
Math 491, Take-home Midterm

Do all of the following problems:

1(a) (20 points) For n ≥ 1, let an be the number of ways to put
pennies on the cells of a 2-by-n rectangle (at most one penny
per cell) so that no two pennies are horizontally or vertically
adjacent. Thus a1 = 3, a2 = 7, a3 = 17, etc. Express the
generating function

∑
n≥1 anx

n as a rational function of x,
and give a formula for an.

First solution: There are three possibilities for each column:
a penny in the Top cell, a penny in the Bottom cell, or a
penny in Neither cell. A permitted configuration of pennies
can be represented as a sequence of T’s, B’s, and N’s such
that no two T’s occur in a row and no two B’s occur in
a row. The number of such sequences is the sum of the
entries in the n− 1st power of the transfer matrix

0 1 1
1 0 1
1 1 1


The characteristic polynomial of this matrix is t3−t2−3t−
1 = (t+ 1)(t2−2t−1) with roots −1, 1 +

√
2, 1−

√
2. Thus

the final answer is of the form an = A(−1)n+B(1+
√

2)n+
C(1−

√
2)n for suitable constants A, B, and C. To find A,

B, and C, use the fact that a1 = 3, a2 = 7, and a3 = 17 to
get A = 0, B = 1

2

√
2 + 1

2 , and C = 1
2 −

1
2

√
2. Multiplying

the generating function 3x+ 7x2 + 17x3 + 41x4 + 99x5 + . . .

by 1− x− 3x2− x3, we get 3x+ 4x2 + x3 + 0x4 + 0x5 + . . ..
So ∑

n≥1
anx

n =
3x+ 4x2 + x3

1− x− 3x2 − x3 =
3x+ x2

1− 2x− x2 .



Second solution: Like the above, but we include n = 0 until
the very end. The characteric polynomial t3−t2−3t−1 tells
us that the an’s satisfy the recurrence an+3−an+2−3an+1−
an = 0, which (with n = 0) gives us a0 = 1 as the correct
value to use. Then we can solve for A, B, and C using
the fact that a0 = 1, a1 = 3, and a2 = 7 (which involves
slightly less arithmetic than the first solution). Multiplying
the generating function 1+3x+7x2+17x3+41x4+99x5+. . .
by 1− x− 3x2 − x3, we get 1 + 2x+ 0x2 + 0x3 + . . .. So

∑
n≥0

anx
n =

1 + 2x+ x2

1− x− 3x2 − x3

and

∑
n≥1

anx
n =

1 + 2x+ x2

1− x− 3x2 − x3 − 1

=
1 + x

1− 2x− x2 − 1

=
3x+ x2

1− 2x− x2 .

Third solution: Let A(x) be the generating function for
configurations of width 1 or greater in which every col-
umn has at least one penny, and B(x) be the generating
function for configurations of width 1 or greater in which
every column has no pennies. Then the desired generat-
ing function is A(x) + B(x) + A(x)B(x) + B(x)A(x) +
A(x)B(x)A(x)+B(x)A(x)B(x)+. . ., since every non-empty
permitted configuration of pennies consists of alternating
blocks of the two different kinds. Let’s omit “(x)” for con-
venience. Then we can write the infinite sum A + B +



AB +BA+ABA+BAB + . . . as A+ABA+ABABA+
. . . + BA + BABABA + . . . + B + BAB + BABAB +
. . .+AB +ABABAB + . . . = (A+BA)/(1−BA) + (B +
AB)/(1 − AB) = (A + B + 2AB)/(1 − AB). It is easy
to see that A = A(x) = 2x + 2x2 + 2x3 + . . . = 2x

1−x and
B = B(x) = x+ x2 + x3 + . . . = x

1−x . So

A+B + 2AB

1− AB
=

3x
1−x + 4x2

(1−x)2

1− 2x2

(1−x)2

=
3x(1− x) + 4x2

1− 2x+ x2 − 2x2

=
3x+ x2

1− 2x− x2 .

1(b) (20 points) For n ≥ 2, let bn be the number of ways to put
pennies on the cells of a 2-by-n rectangle (at most one penny
per cell) so that no two pennies are horizontally or verti-
cally adjacent, where now the rectangle has been wrapped
around to form a cylinder, so that pennies in the two upper
corners (or pennies in the two lower corners) are consid-
ered adjacent: b2 = 7, b3 = 13, etc. Express the generating
function

∑
n≥2 bnx

n as a rational function of x, and give a
formula for bn.

First solution: We can think of these cylindrical configura-
tions of length n as being ordinary configurations of length
n+1 with the property that the first and last symbols agree.
Hence the number of such configurations is the sum of the
diagonal entries in the nth power of the 3-by-3 matrix in-
troduced for part (a). As in part (a), the fact that the



characteristic polynomial is t3− t2− 3t− 1 tells us that we
can use 1− x− 3x2 − x3 as our denominator. Multiplying
the generating function 7x2 +13x3 +35x4 +81x5 +199x6 . . .

by 1−x− 3x2−x3, we get 7x2 + 6x3 +x4 + 0x5 + 0x6 + . . .,
so

∑
n≥2 bnx

n = 7x2+6x3+x4

1−x−3x2−x3 .

Second solution: Like the first, but we include the term b1 =
1 = the trace of the 3-by-3 matrix M . Then as discussed
in class we have

∑
n≥1 bnx

n =
∑
n≥1 Trace(Mn)xn = −xQ′(x)

Q(x)
with Q(x) = det(I−xM) = 1−x−3x2−x3, so

∑
n≥1 bnx

n =
x+6x2+3x3

1−x−3x2−x3 and
∑
n≥2 bnx

n = x+6x2+3x3

1−x−3x2−x3 − x = 7x2+6x3+x4

1−x−3x2−x3 .

2(a) (20 points) For all n ≥ 0, let cn be the number of sequences
of length n in which every term is 1, 2, 3, or 4, such that a
1 or a 4 never appears immediately after a 1 or a 2. Express
the generating function

∑
n≥0 cnx

n = 1+4x+12x2+36x3+. . .
as a rational function of x, and give an algebraic formula
for cn valid for all n ≥ 0.

First solution: The matrix expressing the adjacency con-
straints is

M =


0 1 1 0
0 1 1 0
1 1 1 1
1 1 1 1


with characteristic polynomial t4 − 3t3; the roots are 0,
0, 0, and 3. The answer we seek is therefore of the form
(c0, c1, c2, c3, . . .) = (A,B,C, 0, 0, 0, . . .)+D(1, 3, 9, 27, 81, . . .).



Since

M 2 =


1 2 2 1
1 2 2 1
2 4 4 2
2 4 4 2

 ,

we have 27D = c3 = sum of entries of M 2 = 36, so D =
4/3. Hence (c0, c1, c2, c3, . . .) = (−1/3, 0, 0, 0, 0, 0, . . .) +
(4/3, 4, 12, 36, 108, 324, . . .). We can write the nth term as
cn = 4

33n− 1
30n. Multiplying 1+4x+12x2+36x2+108x3+. . .

by 1− 3x we get 1 + x+ 0x2 + 0x3 + . . ., so the generating
function is 1+x

1−3x .

Second solution: The number of permitted sequences of
length n ≥ 2 is given by the sole entry of uMn−1v where
u is the all-1’s row-vector of length 4 and v is the all-1’s
column-vector of length 4. Thus the generating function for
all permitted sequences of length ≥ 2 is u (Mx2 +M 2x3 +
M 3x4 + . . .) v = uMx2 (I −Mx)−1 v. So we ask Maple to
set

u := matrix(1,4,[1,1,1,1]);

v := matrix(4,1,[1,1,1,1]);

M := matrix(4,4,[0,1,1,0,0,1,1,0,

1,1,1,1,1,1,1,1]);

and to calculate

simplify(multiply(u,evalm(M*x^2*(1-M*x)^(-1)),v));

we get as the answer the 1-by-1 matrix whose sole entry is
12x2/(1− 3x). To get the correct constant term and linear



term, we must add 1+4x, obtaining 1+4x+12x2/(1−3x) =
(1 + x)/(1− 3x).

Note that you probably wouldn’t want to do the problem
this way by hand, since the matrix-calculations are rather
messy; indeed, if instead of

simplify(multiply(u,evalm(M*x^2*(1-M*x)^(-1)),v))

we’d given the command

multiply(u,evalm(M*x^2*(1-M*x)^(-1)),v)

we would have seen the rather daunting expression

matrix([[4*x^2*(-x^2/(-1+3*x)+x*(-1+x)/(-1+3*x))

+2*x^2*(-(1-3*x+x^2)/(-1+3*x)-x^2/(-1+3*x)

+2*x*(-1+x)/(-1+3*x))+2*x^2*((x^2+2*x-1)/(-1+3*x)

-x*(x+1)/(-1+3*x))+2*x^2*(x*(-1+x)/(-1+3*x)

+(x^2+2*x-1)/(-1+3*x)-2*x*(x+1)/(-1+3*x))

+2*x^2*(x*(-1+x)/(-1+3*x)-(x^2-2*x+1)/(-1+3*x))

+2*x^2*(2*x*(-1+x)/(-1+3*x)-(x^2-2*x+1)/(-1+3*x)

-x*(x+1)/(-1+3*x)) +2*x^2*(-2*x^2/(-1+3*x)

+x*(-1+x)/(-1+3*x)+(x^2+2*x-1)/(-1+3*x))]])

Fortunately, Maple is fairly adept at cleaning up such messes.

2(b) (20 points) Let dn be the total number of 1’s that occur in
all such sequences, so that dn/cn is the average number of
1’s per sequence, and dn/ncn is the proportion of terms of
each sequence equal to 1 (on average). The values d1 = 1,
d2 = 4, and d3 = 16 will help you verify that you have un-
derstood the general definition of dn. Find a linear recur-
rence relation satisfied by dn, an exact formula for dn/cn,



and the limit of dn/ncn as n goes to infinity. (Hint: This
limit is a rational number.)

First solution: For i = 1 through 4, define ci(n) as the num-
ber of permitted sequences of length n whose last symbol
is i. Note that for all n ≥ 2, ci(n) is equal to (2)(3)n−2

if i is 1 or 4, and is equal to (4)(3)n−2 if i is 2 or 3. It’s
easy to guess this pattern if we just try taking powers of
M , and once we’ve guessed the pattern, it’s easy to prove
it by induction: since ( 1 2 2 1 ) times M equals ( 3 6 6 3 ),
it follows that ( (2)(3)n−2 (4)(3)n−2 (4)(3)n−2 (2)(3)n−2 )
times M equals ( (2)(3)n−1 (4)(3)n−1 (4)(3)n−1 (2)(3)n−1 ).

From this, we can derive joint non-homogeneous recurrence
relations for d1(n), d2(n), d3(n), and d4(n), where di(n) is
defined as the total number of 1’s that occur in all permitted
sequences that end with i. Each of the sequences of length
n that end in 1 can be followed by a 2 or a 3, so that all
such sequences jointly contribute the amount d1(n) towards
d2(n+1) and d3(n+1). Likewise, the sequences of length n
that end in a 2 jointly contribute the amount d2(n) towards
d2(n + 1) and d3(n + 1). Similarly for sequences ending in
a 3 and sequences ending in a 4. But these sequences also
contribute to d1(n + 1) and d4(n + 1). Specifically, the
sequences of length n that ends in a 3 contribute d3(n) +
c3(n) to d1(n+1) and d3(n) to d4(n+1). (The reason for the
extra term c3(n) is that when we add a 1 at the end of each
of the c3(n) sequences of length n ending with a 3, we get
to contribute all the d3(n) 1’s that the old sequences had,
plus c3(n) new 1’s, namely the ones that just got added on
at the end.) Likewise for the sequences of length n that end



in a 4. Hence

d1(n+ 1) = d3(n) + c3(n) + d4(n) + c4(n)

d2(n+ 1) = d1(n) + d2(n) + d3(n) + d4(n)

d3(n+ 1) = d1(n) + d2(n) + d3(n) + d4(n)

d4(n+ 1) = d3(n) + d4(n).

This recurrence (which holds for all n ≥ 1) suffices to deter-
mine the di(n)’s by recursion, if we impose the appropriate
initial conditions d1(1) = 1, d2(1) = d3(1) = d4(1) = 0
and recall that c2(n) = c3(n) = (4)(3)n−2. Note that
d2(n) = d3(n) for all n ≥ 2, since the right-hand sides of
the 2nd and 3rd equations agree. Moreover, this holds for
n = 1 as well. Hence we can omit d3(n) from the system,
replacing it where it appears by d2(n):

d1(n+ 1) = d2(n) + c2(n) + d4(n) + c4(n)

d2(n+ 1) = d1(n) + 2d2(n) + d4(n)

d4(n+ 1) = d2(n) + d4(n).

(Here we also use c3(n) = c2(n).)

We can turn this into a homogeneous system if we include
c2 and c4 in the recurrence, via the equations c2(n + 1) =
3c2(n) and c4(n+ 1) = 3c4(n). Then we get

d1(n+ 1)
d2(n+ 1)
d4(n+ 1)
c2(n+ 1)
c4(n+ 1)


=



0 1 1 1 1
1 2 1 0 0
0 1 1 0 0
0 0 0 3 0
0 0 0 0 3





d1(n)
d2(n)
d4(n)
c2(n)
c4(n)


All four quantities, and linear combinations thereof, satisfy
the recurrence relation associated with the characteristic



polynomial of this matrix. Note that dn = d1(n) + d2(n) +
d3(n) + d4(n) = d1(n) + 2d2(n) + d4(n) is such a linear
combination. Since the characteristic polynomial of the 5-
by-5 matrix is t5−9t4+27t3−27t2 = t2(t−3)3, we see that dn
satisfies the recurrence dn+5− 9dn+4 + 27dn+3− 27dn+2 = 0.
And this would in fact be an acceptable answer. (Note that
this is equivalent to saying that T 2(T −3I)3 annihilates the
sequence (d0, d1, d2, . . .).)

However, by finding a formula for dn, we’ll find that there’s
a simpler recurrence that applies. Since the characteristic
polynomial has roots 0, 0, 3, 3, and 3, we can write dn
as A · 3n + B · n3n + C · n23n for all n ≥ 2. Using the
specific values d2 = 4 and d3 = 16 and d4 = 60, we find
A = B = 4

27 and C = 0, so dn = 4
27(n + 1)3n for n ≥ 2.

Since there is no n23n contribution, we see that T 2(T −3I)2

annihilates (d0, d1, d2, . . .), so that dn satisfies the recurrence
dn+4 − 6dn+3 + 9dn+2 = 0.

Since for n ≥ 2 we have cn = 4
33n and dn = 4

27(n+ 1)3n, we
have dn/cn = 1

9(n+1) (with d1/c1 = 1/4). So dn/ncn = n+1
9n ,

which converges to 1
9 as n gets large.

Second solution: Here’s a partial-credit sort of approach
to the problem. Say we succeed in obtaining the num-
bers dn for 2 ≤ n ≤ 8 by writing a computer program
that exhaustively goes through all possibilities: 4, 16, 60,
216, 756, 2592, and 8748. We note that each term is
roughly three times the preceding one, so we write down
values of dn+1 − 3dn, obtaining the sequence 4, 12, 36,
108, 324, 972. Now we notice that each term is exactly
three times the preceding one. We can conjecture that
this is true for all applicable values of n; that is dn+2 −



3dn+1 = 3(dn+1 − dn) for all n ≥ 2. That is, we conjec-
ture that the sequence (d2, d3, d4, . . .) is annihilated by the
linear operator (T − 3I)2. But (d2, d3, d4, . . .) is just T 2 ap-
plied to (d0, d1, d2, d3, d4, . . .). So we are conjecturing that
T 2(T−3I)2 annihilates (d0, d1, d2, . . .). Since T 2(T−3I)2 =
T 4−6T 3+9T 2, we thus conjecture that dn+4 = 6dn+3−9dn+2

for all n ≥ 0.

Third solution: Adopting the method of the second solution
to part (a), we create a two-variable generating function
F (w, x); each permitted sequence has weight waxb, where
a is the total number of 1’s in the sequence and b is the total
length of the sequence (which we assume is at least 2). This
generating function is u (Mx2 + M 2x3 + M 3x4 + . . .) v =
uMx2 (I −Mx)−1 v where now

u =
(
w 1 1 1

)
,

v =


1
1
1
1

 ,

and

M =


0 1 1 0
0 1 1 0
w 1 1 1
w 1 1 1

 .

(It makes sense that the row-vector u has a w in its first
component: we should pick up a factor of w in the weight
of a word if the first symbol is a 1. Likewise, it makes
sense that M has w’s in its first column, since that corre-
sponds to adding a new 1 at the end of the growing word,



which increases its weight by w. On the other hand, it also
makes sense that there are no w’s in the column-vector v,
since multiplying by v is just a handy way for summing up
the entries of the row-vector that results from multiplying
together all the earlier factors.) So we tell Maple

u := matrix(1,4,[w,1,1,1]);

v := matrix(4,1,[1,1,1,1]);

M := matrix(4,4,[0,1,1,0,0,1,1,0,w,1,1,1,w,1,1,1]);

F := simplify(multiply(

u,evalm(M*x^2*(1-M*x)^(-1)),v))[1,1];

and we find that F (w, x) = x2(w2x + 2wx + 4w − 3x +
8)/(1 − 3x + x2 − x2w). Now we want to differentiate
with respect to w and set w = 1, which Maple is happy
to do: simplify(subs(w=1,diff(F,w))); elicits the reply
4x2(1 − 2x)/(1 − 3x)2. So this is the generating function
for dn. Since the denominator is 1 − 6x + 9x2, the se-
quence dn eventually satisfies the second-order recurrence
dn+2 = 6dn+1 + 9dn; but since the numerator does not have
degree 2−1 = 1 as we would like but rather exceeds this de-
gree by 2, the recurrence relation won’t kick in until n = 2.

We proceed from here as in the first solution.

(2) (revised) Consider all finite sequences made of the symbols
1 and 2. Assign each such sequence weight waxb, where a is
the number of 1’s and b is the length of the sequence. Define
the two-variable generating function F (w, x) as the sum of
the weights of all finite sequences (including the empty se-
quence, whose weight is of course 1). Let cn be the number
of sequences of length n, and dn be the number of 1’s jointly



contained in all those sequences (so that c0 = 1, c1 = 2,
c2 = 4, d0 = 0, d1 = 1, d2 = 4).

2(a) (10 points) Express F (w, x) as a rational function in the
variables w and x.

First solution: Write F (w, x) = p0(w)+p1(w)x+p2(w)x2 +
. . .. Since every sequence of 1’s and 2’s can be extended in
two different ways, namely by adding a 1 at the end (which
multiplies its weight by wx) or by adding a 2 at the end
(which multiplies its weight by x), we have pk+1(w) = (1 +
w)pk. So, starting from p0(w) = 1, we get p1(w) = 1 + w,
p2(w) = (1 + w)2, and in general, pk(w) = (1 + w)k. So
F (w, x) = 1+(1+w)x+(1+w)2x2 + . . ., a geometric series
with sum 1/(1− (1 + w)x) = 1/(1− x− wx).

Second solution: We adopt the method of the third solution
to the original problem. The sum of the weights of all the
words of length ≥ 1 is 1 + u (x + Mx2 + M 2x3 + M 3x4 +
. . .) v = u x (I −Mx)−1 v where

u =
(
w 1

)
,

v =

 1
1

 ,
and

M =

 w 1
w 1

 .
We find that ux(I −Mx)−1v is equal to 1

1−x−wx .

2(b) (10 points) Express the single-variable generating functions∑
n≥0 cnx

n and
∑
n≥0 dnx

n as rational functions in the vari-
able x.



Solution: For the former, we specialize F (w, x) by setting
w = 1:

∑
n≥0 cnx

n = 1/(1 − x − x) = 1/(1 − 2x). For
the latter, we differentiate with respect to w and then set
w = 1: d

dw1/(1−x−wx) = x/(1−x−wx)2, so
∑
n≥0 dnx

n =
x/(1− x− x) = x/(1− 2x)2.

2(c) (10 points) Give exact formulas for cn and dn.

1/(1 − 2x) = 1 + (2x) + (2x)2 + (2x)3 + . . . = 1 + (2)x +
(22)x2 + (23)x3 + . . ., so cn = coefficient of xn = 2n. This
makes sense, since of course the number of sequences of
length n composed of 1’s and 2’s is 2n.

x/(1 − 2x)2 = x(1 + (2)x + (22)x2 + (23)x3 + . . .) = x(1 +
2(2)x + 3(22)x2 + 4(23)x3 + . . .) = x + 2(2)x2 + 3(22)x3 +
4(23)x4 + . . ., so dn = coefficient of xn = n(2n−1). This
makes sense, since the 2n sequences of length n jointly con-
tain n2n digits, of which exactly half are 1’s and the other
half are 2’s (since the conditions of the problem are sym-
metrical between 1 and 2).

2(d) (10 points) Compute dn/cn, and explain why your answer
makes sense.

We get dn/cn = n/2, and dn/ncn = 1/2 for all n. As
remarked in part (c), this makes sense; half of the symbols
should be 1’s and half should be 2’s.

3 (10 points) Let Fn be the nth Fibonacci number as Wilf
indexes them (with F0 = F1 = 1, F2 = 2, etc.). Find
the lowest-degree non-trivial recurrence relation satisfied by



the sequence whose nth term is F 2
n , and show that the se-

quence is not governed by any non-trivial recurrence re-
lation of lower degree. (Here “recurrence relation” means
“homogeneous linear recurrence relation with constant co-
efficients”.)

We have Fn = Arn + Bsn with r = (1 +
√

5)/2 and s =
(1 −

√
5)/2, with A,B non-zero. Hence F 2

n = A2(r2)n +
2AB(rs)n + B2(s2)n, which is a linear combination of the
building blocks (r2)n, (rs)n, and (s2)n. Hence the sequence
(F 2

0 , F
2
1 , F

2
2 , F

2
3 , . . .) is annihilated by the operator (T −

r2I)(T − rsI)(T − s2I). We have rs = 1+
√

5
2

1−
√

5
2 = 1−5

4 =
−1, so (T − rsI) = (T + I). As for the other two factors in

the operator, r2 = 6+2
√

5
4 = 3+

√
5

2 , s2 = 3−
√

5
2 , r2+s2 = 3+3

2 =
3, and r2s2 = 9−5

4 = 1, so (T −r2I)(T +r2I) = T 2−3T + I.
Hence (T−r2I)(T−rsI)(T−s2I) = (T+I)(T 2−3T+I) =
T 3−2T 2−2T + I annihilates the sequence whose nth term
is F 2

n . It follows that F 2
n+3 − 2F 2

n+2 − 2F 2
n+1 + F 2

n = 0,
i.e., F 2

n+3 = 2F 2
n+2 + 2F 2

n+1 − F 2
n , for all n ≥ 0. Check:

32 = 2(22) + 2(12) − 12, 52 = 2(32) + 2(22) − 12, 82 =
2(52) + 2(32) − 22, 132 = 2(82) + 2(52) − 32, etc. So the
sequence satisfies a recurrence of degree 3.

To finish the problem, suppose there existed coefficients A
and B such that F 2

n+2 = AF 2
n+1 +BF 2

n for all n ≥ 0. Then,
plugging in n = 0 and n = 1, we get 22 = 12A + 12B

and 32 = 22A + 12B, i.e., 4 = A + B and 9 = 4A + B.
Solving, we get A = 5/3 and B = 7/3. But this would give
F 2

4 = (5/3)F 2
3 + (7/3)F 2

2 = (5/3)32 + (7/3)22 (which is not
even an integer), in contrast to the fact that F 2

4 = 52 = 25.

Alternatively, you could try to find A,B,C so as to satisfy



F 2
n+2 = AF 2

n+1 + BF 2
n for n equal to 0, 1, or 2; then you

would find that the only possible solution is A = B = C =
0, which does not correspond to a recurrence relation for
the sequence.

4 (10 points) Let fn be the nth Fibonacci number, indexed so
that f1 = f2 = 1, f3 = 2, etc. Let

gn =

 1 if n = 0,
2fn if n > 0.

Use generating functions to show that for all n > 0,

n∑
k=0

(−1)kgkgn−k = 0.

The alternating sum
∑n
k=0 (−1)kgkgn−k should remind us of

things like
(
n
0

)2−
(
n
1

)2
+
(
n
2

)2−
(
n
3

)2
+ . . . from the beginning

of the term, and we can apply the same method as we
did then. In fact, it is easy to check that g0gn − g1gn−1 +
g2gn−2 − . . . is equal to the coefficient of xn in the product
(g0 − g1x+ g2x

2 − . . .)(g0 + g1x+ g2x
2 + . . .).

If you weren’t able to see this straight away, you might
still have figured it out by applying Wilf’s general tactic of
multiplying by xn and summing.

∑
n≥0

∑n
k=0 (−1)kgkgn−kx

n

can be rewritten as

∑
n≥0

n∑
k=0

(−1)kgkx
kgn−kx

n−k

which is equal to

∑
n≥0

n∑
k=0

(gk(−x)k)(gn−kx
n−k).



If we re-index by setting j = n−k, we get
∑
j,k≥0 (gk(−x)k)(gjx

j),
which factors as

∑
j≥0 (gjx

j) times
∑
k≥0 (gk(−x)k), or (re-

naming our indices)
∑
n≥0 (gnx

n) times
∑
n≥0 (gn(−x)n).

We know that
∑
n≥1 fnx

n = x
1−x−x2 , so

∑
n≥0 gnx

n = 1 +

2 x
1−x−x2 = (1−x−x2)+2x

1−x−x2 = 1+x−x2

1−x−x2 . Replacing x by −x, we

get
∑
n≥0 gn(−x)n = 1+(−x)−(−x)2

1−(−x)−(−x)2 = 1−x−x2

1+x−x2 . Multiplying the

two together, we get 1+x−x2

1−x−x2
1−x−x2

1+x−x2 , which equals 1, i.e., 1 +
0x + 0x2 + . . .. For all n > 0, the coefficient of xn in
1 + 0x+ 0x2 + . . . is 0, so we have proved the claim.


