
Math 491, Problem Set #14: Solutions

1. Consider the subset of the square grid bounded by the vertices (0, 0),
(m, 0), (0, n), and (m,n), and let q be a formal indeterminate. Let the
weight of the horizontal grid-edge joining (i, j) and (i+ 1, j) be qj (for
all 0 ≤ i ≤ m − 1 and 0 ≤ j ≤ n), and let each vertical grid-edge
have weight 1. Define the weight of a lattice path of length m+ n from
(0, 0) to (m,n) to be the product of the weights of all its constituent
edges. Let P (m,n) be the sum of the weights of all the lattice paths
of length m + n from (0, 0) to (m,n), a polynomial in q. (Note that
putting q = 1 turns P (m,n) into the number of lattice paths of length

m+ n from (0, 0) to (m,n), which is the binomial coefficient (m+n)!
m!n!

.)

(a) Give a formula for P (1, n) and for the generating function∑
n≥0

P (1, n)xn.

The n+ 1 paths from (0, 0) to (1, n) have weight 1, q, q2, . . . , qn,
so P (1, n) = 1 + q + q2 + . . .+ qn = (1− qn+1)/(1− q) and

∑
n≥0

P (1, n)xn =
∑
n≥0

xn − qn+1xn

1− q

=
∑
n≥0

(
xn

1− q
− q(qx)n

1− q

)

=
1

(1− q)(1− x)
− q

(1− q)(1− qx)

=
1

(1− x)(1− qx)

(b) Find (and justify) a recurrence relation relating the polynomials
P (m,n), P (m−1, n), and P (m,n−1) that generalizes the Pascal
triangle relation for binomial coefficients.

A path p from (0, 0) to (m,n) passes through either (1, 0) or (0, 1),
but not both.
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In the first case, let p′ be the path from 0 to (m− 1, n) obtained
from p by snipping out the step from (0, 0) to (1, 0) and sliding
the rest of the path one step to the left. In this case the weight of
p′ equals the weight of p.

In the second case, let p′ be the path from 0 to (m,n − 1) ob-
tained from p by snipping out the step from (0, 0) to (0, 1) and
sliding the rest of the path one step downward. In this case the
weight of p′ equals the weight of p times qm (since each of the m
horizontal edges of p has weight equal to q times the weight of the
corresponding horizontal edge of p′).

Combining, we find that

P (m,n) = P (m− 1, n) + qmP (m,n− 1).

Indeed, we can check this against (a), using the trivial case P (0, n) =
1: the relation P (1, n) = P (0, n) + q1P (1, n− 1) then amounts to
1 + q + q2 + . . .+ qn = 1 + q(1 + q + . . .+ qn−1), which is true.

(c) Let Fm(x) denote
∑
n≥0 P (m,n)xn. Use your answer from (b) to

give a formula for Fm(x) in terms of Fm−1(x), and from this derive
a non-recursive formula for Fm(x).

Multiply the inset equation by xn and sum over all n ≥ 1 (noting
that the omitted term P (m, 0)x0 is just 1):

Fm(x)− 1 = (Fm−1(x)− 1) + qmxFm(x)

This gives (1− xqm)Fm(x) = Fm−1(x) so that

Fm(x) = Fm−1(x)/(1− xqm).

Indeed, using this relation and the base case F0(x) = 1/(1−x) we
get the general formula

Fm(x) =
1

(1− x)(1− xq) · · · (1− xqm)
.

(d) Write a computer program to compute the polynomial P (m,n) for
any input values m,n.
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readlib(coeftayl);

F := proc(m) local i; product(1/(1-q^i*x),i=0..m); end;

P := proc(m,n) simplify(coeftayl(F(m),x=0,n)); end;

r := proc(m,n)

simplify(P(m,n)*P(m-1,n-1)/P(m-1,n)/P(m,n-1)); end;

Note that the function coeftayl is a good thing to use when you
want just one coefficient from a Taylor expansion; it saves time.

(e) Compute P (m,n)/P (m − 1, n) for various values of m ≥ 1 and
n ≥ 0 and conjecture a formula for it. Do the same for the ratio
P (m,n)/P (m,n− 1) with m ≥ 0 and n ≥ 1.

A bit of playing shows that the first ratio equals

(1 + q + q2 + . . .+ qm+n−1)/(1 + q + q2 + . . .+ qm−1)

or (1 − qm+n)/(1 − qm), while the second ratio equals or (1 −
qm+n)/(1− qn). That is, we conjecture that

P (m,n)/P (m− 1, n) = (1− qm+n)/(1− qm)

for m ≥ 1 and n ≥ 0 and

P (m,n)/P (m,n− 1) = (1− qm+n)/(1− qn)

for m ≥ 0 and n ≥ 1.

(f) Use the recurrence relation from (b) to verify your conjectures
from (e).

We prove the two conjectures simultaneously by joint induction
on m,n. That is, we verify the first formula for its base cases
(where m = 1 or n = 0) and the second formula for its base cases
(where m = 0 or n = 1), and we then verify that both formulas
hold for m,n if both formulas are both assumed to hold when m,n
are replaced by integers m′, n′ satisfying m′ + n′ < mn.

We have P (0, n) = 1 and P (1, n) = (1 − qn+1)/(1 − q) for all
n ≥ 0, so P (1, n)/P (0, n) = (1 − q1+n)/(1 − q1) for all n ≥ 0
and P (m, 0)/P (m − 1, 0) = (1 − qm+0)/(1 − qm) for all m ≥
1, as claimed. It is also easy to check that P (m, 0) = 1 and
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P (m, 1) = (1 − qm+1)/(1 − q) for all m ≥ 0, so P (0, n)/P (0, n −
1) = (1 − q0+n)/(1 − qm) for all n ≥ 1 and P (m, 1)/P (m, 0) =
(1− qm+1)/(1− q1) for all m ≥ 0, as claimed.

Next we use the induction hypothesis to prove P (m,n)/P (m −
1, n) = (1 − qm+n)/(1 − qm). Rewrite this as P (m,n) = P (m −
1, n)(1 − qm+n)/(1 − qm). We know (from (b)) that P (m,n) =
P (m − 1, n) + qmP (m,n − 1), so the thing we’re trying to prove
can be rewritten as P (m − 1, n)(1 − qm+n)/(1 − qm) = P (m −
1, n) + qmP (m,n− 1) or

P (m− 1, n)(1− qn)/(1− qm) = P (m,n− 1).

But by the induction hypothesis we have P (m − 1, n) = P (m −
1, n − 1)(1 − qm−1+n)/(1 − qn) and P (m,n − 1) = P (m − 1, n −
1)(1− qm+n−1)/(1− qm); dividing the first of these by the second
gives us what we need to prove.

Lastly we use the induction hypothesis to prove P (m,n)/P (m,n−
1) = (1 − qm+n)/(1 − qn). Rewrite this as P (m,n) = P (m,n −
1)(1−qm+n)/(1−qn). We know (from (b)) that P (m,n) = P (m−
1, n) + qmP (m,n − 1), so the thing we’re trying to prove can be
rewritten as P (m,n − 1)(1 − qm+n)/(1 − qn) = P (m − 1, n) +
qmP (m,n− 1) or

P (m,n− 1)(1− qm)/(1− qn) = P (m− 1, n),

which we proved in the preceding paragraph.

This completes the proof.

Note that we can conclude as a corollary that P (m,n) = P (n,m)
for all m,n (though as we’ll see there are easier ways to prove
this!).

4


