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In this paper, we continue the study of domino-tilings of Aztec di-
amonds (introduced in [1] and [2]). In particular, we look at certain
ways of placing “barriers” in the Aztec diamond, with the constraint
that no domino may cross a barrier. Remarkably, the number of con-
strained tilings is independent of the placement of the barriers. We do
not know of a simple combinatorial explanation of this fact; our proof
uses the Jacobi-Trudi identity.
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I. Statement of result.

An Aztec diamond of order is a region composed of
unit squares, arranged in bilaterally symmetric fash-

ion as a stack of rows of squares, the rows having lengths

A domino is a 1-by-2 (or 2-by-1) rectangle. It was shown in
[1] that the Aztec diamond of order can be tiled by dominoes
in exactly ways.
Here we study barriers, indicated by darkened edges of

the square grid associated with an Aztec diamond. These are
edges that no domino is permitted to cross. (If one prefers
to think of a domino tiling of a region as a perfect match-
ing of a dual graph whose vertices correspond to grid-squares
and whose edges correspond to pairs of grid-squares having a
shared edge, then putting down a barrier in the tiling is tanta-
mount to removing an edge from the dual graph.) Figure 1(a)
shows an Aztec diamond of order 8 with barriers, and Figure
1(b) shows a domino-tiling that is compatible with this place-
ment of barriers.
The barrier-configuration of Figure 1(a) has special struc-

ture. Imagine a line of slope 1 running through the center

of the Aztec diamond (the “spine”), passing through grid-
squares, with . Number these squares from lower
left (or “southwest”) to upper right (or “northeast”) as squares
1 through . For each such square, we may place barriers on
its bottom and right edges (a “zig”), barriers on its left and top
edges (a “zag”), or no barriers at all (“zip”). Thus Figure 1
corresponds to the sequence of decisions “zip, zig, zip, zag,
zip, zag, zip, zig.” Notice that in this example, for all , the
th square has a zig or a zag if is even and zip if is odd.
Henceforth (and in particular in the statement of the following
Theorem) we assume that the placement of the barriers has this
special form.

Theorem 1: Given a placement of barriers in the Aztec dia-
mond as described above, the number of domino-tilings com-
patible with this placement is .

Some remarks on the Theorem:
(1) The formula for the number of tilings makes no mention

at all of the particular pattern of zigs and zags manifested by
the barriers. Since there are even-indexed squares along the
spine, there are different barrier-configurations, all of which
are claimed to have equal numbers of compatible tilings.
(2) Each domino-tiling of the Aztec diamond is compat-

ible with exactly one barrier configuration (this will be ex-
plained more fully in section II). Hence, summing the for-
mula in the Theorem over all barriers configurations, one gets

, which is , the total number of
tilings.
(3) 180-degree rotation of the Aztec diamond switches the

odd-indexed and even-indexed squares along the spine, so the
Theorem remains true if we consider barrier-configurations in
which the th square has a zig or a zag if is odd and zip if is
even.

II. Preliminaries for the proof.

Consider a particular tiling of an Aztec diamond, and con-
sider a particular square along the spine. If that square shares
a domino with the square to its left, or above it, then placing a
zag at that square is incompatible with the tiling. On the other
hand, if the square shares a domino with the square to its right,
or below it, then placing a zig at that square is incompatible
with the tiling. It follows that for each domino-tiling, there is
a unique compatible way of placing zigs and zags along the
spine. This holds true whether one only puts zigs and zags at
every other location along the spine (as in Figure 1(a)) or at ev-
ery location along the spine. In the case of the tiling depicted
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FIG. 1. Barriers and tiling.

in Figure 1(b), the full sequence of zigs and zags goes “zag,
zig, zig, zag, zig, zag, zag, zig.”
Each such sequencemust contain equal numbers of zigs and

zags. For, suppose we color the unit squares underlying the
Aztec diamond in checkerboard fashion, so that the squares
along the spine are white and so that eachwhite square has four
only neighbors (and vice versa). The barriers divide the Aztec
diamond into two parts, each of which must have equal num-
bers of black and white squares (since each part can be tiled by
dominoes). It follows that the white squares along the spine
must be shared equally by the part northwest of the diagonal
and the part southeast of the diagonal.
Given a sequence of zigs and zags, let

be the sequence of locations of the zigs, and
let be the sequence of lo-
cations of the zags. Note that the sets and

are disjoint with union . Let
us call them a balanced (ordered) partition of .
It is proved in section 4 of [1] that the number of compatible
domino-tilings of the Aztec diamond of order is

(1)

where . (This is equivalent to Theorem 2 in [4].)
For instance, the tiling shown in Figure 1(b) determines the
balanced partition , , and
there are 2025 compatible tilings.
If we sum (1) over all balanced partitions of

we must of course get . Theorem 1 claims that if we
sum (1) over only those balanced partitions which have
certain specified even numbers in (and the remaining even
numbers in ), we get . Thus, to prove Theorem
1, it suffices to prove that

(2)

is independent of , where the in the
sum ranges over all balanced partitions of such
that . Note that in this formulation,
has disappeared from the statement of the result, as has the

Aztec diamond itself.

III. Restatement in terms of determinants.

We can interpret the left-hand side of (2) using Schur func-
tions and apply the Jacobi-Trudi identity. The expression

(3)

is equal to the number of semistandard Young tableaux of
shape with parts
at most . That is to say, if one forms an array of unit squares
forming left-justified rows of lengths (from
top to bottom), (3) gives the numbers of ways of filling in the
boxes with numbers between and so that entries are weakly
increasing from left to right and strictly increasing from top to
bottom.
For background information on Young tableaux, Schur

functions, and the Jacobi-Trudi identity, see [5], [6], [7], or [8].
In particular, for the definition of Schur functions and a state-
ment of the Jacobi-Trudi identity, see formulas (5.13) and (3.4)
of [5], Definition 4.4.1 and Theorem 4.5.1 of [6], or Definition
7.5.1 and Theorem 7.11.1 of [8].
If we associate with each semistandard Young tableau the

monomial

where is the number of entries equal to in the tableau, then
the sum of the monomials associated with the tableau is the
Schur function . By the Jacobi-Trudi
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identity, this is equal to the determinant

...
...

...

where is 0 if and otherwise is equal to the sum of all
monomials in with total degree (so that ,

, , etc.).
Thus, if we let denote the length- row-vector

we see that the summand in (2) is the determinantal product

...
...

specialized to . To prove Theorem 1,
it will suffice to show that this product, summed over all bal-
anced partitions with , yields

...
...

For, since this expression is independent of , and since the
sum of this expression over all possible values of

is (by the result proved in [1]), the value
of the expressionmust be , as claimed in Theorem
1.
It is interesting to note that one can also evaluate the preced-

ing determinantal product directly. Appealing to the Jacobi-
Trudi identity, we see that the product is

where and . It is
known that

and

so that the determinantal product is

Setting , we get . Multiplying this
by the factor from (1), we get . It is
simple to check that regardless of whether is even or odd, the

exponent is equal to ,
as was to be shown.

IV. Completion of proof.

Wecan deduce the desired identity as a special case of a gen-
eral formula on products of determinants. This formula ap-
pears as formula II on page 45 (chapter 3, section 9) of [9],
where it is attributed to Sylvester. However, we give our own
proof below.
Suppose is a fixed partition of into

two sets, and let be any row-vectors of
length . Given with , let de-
note the determinant of the -by- matrix

...

where with . Abus-
ing terminology somewhat, we will sometimes think of as a
set of vectors , rather than as a set of integers .

Theorem 2:

(4)

where ranges over all balanced partitions of
with ,

.

Remark: This yields as a corollary the desired formula of
the last section, with an extra sign-factor everywhere to take
account of the fact that we are stacking row-vectors the other
way.
Proof of Theorem 2: Every term on the left is linear in

, as is the term on the right; hence it suffices to
check the identity when all the ’s are basis vectors for the
-dimensional row-space.
First, suppose that the list does not contain

each basis vector exactly twice. Then it is easy to see that ev-
ery term vanishes.
Now suppose that the list contains each ba-

sis vector exactly twice. There are then ways to partition
into two sets of size such that

, since for each of the basis vectors we get to choose which
copy goes into and which goes into . However, not all of
these partitions occur in the sum on the left, since we are lim-
ited to partitions with , . Call such
balanced partitions good.
Suppose that the basis vectors are

not all distinct; say with odd, . Then,
for every good balanced partition that makes a non-
zero contribution to the left-hand side, we must have
and or vice versa. But then
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(where denotes symmetric difference) is another good bal-
anced partition. We claim that it cancels the contribution of

. For, if one simply switches the row-vectors and
, one introduces inversions, relative to the pre-

scribed ordering of the rows in the determinant; specifically,
each with has the property that is out of order
relative to whichever of is on the same size of the
new partition. Ordering the row-vectors properly introduces a
sign of . This leads to cancellation.
Finally, suppose that , , , are all dis-

tinct, as are , , , . We must check that the sole
surviving term on the left has the same sign as the term on the
right. This is clear in the case where
and is empty, for then the two terms are identical.

We will prove the general case by showing that if one holds
fixed while varying , the sign of the

left side of the equation is unaffected. For that purpose it suf-
fices to consider the operation of swapping a single element
from to . Say this element is (with odd). Then
there is a unique (with even) such that .
Let us swap with in the term on the left side of the equa-
tion; since , the determinants are not affected. In
performing the swap, we have introduced either
(if ) or (if ) inversions, relative to
the prescribed ordering of the rows. Since both quantities are
even, we may re-order the rows in the determinants so that in-
dices increase from top to bottom, without changing the sign
of the product of the two determinants. We now recognize the
modified term as the sole non-vanishing term associated with

. Since this term has the same sign as the
term associated with , and since the sign is correct in
the base case , the correctness of the sign
for all partitions of follows by induction.
This concludes the proof of Theorem 2, which in turn im-

plies Theorem 1.
REMARK. An identity equivalent to summing both sides of

equation (4) for all sets (with row specialized to
as needed for Theorem 1) is a spe-

cial case of an identity proved combinatorially by M. Fulmek
[3] using a nonintersecting lattice path argument. It is eas-
ily seen that Fulmek’s proof applies equally well to prove our
Theorem 2. Thus Fulmek’s paper contains an implicit bijec-
tive proof of Theorem 2.

V. Probabilistic application.

One can define a probability distribution on ordered parti-
tions of into two sets of size , where the prob-
ability of the partition is

Theorem 1 is equivalent to the assertion that the random
events , , , are jointly independent,
and it is in this connection that it was first noticed. As a weak-
ening of this assertion, we may say that the events and

are uncorrelated with one another when and are both
even (or both odd, by symmetry).

Theorem 3: For , let be the random vari-
able , where is a random partition of

in the sense defined above. Then has mean
and standard deviation at most .

Proof: Define indicator random variables

if ,
if ,

so that . Each has expected value
, by symmetry, so the expected value of is . To es-

timate the variance, split up the terms of into
and . The terms in each sum are

independent random variables of variance , so the variance
of is and the variance of is . It
follows from the Cauchy-Schwarz inequality that the standard
deviation of is at most ,
as was to be shown.

The significance of the random variables is that (up
to an affine renormalization) they are values of the “height-
function” associated with a random domino-tiling of the Aztec
diamond (see [1]). Theorem 3 tells us that if one looks along
the spine, the sequence of differences between heights of con-
secutive vertices satisfies a weak law of large numbers.

VI. Open problems.

One open problem is to find a combinatorial (preferably
bijective) proof of Theorem 1. For instance, one might be
able to find a bijection between the tilings compatible with

and the tilings compatible with some other partition
of .
Also, recall the variables that made a brief ap-

pearance in section III before getting swallowed up by the no-
tation. Leaving aside our appeal to the explicit formulas for

and , we may use the
linear algebra formalism of section IV to derive a Schur func-
tion identity in infinitely many variables, expressing the prod-
uct as a sum of products of other pairs of Schur functions.
It would be desirable to have a combinatorial explanation of
these identities at the level of Young tableaux.
In section V, we made use of the fact that if is cho-

sen randomly from among the balanced ordered partitions of
, and if have the same par-

ity, then the events and are independent of
one another. We conjecture, based on numerical evidence, that
if have opposite parity, then the events

and are negatively correlated. This conjecture
is made plausible by the fact that the total cardinality of is
required to be . With the use of this conjecture, one could re-
duce the bound on the standard deviation in Theorem 3 by a
factor of . However, neither Theorem 3 nor this strength-
ening of it comes anywhere close to giving a true estimate of
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the variance of , which empirically is on the order of
or perhaps even smaller.
Finally, fix . Define 0-1 random variables

such that for all ,
for all unless , in which

case

for all

where and
( ,

). This is the distribution on zig-zag pat-
terns in the th diagonal of the Aztec diamond, induced by a
domino tiling chosen uniformly at random. Are the ’s (non-
strictly) negatively pairwise correlated?
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