Math 491, Problem Set #7: Solutions

1. One basis for the space of polynomials of degree less than d is the
monomial basis 1,t,t2,....t%"1. Another is the shifted monomial basis
L(t+1),(t+1)2 .., (t+1)t Call these bases uy, ..., uq and vy, ..., vq
respectively.

(a) Derive a formula for the entries of the change-of-basis matriz M
expressing the u;’s as linear combinations of the v;’s.
We seek a d-by-d matrix M that, when multiplied on the right
by the column vector e; (with a 1 in the i¢th position and a 0 ev-
erywhere else), gives a column vector (cy,cs,...,cq)T such that
u; = civ; + cpvg + ...+ cqug. Now u; = 78 = ((t+ 1) —
i i1 (i—1 ' i—1—j i-1 (i—1 i—1—j
D =i () @+ 1 =) = S (5 v (1) =
t (;j) v;(—=1)"77, s0 ¢; = (1) (;j) (which gets interpreted
as 0 for 7 > 7). Hence

M.

g =

(—1) (1) for1<j<i<n,
0 otherwise.

(Note: T didn’t specify whether the vectors were to be treated
as row-vectors or column-vectors, or equivalently, whether the
change-of-basis matrix was supposed to be applied on the right
or on the left. If you adopted the row-vector approach, you would
find that the answers you got for parts (a) and (b) are reversed,
relative to mine.)

(b) Derive a formula for the entries of the change-of-basis matriz N
expressing the v;’s as linear combinations of the u;’s.
This one is even easier: v; = (1)1 = 377 (jzl)ti =37, (i:i)ul
SO .
o .
N, = (i_l) for 1 g'z <j<n,
’ 0  otherwise.

(¢) From the description of M and N as basis-change matrices, we
know that MN = NM = I. Forgetting for the moment what M



and N mean, rewrite the assertions MN = NM = I as bino-
mial coefficient identities, and prove them either algebraically or
bijectively.

The assertion MN = I can be rewritten as >; M; ;N;; = i e
where 0, j is 1 if i = j and 0 otherwise. That is, Z(—l)j_i<j_1) (k_1>

i—1) -1
(i, k) where the sum is over all j such that ¢ < j < k. For conve-

nience, we shift indices and write this as

s ())-son

where the sum is still over all j such that ¢+ < j < k.

Algebraic proof: The sum in ?uestion is the coefficient of 2*~ in

the product of (2) — (’tl)x + Zf) ?— 4 (—=1)k (]:) A S
and (i) + (kfl)x—l— (kZ):z;Q +...+ (';)xk_i +...+ (ﬁ)xk The first
factor can be recognized as (14x)~ (Y (by the binomial theorem)
and the latter can be recognized as (1 + z)*. So the product is
(1 + 2)*="1. The coefficient of 2%~ in the formal power series
expansion of (14 z)*~"!is 0 as long as k — i — 1 is non-negative,
since in that case (1 + x)¥~*~1 is just a polynomial of degree less
than k —i. However, when i = k, (1+2)* ! becomes the formal
power series (1+2)™! = 1—z+x?—2%+. . ., in which the coefficient
of =% is just the constant term 1.

Combinatorial proof: Given a set C of size k, > (—1)7" (Z) (’;)
counts the number of ways to choose a subset B C C of size j and a
subset A C B of size i, where a choice of A, B, C' counts as positive
or negative according to whether the number of elements of B that
are not in C'is even or odd. If we hold the subset A fixed and do
a signed enumeration of the sets B satisfying A C B C (', we find
that the signed count is 1 if A = C and 0 otherwise. (Reason:
This is just like signed enumeration of the subsets of C'\ A, where
a set counts as positive or negative according to whether it has an
even or odd number of elements.) If i = k, there is exactly one
set A, namely C' itself, whose aggregate contribution is non-zero,
and in this case the aggregate contribution is 1; whereas if i < k,
all the aggregate contributions vanish. This proves the identity.



The assertion NM = [ can be rewritten as >=; N; ;M = di , that
is, (j_1>(—1)k_j (k_l) = 0, ;. Re-indexing, we write (—1)¥~J (3) (k> =

i—1 7—1 i) \J
0; ;. The proofs are similar to what appeared above.



