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First Gale-Robinson Conjecture (1991),
paraphrased: Fix distinct positive inte-
gers a, b, and k with k > max(a, b).
Then the infinite sequence of rational
numbers r1, r2, . . . defined by the initial
conditions

r1 = r2 = . . . = rk = 1

and the recurrence relation

rn = (rn−a rn−k+a + rn−b rn−k+b)/rn−k

(for n > k) is an infinite sequence of
integers .
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Examples:

a = 1, b = 2, k = 4:

rn rn−4 = rn−1 rn−3 + rn−2 rn−2

1,1,1,1,2,3,7,23,59,314,. . .
(the Somos-4 sequence)

a = 1, b = 2, k = 5:

rn rn−5 = rn−1 rn−4 + rn−2 rn−3

1,1,1,1,1,2,3,5,11,37,83,. . .
(the Somos-5 sequence)
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Second Gale-Robinson Conjecture (1991),
paraphrased: Fix positive integers a, b,
and c, and let k = a + b + c. Then
the infinite sequence of rational num-
bers r1, r2, . . . defined by the initial con-
ditions

r1 = r2 = . . . = rk = 1

and the recurrence relation

rn = (rn−a rn−k+a + rn−b rn−k+b

+rn−c rn−k+c) / rn−k

(for n > k) is an infinite sequence of
integers .
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Examples:

a = 1, b = 2, c = 3:

rn rn−6 = rn−1 rn−5 + rn−2 rn−4 + r2
n−3

1,1,1,1,1,1,3,5,9,23,75,421,. . .
(the Somos-6 sequence)

a = 1, b = 2, c = 4:

rn rn−7 = rn−1 rn−6 + rn−2 rn−5 + rn−3 rn−4

1,1,1,1,1,1,1,3,5,9,17,41,. . .
(the Somos-7 sequence)
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If you start such a sequence with terms
other than 1, you can get denomina-
tors, but the only primes that can oc-
cur in the denominators are primes that
belong to the finite set S consisting of
those primes that divide one or more of
the first k terms (“S-integrality”).
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The first proof of the Gale-Robinson con-
jectures was given by Fomin and Zelevin-
sky in 2002. They proved a stronger
claim, versions of which had previously
been conjectured by Somos, myself, and
possibly others.
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Fomin–Zelevinsky (2002): Fix positive
integers a, b, and k with k > max(a, b).
Then the infinite sequence of rational
functions r1(x1, . . . , xk), r2(x1, . . . , xk),
. . . defined by the initial conditions

r1 = x1, r2 = x2, . . . , rk = xk

and the recurrence relation

rn = (rn−a rn−k+a + rn−b rn−k+b) / rn−k

(for n > k) is an infinite sequence of
Laurent polynomials in x1, . . . , xk; that
is, each rational function r(x1, . . . , xk)
is a polynomial in x1, x

−1
1 , . . . , xk, x

−1
k .

S-integrality follows from Laurentness.
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A similar sort of story holds for the sec-
ond Gale-Robinson recurrence.

Fomin and Zelevinsky’s proof uses alge-
braic methods they developed for their
theory of cluster algebras.
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A stronger conjecture was that the co-
efficients in these Laurent polynomials
are all positive. This was proved in
2002 by David Speyer (for the first Gale-
Robinson conjecture) and by Gabriel Car-
roll and David Speyer (for the second
Gale-Robinson conjecture) using com-
binatorial methods, with guidance from
me, as part of the two-year program Re-
search Experiences in Algebraic Combi-
natorics at Harvard (REACH).

A “conditionally independent” proof of
the former result was found by Bousquet-
Mélou, Propp, and West at about the
same time.
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Speyer and Bousquet-Mélou–Propp–West
(2002): Fix positive integers a, b, and
k with k > max(a, b). Then the ra-
tional functions rn,i,j(. . .) (n, i, j ∈ Z)
defined by the initial conditions

rn,i,j = xn,i,j (1 ≤ n ≤ k)

and the recurrence relation

rn,i,j = (rn−a,i−1,j rn−k+a,i+1,j

+rn−b,i,j−1 rn−k+b,i,j+1) / rn−k,i,j

(for n > k) are Laurent polynomials
with positive coefficients, and in fact,
with all coefficients equal to 1.
Specializing away the dependence on i
and j gives a proof of the first Gale-
Robinson conjecture.
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Example: a = 1, b = 1, k = 2:

rn,i,j = xn,i,j (1 ≤ n ≤ 2);

rn,i,j = (rn−1,i−1,j rn−1,i+1,j

+rn−1,i,j−1 rn−1,i,j+1) / rn−2,i,j

(for n > 2). This is the octahedron
recurrence recurrence studied by David
Robbins in 1986, in his work with Rum-
sey on generalizations of Dodgson’s method
for calculating determinants by conden-
sation. Robbins and Rumsey showed
that the rn,i,j’s are Laurent polynomi-
als with all coefficients equal to 1.
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Elkies, Kuperberg, Larsen, and Propp
(1992): These Laurent polynomials are
weight enumerators of perfect match-
ings of (“Aztec diamond”) graphs. That
is, for each (n, i, j) there is a finite graph
G(n, i, j) whose perfect matchings are
in one-to-one correspondence with the
monomials in rn,i,j, where each mono-
mial can be interpreted as the weight of
the corresponding perfect matching.
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Bousquet-Mélou and West showed that
the same is true for the multivariate
Laurent polynomials given by the three-
dimensional version of the first Gale-
Robinson recurrence.

Speyer’s result is more general, and ap-
plies to many recurrences of type similar
to the first Gale-Robinson recurrence.
See Speyer, “Perfect Matchings and the
Octahedron Recurrence”, math.CO/0402452.
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Cube recurrence:

si,j,k si−1,j−1,k−1 = si−1,j,k si,j−1,k−1

+si,j−1,k si−1,j,k−1 + si,j,k−1 si−1,j−1,k

Carroll and Speyer studied solutions to
this equation with various sorts of bound-
aries and initial conditions. The same
sort of Laurentness property applies, yield-
ing a combinatorial proof of the second
Gale-Robinson conjecture, with a bonus
(positivity of the coefficients of the Lau-
rent polynomials).
Their proof gives enumerative signifi-
cance to Gale-Robinson sequences of the
second kind in terms of a new kind of
combinatorial object called a “grove”.
See Carroll and Speyer, “The Cube Re-
currence”, math.CO/0403417.
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Most of you are number theorists, not
combinatorialists; why should/might you
care about these things?
If you’re a number theorist, you care
about integrality.
If you care about integrality, you should
care about S-integrality.
If you care about S-integrality, you should
care about Laurentness.
If you care about Laurentness of the 1-D
recurrence, you should care about Lau-
rentness of the 3-D recurrence.
But if you’re looking at the 3-D recur-
rence, you’re already doing combinatorics!
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What I won’t talk (much) about:

1. Markoff numbers

Dana Scott considered the sequence

1, 1, 1, 2, 5, 29, 433, 37666, . . .

given by the quadratic recurrence

rnrn−3 = r2
n−1 + r2

n−2

More generally:
A Markoff triple is any triple of positive
integer solutions to x2+y2+z2 = 3xyz,
e.g., (x, y, z) = (2, 5, 29).
Production rule:

(x, y, z) 7→ (x, y, z′ = (x2 + y2)/z)

(and likewise for replacing x and y).
Every Markoff triple can be gotten from
(1,1,1) by this method.
The indexing set is not the integers, or
a 3-D lattice, but a 3-regular tree.
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The same sort of story that applies to
Somos sequences applies also to the Scott
sequence and to Markoff numbers: a
Laurentness result holds, the coefficients
are positive, and all the positive integers
we encounter admit an enumerative in-
terpretation.

18



2. Robbins stability

View the Somos-4 recurrence as a ratio-
nal map

(w, x, y, z) → (x, y, z, (xz + y2)/w)

from C4 to itself (with singularities).
How might we compute the Somos-4 se-
quence modulo 8 (say)?
Can we replace C by Z/8Z?
View modular division as a multi-valued
function; e.g., 4 / 2 is 2 or 6 mod 8.
If we only keep track of the terms of the
Somos-4 sequence mod 8, divergence oc-
curs when we divide an even number
by an even number, which is ambigu-
ous mod 8.
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(1,2,3,7)

|

(2,3,7,7)

/ \

(3,7,7,3) (3,7,7,7)

| |

(7,7,3,2) (7,7,7,6)

| |

(7,3,2,1) (7,7,6,5)

| |

(3,2,1,1) (7,6,5,1)

| |

(2,1,1,1) (6,5,1,1)

/ | | \

(1,1,1,1) (1,1,1,5) (5,1,1,5) (5,1,1,1)

| | | |

(1,1,1,2) (1,1,5,6) (1,1,5,6) (1,1,1,2)

But note that re-convergence occurs too.
This happens more often than we can
explain.
See Kedlaya and Propp, “In search of
Robbins stability”, math.NT/0409535.

20



3. Degree-sequences

View the Somos-4 recurrence as a ratio-
nal map from CP4 to itself:

(t : w : x : y : z) → (tw : wx : wy : wz : xz+y2)

Let dn be the degree of the nth iterate.
The degree-sequence is 2, 3, 5, 8, 10, 14,
18, 22, 28, 33, 39, 46, 52, 60, . . .
This sequence satisfies a linear recur-
rence and exhibits quadratic growth.
More specifically:
The 1st differences dn − dn−1 are 1, 2,
3, 2, 4, 4, 4, 6, 5, 6, 7, 6, 8, 8, 8, 10, 9,
10, 11, . . .
The 2nd differences dn− 2dn−1 +dn−2
are 1, 1, −1, 2, 0, 0, 2, −1, 1, 1, −1, 2,
0, 0, 2, −1, 1, 1, −1, . . . (period 8).
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Quadratic or sub-quadratic degree-growth
apparently holds for all the Gale-Robinson
recurrences and seems to be a common
feature of many “integrable” recurrences.
I would be very interested in knowing
about recurrences for which the degree-
sequence is subexponential but super-
quadratic.
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