photon count at the i-th detector; in coincidence-detection PET a detection is

actually a nearly simultaneous detection of a photon at two different detectors. The

entry Aij of the matrix A is the probability that a photon emitted at the j-th pixel

or voxel will be detected at the i-th detector.

In the emission tomography case it is common to take a statistical view [51, 50,

62, 64, 67], in which the quantity xj is the expected number of emissions at the j-th

pixel during the scanning time, so that the expected count at the i-th detector is

E(bi) =
J

∑

j=1

Aijxj. (2.2)

The system of equations Ax = b is obtained by replacing the expected count, E(bi),

with the actual count, bi; obviously, an exact solution of the system is not needed

in this case. As in the transmission case, we seek an approximate, and nonnegative,

solution of Ax = b, where, once again, all the entries of the system are nonnegative.

3 Iterative Reconstruction

We turn now to several iterative algorithms for solving the system Ax = b. Some

of these algorithms apply only to nonnegative systems, in which the entries of the

matrix and the vectors are nonnegative, while others apply even to complex-valued

systems. We shall use complex notation whenever permitted.
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When the (possibly complex) I by J matrix A is large finding exact or approximate

solutions of the system of linear equations Ax = b is usually accomplished using iter-

ative algorithms. When the system is overdetermined we can obtain a least-squares

approximate solution, which is any vector x = xLS that minimizes the Euclidean

distance squared between Ax and b; that is, xLS minimizes

||Ax − b||2 =
I

∑

i=1

|(Ax)i − bi|2, (3.1)

where

(Ax)i =
J

∑

j=1

Aijxj, (3.2)

for each i.

3.1 The Landweber Algorithm

The Landweber algorithm [49, 1], with the iterative step

xk+1 = xk + γA†(b − Axk), (3.3)

converges to the least squares solution closest to the starting vector x0, provided that

0 < γ < 2/λmax, where λmax is the largest eigenvalue of the nonnegative-definite

matrix A†A. Loosely speaking, the larger γ is, the faster the convergence. However,

precisely because A is large, calculating the matrix A†A, not to mention finding its

largest eigenvalue, can be prohibitively expensive. The matrix A is said to be sparse

if most of its entries are zero. In [13] upper bounds for λmax were obtained in terms

of the degree of sparseness of the matrix A. Later in this paper we investigate the

tightness of these bounds.

3.2 The Projected Landweber Algorithm

When we require a nonnegative approximate solution x for the real system Ax =

b we can use a modified version of the Landweber algorithm, called the projected

Landweber algorithm [1], having the iterative step

xk+1 = (xk + γAT (b − Axk))+, (3.4)

where, for any real vector a, we denote by (a)+ the nonnegative vector whose en-

tries are those of a, for those that are nonnegative, and are zero otherwise. The
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projected Landweber algorithm converges to a vector that minimizes ||Ax − b|| over

all nonnegative vectors x, for the same values of γ.

Both the Landweber and projected Landweber algorithms are special cases of the

CQ algorithm [13], which, in turn, is a special case of a much more general iterative

fixed point algorithm, the Krasnoselskii/Mann (KM) method; a proof of the KM

method is given in [14].

3.3 The Algebraic Reconstruction Technique

The algebraic reconstruction technique (ART) [36] applies to any system Ax = b of

linear equations. For each index value i let Bi be the subset of J-dimensional vectors

given by

Bi = {x|(Ax)i = bi}. (3.5)

Given any vector z the vector in Bi closest to z, in the sense of the Euclidean distance,

has the entries

xj = zj + Aij(bi − (Az)i)/
J

∑

m=1

|Aim|2. (3.6)

The ART is the following: begin with an arbitrary vector x0; for each nonnegative

integer k, having found xk, let i = k(mod I) + 1 and let xk+1 be the vector in Bi

closest to xk. We can use Equation (3.6) to write

xk+1

j = xk
j + Aij(bi − (Axk)i)/

J
∑

m=1

|Aim|2. (3.7)

When the system Ax = b has exact solutions the ART converges to the solution

closest to x0. How fast the algorithm converges will depend on the ordering of the

equations and on whether or not we use relaxation. Relaxed ART has the iterative

step

xk+1

j = xk
j + γAij(bi − (Axk)i)/

J
∑

m=1

|Aim|2, (3.8)

where γ ∈ (0, 2). In selecting the equation ordering, the important thing is to avoid

particularly bad orderings, in which the hyperplanes Bi and Bi+1 are nearly parallel.

When there are no exact solutions, the ART does not converge to a single vector;

for each fixed i the subsequence {xnI+i, n = 0, 1, ...} converges to a vector zi and the

collection {zi |i = 1, ..., I} is called the limit cycle [66, 32, 16]. The limit cycle will
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vary with the ordering of the equations, and contains more than one vector unless an

exact solution exists. There are several open questions about the limit cycle.

Open Question 1: For a fixed ordering, does the limit cycle depend on the initial

vector x0? If so, how?

Open Question 2: If there is a unique least-squares solution, where is it, in relation

to the vectors of the limit cycle? Can it be calculated easily, from the vectors of the

limit cycle?

There is a partial answer to the second question. In [7] (see also [16]) it was shown

that if the system Ax = b has no exact solution, and if I = J + 1, then the vectors of

the limit cycle lie on a sphere in J-dimensional space having the least-squares solution

at its center. This is not generally true, however.

Open Question 3: In both the consistent and inconsistent cases, the sequence {xk}
of ART iterates is bounded [66, 32, 7, 16]. The proof is easy in the consistent case.

Is there an easy proof for the inconsistent case?

Dax [29] has demonstrated interesting connections between the ART, applied to

Ax = b, and the Gauss-Seidel method, applied to the system AA†z = b.

3.4 Nonnegatively Constrained ART

If we are seeking a nonnegative solution for the real system Ax = b, we can modify

the ART by replacing the xk+1 given by Equation (3.7) with (xk+1)+. This version of

ART will converge to a nonnegative solution, whenever one exists, but will produce

a limit cycle otherwise.

3.5 The Multiplicative ART (MART)

Closely related to the ART is the multiplicative ART (MART) [36]. The MART,

which can be applied only to nonnegative systems, also uses one equation only at

each step of the iteration. The MART begins with a positive vector x0. Having found

xk for nonnegative integer k, we let i = k(mod I) + 1 and define xk+1 by

xk+1

j = xk
j (

bi

(Axk)i

)m−1

i
Aij , (3.9)

where mi = max {Aij |j = 1, 2, ..., J}. When Ax = b has nonnegative solutions,

MART converges to such a solution. As with ART, the speed of convergence is greatly

affected by the ordering of the equations, converging most slowly when consecutive

equations correspond to nearly parallel hyperplanes.
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Open Question 4: When there are no nonnegative solutions, MART does not

converge to a single vector, but, like ART, is always observed to produce a limit cycle

of vectors. Unlike ART, there is no proof of the existence of a limit cycle for MART.

3.6 The Simultaneous MART (SMART)

There is a simultaneous version of MART, called the SMART [21, 28, 63]. As with

MART, the SMART begins with a positive vector x0. Having calculated xk, we

calculate xk+1 using

log xk+1

j = log xk
j + s−1

j

I
∑

i=1

Aij log
bi

(Axk)i

, (3.10)

where sj =
∑I

i=1 Aij > 0.

When Ax = b has no nonnegative solutions, the SMART converges to an approx-

imate solution in the sense of cross-entropy, or Kullback-Leibler distance [3, 16]. For

positive numbers u and v, the Kullback-Leibler distance [48] from u to v is

KL(u, v) = u log
u

v
+ v − u. (3.11)

We also define KL(0, 0) = 0, KL(0, v) = v and KL(u, 0) = +∞. The KL distance

is extended to nonnegative vectors component-wise, so that for nonnegative vectors

x and z we have

KL(x, z) =
J

∑

j=1

KL(xj, zj). (3.12)

Clearly, KL(x, z) ≥ 0 and KL(x, z) = 0 if and only if x = z.

When there are nonnegative solutions of Ax = b, both MART and SMART con-

verge to the nonnegative solution minimizing the Kullback-Leibler distance KL(x, x0);

if x0 is the vector whose entries are all one, then the solution minimizes the Shannon

entropy, SE(x), given by

SE(x) =
J

∑

j=1

xj log xj − xj. (3.13)

One advantage that SMART has over MART is that, if the nonnegative system Ax = b

has no nonnegative solutions, the SMART converges to the nonnegative minimizer

of the function KL(Ax, b) for which KL(x, x0) is minimized. One disadvantage of

SMART, compared to MART, is that it is slow.
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3.7 Expectation Maximization Maximum Likelihood (EMML)

For nonnegative systems Ax = b in which the column sums of A and the entries of

b are positive, the expectation maximization maximum likelihood (EMML) method

produces a nonnegative solution of Ax = b, whenever one exists [3, 4, 15, 25, 55,

64, 50, 67, 51] . If not, the EMML converges to a nonnegative approximate solution

that minimizes the function KL(b, Ax) [3, 5, 15, 25, 67]. The EMML begins with a

positive vector x0. The iterative step of the EMML method is

xk+1

j = s−1

j xk
j

I
∑

i=1

Aij

bi

(Axk)i

, (3.14)

for sj =
∑I

i=1 Aij > 0.

The EMML algorithm can also be viewed as a method for maximizing the likeli-

hood function, when the data bi are instances of independent Poisson random variables

with mean value (Ax)i; here the entries of x are the parameters to be estimated.

An open question about the EMML algorithm is the following:

Open Question 5: How does the EMML limit depend on the starting vector x0?

In particular, when there are nonnegative exact solutions of Ax = b, which one does

the EMML produce and how does it depend on x0?

3.8 The Rescaled Block-Iterative EMML (RBI-EMML)

One drawback to the use of the EMML in practice is that it is slow; this is typical

behavior for simultaneous algorithms, which use all the equations at each step of

the iteration. The ordered-subset version of the EMML (OSEM) [44] often produces

images of similar quality in a fraction of the time. The OSEM is a block-iterative

method, in the sense that only some of the equations are used at each step of the

iteration. Unfortunately, the OSEM usually fails to converge, even when there are

exact nonnegative solutions of the system Ax = b. The rescaled block-iterative EMML

(RBI-EMML) is a corrected version of OSEM that does converge whenever there are

nonnegative solutions [6, 8, 15].

We begin by selecting subsets Sn, n = 1, ..., N whose union is the set of equation

indices {i = 1, ..., I}; the Sn need not be disjoint. Having found iterate xk, set

n = k(mod N) + 1; the OSEM iterative step is then

xk+1

j = s−1

nj xk
j

∑

i∈Sn

Aij

bi

(Axk)i

, (3.15)

for snj =
∑

i∈Sn
Aij > 0. Notice that the OSEM iterative step mimics that of EMML,

except that each summation is over only i in the current subset, Sn. It has been
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shown that the OSEM converges to a nonnegative solution of Ax = b, when such

exact solutions exist, provided that the sums snj are independent of n, for each j;

this is the so-called subset-balanced condition and is quite restrictive. Without this

condition, the OSEM can produce a limit cycle, even when there are nonnegative

exact solutions of Ax = b, and when there are no such solutions, the vectors of its

limit cycle are typically farther apart than the level of noise in the data would seem

to indicate. The problem with OSEM is that there should be a second term on the

right side of Equation (3.15).

The RBI-EMML algorithm has the following iterative step:

xk+1

j = xk
j (1 − m−1

n s−1

j snj) + xk
j m

−1

n s−1

j

∑

i∈Sn

Aij

bi

(Axk)i

, (3.16)

where

mn = max {snj/sj |j = 1, ..., J}. (3.17)

For any choice of subsets Sn, and any starting vector x0 > 0, the RBI-EMML con-

verges to a nonnegative solution whenever one exists. If subset-balance holds, then

the RBI-EMML reduces to the OSEM method. The acceleration, compared to the

EMML, is roughly on the order of N , the number of subsets. As with the ART, the

composition of the subsets, as well as their ordering, can affect the rate of convergence.

As with the EMML, there are several open questions.

Open Question 6: When there are nonnegative solutions of Ax = b, how does the

solution given by the RBI-EMML depend on the starting vector x0 and on the choice

and ordering of the subsets?

Open Question 7: When there are no nonnegative solutions of Ax = b does the

RBI-EMML produce a limit cycle? This is always observed in actual calculations,

but no proof is known.

Open Question 8: When there are no nonnegative solutions of Ax = b how do the

vectors of the RBI-EMML limit cycle relate to the approximate solution given by

EMML?

3.9 The Rescaled Block-Iterative SMART (RBI-SMART)

The SMART algorithm also has a rescaled block-iterative version, the RBI-SMART

[21, 6, 8, 15]. The iterative step of the RBI-SMART is

xk+1

j = xk
j exp

(

m−1

n s−1

j

∑

i∈Sn

Aij

bi

(Axk)i

)

. (3.18)
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When Ax = b has nonnegative solutions, the RBI-SMART converges to the same

limit as MART and SMART, for all choices of subsets Sn.

Open Question 9: When Ax = b has no nonnegative solutions, the RBI-SMART is

always observed to produce a limit cycle, but no proof of this is known.

4 Feedback in Block-Iterative Reconstruction

When the nonnegative system Ax = b has no nonnegative exact solutions, block-

iterative methods such as MART, RBI-SMART, and RBI-EMML have always been

observed to exhibit subsequential convergence to a limit cycle, although no proof of

this is known. These algorithms approach their limit cycles much sooner than their

simultaneous versions, SMART and EMML, approach their limits.

Open Question 10: Can we use the vectors of the limit cycle for MART or RBI-

SMART (RBI-EMML) to calculate easily the limit of SMART (EMML)?

In this section we present a partial answer to this question, using a feedback

method. More detail concerning the feedback method is in [17]. We assume through-

out this section that the limit cycles always exist.

We assume that, for each fixed n = 1, 2, ..., N , the subsequence {xmN+n, m =

0, 1, ...} converges to a vector zn and the collection {zn |n = 1, ..., N} is called the

limit cycle; for convenience, we also define z0 = zN . The main property of the limit

cycle is the following: if we restart the algorithm at z0, the next iterate is z1, followed

by z2, ..., zN again. The limit cycle will vary with the algorithm, with N , with the

choice of subsets Sn, with ordering of the equations, and will contain more than one

vector unless an exact nonnegative solution exists.

For each n and for each i in the subset Sn, let ci = (Azn−1)i, The vector c with

entries ci will now be viewed as new data, replacing the vector b, and the algorithm

restarted at the original x0. This is the feedback step. Once again, a limit cycle will

be produced, another vector of new data will be generated, feedback will take place

again, and the process will continue. What are we obtaining by this succession of

feedback steps?

This feedback approach was considered originally in [7], where it was also applied

to the ART. For the ART case it was shown there that the systems Ax = b and

Ax = c have the same least-squares solutions, which suggests the possibility that the

limit cycles generated by feedback might converge to the least-squares solution of the

original system, Ax = b. Results along these lines were presented in [7]. The success

with ART prompted us to ask the same questions about feedback applied to other
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block-iterative algorithms; some partial results were obtained [7].

Open Question 11: When feedback is applied to the RBI-SMART algorithm do

the limit cycles obtained converge to a nonnegative minimizer of the function

N
∑

n=1

m−1

n

∑

i∈Sn

KL((Ax)i, bi)?

If J > I, how should the feedback step deal with the zero entries in the vectors zn?

Open Question 12: When feedback is applied to the RBI-EMML algorithm do the

limit cycles obtained converge to a nonnegative minimizer of the function

N
∑

n=1

m−1

n

∑

i∈Sn

KL(bi, (Ax)i)?

If J > I, how should the feedback step deal with the zero entries in the vectors zn?

5 Iterative Regularization in ART

It is often the case that the entries of the vector b in the system Ax = b come from

measurements, so are usually noisy. If the entries of b are noisy but the system

Ax = b remains consistent (which can easily happen in the underdetermined case,

with J > I), the ART begun at x0 = 0 converges to the solution having minimum

norm, but this norm can be quite large. The resulting solution is probably useless.

Instead of solving Ax = b, we regularize by minimizing, for example, the function

||Ax − b||2 + ε2||x||2, (5.1)

for some small ε > 0. The solution to this problem is the vector x for which

(A†A + ε2I)x = A†b. (5.2)

However, we do not want to have to calculate A†A, particularly when the matrix A

is large.

We discuss two methods for using ART to obtain regularized solutions of Ax = b.

The first one is presented in [16], while the second one is due to Eggermont, Herman,

and Lent [33]. For notational convenience, we consider only real systems.

In our first method we use ART to solve the system of equations given in matrix

form by

[ AT εI ]
[

u
v

]

= 0.
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We begin with u0 = b and v0 = 0. The lower component of the limit vector is then

v∞ = −εx̂, where x̂ minimizes the function in line (5.1).

The method of Eggermont et al. is similar. In their method we use ART to solve

the system of equations given in matrix form by

[ A εI ]
[

x
v

]

= b.

We begin at x0 = 0 and v0 = 0. Then, the limit vector has for its upper component

x∞ = x̂ as before. Also, εv∞ = b − Ax̂.

Complicating our analysis for the case in which Ax = b has no nonnegative solu-

tions is the behavior of approximate solutions when nonnegativity is imposed, which

is the subject of the next section.

6 Approximate Solutions and the Nonnegativity

Constraint

For the real system Ax = b, consider the nonnegatively constrained least-squares

problem of minimizing the function ||Ax − b||, subject to the constraints xj ≥ 0

for all j; this is a nonnegatively constrained least-squares approximate solution. As

noted previously, we can solve this problem using a slight modification of the ART.

Although there may be multiple solutions x̂, we know, at least, that Ax̂ is the same

for all solutions.

According to the Karush-Kuhn-Tucker theorem [60], the vector Ax̂ must satisfy

the condition
I

∑

i=1

Aij((Ax̂)i − bi) = 0 (6.1)

for all j for which x̂j > 0 for some solution x̂. Let S be the set of all indices j for

which there exists a solution x̂ with x̂j > 0. Then Equation (6.1) must hold for all j

in S. Let Q be the matrix obtained from A by deleting those columns whose index

j is not in S. Then QT (Ax̂ − b) = 0. If Q has full rank and the cardinality of S is

greater than or equal to I, then QT is one-to-one and Ax̂ = b. We have proven the

following result.

Theorem 6.1 Suppose that A and every matrix Q obtained from A by deleting

columns has full rank. Suppose there is no nonnegative solution of the system of

equations Ax = b. Then there is a subset S of the set {i = 1, 2, ..., I} with cardinality

at most I − 1 such that, if x̂ is any minimizer of ||Ax − b|| subject to x ≥ 0, then

x̂j = 0 for j not in S. Therefore, x̂ is unique.
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When x̂ is a vectorized two-dimensional image and J > I, the presence of at most

I−1 positive pixels makes the resulting image resemble stars in the sky; for that reason

this theorem and the related result for the EMML algorithm ([3]) are sometimes called

night sky theorems. The zero-valued pixels typically appear scattered throughout the

image. This behavior occurs with all the algorithms discussed so far that impose

nonnegativity, whenever the real system Ax = b has no nonnegative solutions.

This result leads to the following open question:

Open Question 13: How does the set S defined above vary with the choice of

algorithm, with the choice of x0 for a given algorithm, and for the choice of subsets

in the block-iterative algorithms?

We return now to an issue that arose in the discussion of the Landweber and

projected Landweber algorithms, namely, obtaining a good upper bound for λmax,

the maximum eigenvalue of A†A.

7 An Upper Bound for the Maximum Eigenvalue

of A†A

The upper bounds for λmax we present here apply to any matrix A, but will be

particularly helpful when A is sparse.

7.1 The Normalized Case

We assume now that the matrix A has been normalized so that each of its rows has

Euclidean length one. Denote by sj the number of nonzero entries in the jth column

of A, and let s be the maximum of the sj. Our first result is the following [13]:

Theorem 7.1 For normalized A, λmax, the largest eigenvalue of the matrix A†A,

does not exceed s.

Proof: For notational simplicity, we consider only the case of real matrices and

vectors. Let AT Av = cv for some nonzero vector v. We show that c ≤ s. We have

AAT Av = cAv and so wT AAT w = vT AT AAT Av = cvT AT Av = cwT w, for w = Av.

Then, with eij = 1 if Aij 6= 0 and eij = 0 otherwise, we have

(
I

∑

i=1

Aijwi)
2 = (

I
∑

i=1

Aijeijwi)
2

≤ (
I

∑

i=1

A2

ijw
2

i )(
I

∑

i=1

e2

ij) =
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(
I

∑

i=1

A2

ijw
2

i )sj ≤ (
I

∑

i=1

A2

ijw
2

i )s.

Therefore,

wT AAT w =
J

∑

j=1

(
I

∑

i=1

Aijwi)
2 ≤

J
∑

j=1

(
I

∑

i=1

A2

ijw
2

i )s,

and

wT AAT w = c
I

∑

i=1

w2

i = c
I

∑

i=1

w2

i (
J

∑

j=1

A2

ij)

= c
I

∑

i=1

J
∑

j=1

w2

i A
2

ij.

The result follows immediately.

When A is normalized the trace of AAT , that is, the sum of its diagonal entries,

is M . Since the trace is also the sum of the eigenvalues of both AAT and AT A, we

have λmax ≤ M . When A is sparse, s is much smaller than M , so provides a much

tighter upper bound for λmax.

7.2 The General Case

A similar upper bound for λmax is given for the case in which A is not normalized.

Theorem 7.2 For each i = 1, ..., I let νi =
∑J

j=1 |Aij|2 > 0. For each j = 1, ..., J ,

let σj =
∑I

i=1 eijνi, where eij = 1 if Aij 6= 0 and eij = 0 otherwise. Let σ denote the

maximum of the σj. Then the eigenvalues of the matrix A†A do not exceed σ.

The proof of Theorem 7.2 is similar to that of Theorem 7.1; the details are in [13].

7.3 Upper Bounds for ε-Sparse Matrices

If A is not sparse, but most of its entries have magnitude not exceeding ε > 0 we say

that A is ε-sparse. We can extend the results for the sparse case to the ε-sparse case.

Given a matrix A, define the entries of the matrix B to be Bij = Aij if |Aij| > ε,

and Bij = 0, otherwise. Let C = A − B; then |Cij| ≤ ε, for all i and j. If A is

ε-sparse, then B is sparse. The 2-norm of the matrix A, written ||A||, is defined to be

the square root of the largest eigenvalue of the matrix A†A, that is, ||A|| =
√

λmax.

From Theorem 7.2 we know that ||B|| ≤ σ. The trace of the matrix C†C does not

exceed IJε2. Therefore

√

λmax = ||A|| = ||B + C|| ≤ ||B|| + ||C|| ≤
√

σ +
√

IJε, (7.1)
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so that

λmax ≤ σ + 2
√

σIJε + IJε2. (7.2)

Simulation studies have shown that these upper bounds become tighter as the size

of the matrix A increases. In hundreds of runs, with I and J in the hundreds, we

found that the relative error of the upper bound was around one percent [18].

8 From General Systems to Nonnegative Systems

The EMML and SMART algorithms require that the matrix involved have nonneg-

ative entries. Here, we show how to convert general linear systems to equivalent

systems having this desired form.

Suppose that Hc = d is an arbitrary (real) system of linear equations, with the

matrix H = [Hij]. Rescaling the equations if necessary, we may assume that for each

j the column sum
∑

i Hij is nonzero; note that if a particular rescaling of one equation

to make the first column sum nonzero causes another column sum to become zero, we

simply choose a different rescaling. Since there are finitely many columns to worry

about, we can always succeed in making all the column sums nonzero. Now redefine

H and c as follows: replace Hkj with Gkj =
Hkj

∑

i
Hij

and cj with gj = cj

∑

i Hij; the

product Hc is equal to Gg and the new matrix G has column sums equal to one. The

system Gg = d still holds, but now we know that
∑

i di = d+ =
∑

j gj = g+. Let U be

the matrix whose entries are all one, and let t ≥ 0 be large enough so that B = G+tU

has all nonnegative entries. Then Bg = Gg + (tg+)1, where 1 is the vector whose

entries are all one. So, the new system of equations to solve is Bg = d + (td+)1 = y.
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