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A rotor-router network is a directed graph G with a designated ver-
tex called the source (from which every vertex of G can be reached) and
for each vertex v of positive out-degree some infinite periodic sequence of
directed edges e

(v)
1 , e

(v)
2 , . . . emanating from v, which we call the rotor pat-

tern at v. Vertices of out-degree 0 are called targets; we that from every
vertex there is a path to a target. Every rotor-router network determines
an infinite sequence of targets, called the hitting sequence. We imagine a
chip traveling through the network, repeatedly starting from the source and
traveling until it hits a target, such that the chip travels along edge e(v)

n after
its nth visit to v; this constraint uniquely specifies the itinerary of the chip.
The hitting sequence consists of the successive targets the chip visits.

It can be shown that the chip will visit the target set infinitely often, so
that the hitting sequence is infinite, and that the hitting sequence is periodic.
See the article “GLPZ”, aka Local-to-Global Principles for Rotor Walk on

Graphs by Giuliano Giacaglia, Lionel Levine, James Propp and Linda Zayas-
Palmer (or rather, send me an email and I’ll put you on the preprint list, since
we don’t have a version of the article ready for distribution yet); or see the
slides from my April 2010 MIT Combinatorics Seminar talk Local-to-Global

Phenomena for Rotor-Routing (http://jamespropp.org/mitcomb10a.pdf).
Every rotor pattern, being a periodic sequence (say of period n), deter-

mines a partition π of [n] where i and j are in the same block iff e
(v)
i = e

(v)
j ;

we call π the type of the rotor pattern. Such a rotor-type can be represented
by the list f(1), f(2), . . . , f(n) where f is any function from [n] to N whose
sets-of-constancy are precisely the blocks of π. E.g., if the rotor pattern
at v is the period-3 sequence e, e′, e′, e, e′, e′, e, e′, e′, . . . (where e and e′ are
directed edges emanating from v), we can write its type as 1, 2, 2 or 2, 1, 1
or 3, 5, 5 etc. Note also that 1, 2 and 1, 2, 1, 2 denote the same rotor-type,
associated with a rotor that alternates between two edges.

Likewise, every hitting sequence, being a periodic sequence (say of period
N), determines a partition π of [N ], which we call the type of the hitting
sequence.

Claim 1: Every type of hitting sequence can be achieved by a rotor-
router network in which all rotors are of type 1,2. We therefore say that the
rotor-type 1,2 is universal.
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Proof of Claim 1: Consider a hitting sequence whose type is a partition
π of [N ]. Take any k with 2k ≥ N . We create a rotor-router network
whose underlying directed graph is a complete binary tree with 2k leaves and
with rotors of type 1, 2 at all non-leaf vertices. We modify the network by
introducing directed edges from 2k −N of the leaves back to the source (the
root) and by making identifications of the remaining N leaves in accordance
with the partition π.

Claim 2: The rotor-type 1,2,2 is universal.
Proof of Claim 2: We create a rotor-router network whose underlying

directed graph is a complete binary tree with 4 leaves and with rotors of type
1, 2, 2 at the three non-leaf vertices. We modify the network by introducing
directed edges from the leftmost and rightmost leaves back to the source (the
root). If the two remaining leaves are denoted by a and b, then the resulting
hitting sequence is a, b, a, b, . . ., which is of type 1,2. Since 1, 2 is universal,
we conclude that 1, 2, 2 is as well.

Claim 3: The rotor-types 1,2,1, and 1,2,2,1 are not universal.
Proof of Claim 3: GLPZ shows that if all rotors in a network are palin-

dromic (i.e., each rotor pattern, as a partition of [n] for some n, is invariant
under the map [n] → [n], k 7→ n + 1 − k), then so is the hitting sequence.

Claim 4: The rotor-types 1,1,2,2 and 1,1,1,2,2,2 are not universal.
Proof of Claim 4: GLPZ shows that for any m ≥ 1, if all rotors in a

network are m-repetitive (i.e., each rotor pattern, as a partition of [n] for some
n, has i and j in the same block whenever ⌈i/m⌉ = ⌈j/m⌉, or equivalently,
each rotor pattern, written as a sequence of length n, is a concatenation of
constant sequences of length m), then so is the hitting sequence.

Question 1: Which rotor-types are universal? E.g., is 1,1,2,2,2 universal?
What about the pair of types 1,1,2,2 and 1,1,1,2,2,2, or the pair of types
1,2,1 and 1,1,2,2, or the pair of types 1,2,2,1 and 1,1,2,2?

More generally, call a collection C of rotor-types a closed class if every
rotor-router network whose rotors all have types belonging to C has a hitting
sequence whose type belongs to C. E.g., the collection of palindromic rotor-
types is closed, as is the collection of k-repetitive rotor-types (k ≥ 1).

It can be shown that the rotor-type 1,2,1 is universal for the class of
palindromic rotor-types, as is the rotor-type 1,2,2,1, and that the rotor-type
1,1,. . . ,1,2,2,. . . ,2 consisting of m 1’s and m 2’s is universal for the class of
m-repetitive rotor-types.

Question 2: What are the closed classes of rotor-types? Is every such
class finitely generated? Singly generated?

2


