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In 2016 there were breakthroughs in sphere-packing in 8
dimensions and 24 dimensions.

This work came on the heels of earlier work on sphere packing
in 3 dimensions, from Johannes Kepler to Thomas Hales, as
well as work on sphere packing in 2 dimensions, commenced
by Axel Thue and László Fejes-Tóth.

But for other values of n, we know very little, and I suspect
that we still aren’t asking exactly the right question.
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It’s “obvious” to any child that in two dimensions, the optimal
packing is the six-around-one hexagonal close packing.

I want to take a fresh look at n = 2.

It’s my hope that by sharpening our notion of what it means
for something to be an optimal sphere-packing, we’ll obtain a
coherent (if potentially unattainable) notion of what it might
mean to classify the optimal packings in n dimensions.
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Part I: Three ways of measuring
deviations from optimality



A sphere-packing of Rn is a collection of balls in Rn with
disjoint interiors.

The density of a packing is

lim
r→∞

λ(Br ∩ S)/λ(Br ),

where Br is the ball of radius r centered at 0,
S is the union of the balls in the packing, and
λ is Lebesgue measure (area).
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It’s not hard to show that some packing achieves this
supremum.

Trivially, ∆1 = 1.
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The density of the 4-around-1 disk-packing is π/4 ≈ 0.79.



The density of the 6-around-1 disk-packing is π/
√
12 ≈ 0.91.



Axel Thue and László Fejes-Tóth’s theorem: ∆2 = π/
√
12.



Let P be a packing of the plane by unit disks. If P is a
hexagonal close packing, then P achieves density ∆2.

Partial converse: Let P be a periodic packing of the plane by
unit disks. If P achieves density ∆2, then P is a hexagonal
close packing.

Can we delete the word “periodic”?

No.
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Counterexample 1:



Counterexample 2:



Counterexample 3:



Counterexample 4:

There exists a disk-packing of density ∆2 in which no two
disks touch.



Morally, these four counterexamples seem like “cheats”.

How can we sharpen our notion of optimal packing to rule
them out?

I’m going to show you three possible approaches to doing this.



In the first approach, we replace disk packings by point
packings P (using the centers of the disks, no two of which
are at distance < 2).

The size of the infinite set P can be represented as the
divergent infinite sum

∑
(x ,y)∈P 1.

We’ll regularize this sum by imposing a smooth cutoff at
distance s from the origin, and then letting s go to infinity.



Let gs(x , y) := exp −(x2 + y 2)/s2, so that

(1) for all (x , y) ∈ R2, gs(x , y)→ 1 as s →∞, and

(2) for all s > 0,
∫
R2

gs <∞.

For P a discrete point-set in R2 containing no two points at
distance ≤ 2 (so that the unit disks centered at points in P
have disjoint interiors), let

|P |s :=
∑

(x ,y)∈P gs(x , y) <∞.

If P is finite, |P |s → |P | as s →∞.
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Main idea: When P is infinite, |P |s diverges as s →∞, but
the precise way it diverges gives information about the point
set P .

In particular, for many non-optimal packings P ,
we can expand |P |s as αs2 + βs + γ + o(1), where
I α tells us about density,
I β tells us about line defects, and
I γ tells us about point defects.
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Theorem (Cohn): Let P be a point-packing of the plane.
If P is a hexagonal close packing, then |P |s = ∆2s

2 + o(1).

Conjectural converse: Let P be a point-packing of the plane.
If |P |s = ∆2s

2 + o(1), then P is a hexagonal close packing.

“Evidence”: The four counterexamples I discussed above are
not counterexamples to this conjecture.

But I’ve had trouble making progress with this definition.
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Second approach: Go back to using disks instead of points.
Let µP be Lebesgue measure restricted to the union of the
disks.

Let
(P)s =
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Compare: |P |s can be defined as the integral of gs with
respect to a “Dirac comb”: a measure on R2 in which each
point in P is assigned mass 1.

I will sometimes call |P |s the Dirac regularization of the
divergent sum

∑
(x ,y)∈S 1, in contrast to the disk regularization

(P)s (and in contrast to the Delaunay regularization [P]s to be
described next).
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Third approach (“gerrymandering”): Redistribute the mass of
the disks, so that the mass associated with a sector of a disk
gets reapportioned uniformly throughout its Delaunay cell.

(Note: “Delaunay” = “Delone”.)

In a point-packing, a Delaunay cell is an inscriptible polygon
whose vertices are points of the packing and whose
circumcircle encircles no points of the packing.



Let µ̄P be the reapportioned measure, and let

[P]s =

∫
R2

gs d µ̄P .



Main Theorem: Let P be a distance-2 point-packing. Then
[P]s = π∆2s

2 + o(1) (i.e., [P]s − π∆2s
2 → 0) if and only if

P is a hexagonal close packing.



Part II: A non-Archimedean valuation
on polyhedral sets



A valuation is a finitely-additive measure from a set-algebra
into an abelian group: v(A ∪ B) = v(A) + v(B)− v(A ∩ B),
inclusion-exclusion, etc.

A polyhedral set in Rn is a set specified by some Boolean
formula in n variables involving finitely many linear equations
and inequalities.

Equivalently, it’s a set that belongs to the set-algebra
generated by open and closed half-planes.
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Theorem ("Throwing Gaussian darts at a noncompact
target"; new?): If S is a polyhedral subset of Rn,
the probability that a Gaussian N(0, σ) random variable
lies in S is given by p(σ)/σn plus an error term that
goes to zero, where p(·) is a polynomial of degree n.



Proving this theorem is essentially equivalent to setting up a
valuation vn on polyhedral sets that assigns to each (not
necessarily compact) polyhedral subset of Rn a generalized
n-dimensional volume in a non-Archimedean ordered ring
extension of R.



If S is a compact polyhedral subset of Rn, vn(S) will be the
ordinary n-dimensional Lebesgue measure of S , but if S is a
noncompact polyhedral set (of full dimension), vn will be an
“infinite” element of the non-Archimedean ordered ring R[p],
where p is a formal infinite element satisfying
1 << p << p2 << · · · .

I’ll sometimes informally call the valuation vn a “measure” even
though it’s not countably additive or real-valued.

I’ll focus on the cases of R and R2. I’ll sometimes call v1

“length” and v2 “area”, omitting the modifier “generalized”.



Warning: Often a translation T carries a polyhedral set S into
a proper subset or proper superset of itself.

E.g., S = [0,+∞) or (−∞, 0] in R, T : x 7→ x + 1.

In cases like this, we can’t expect S and T (S) to have the
same measure.

But as we’ll see there are compensations for this lack of
symmetry.



The polyhedral subsets of R1 are unions of isolated points,
finite open intervals and infinite open rays.

Isolated points have measure 0.



Define v1(I ) := length(I ) if I is a finite interval,
v1([x ,+∞)) = p− x , and v1((−∞, x)) = p + x .

In particular, v1([0,+∞)) = v1((−∞, 0]) = p,
v1((−∞,+∞)) = 2p > p.

Note that v1 is invariant under rotation, aka negation:
v1(−A) = v1(A).



For A,B polyhedral subsets of R, define v2(A× B) to be
v1(A)v1(B) (Fubini formula).

E.g., v2([0,∞)× [0,∞)) = p2, and more broadly,
v2([x ,∞)× [x ′,∞)) = (p− x)(p− x ′) = p2 − (x + x ′)p + xx ′.



Special case: x ′ = −x .

v2([x ,∞)× [−x ,∞)) = p2 − (x + x ′)p + xx ′ = p2 − x2.

Picture proof (x ≥ 0):

4(p2 − x2) + 4x2 = 4p2
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This picture-proof hinges on the easily checked fact that v2 is
invariant under 90-degree rotations:

v2((−B)× A) = v1(−B)v1(A) = v1(A)v1(B) = v2(A× B).

But how do we define/compute v2(S) when S is not a
rectangle or a finite union of rectangles?
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Example: S = {(x , y) : 0 ≤ y ≤ x}.

We might say that this set “should” have generalized area
(1/2)p2, since two copies of it (one obtained from the other by
a 45 degree rotation about the origin) form a quadrant whose
generalized area is p2.



Theorem: There is a unique valuation on polyhedral sets
taking values in the ordered ring R[p] satisfying the following
four properties:
(1) Monotonicity: If S is a subset of S ′, v2(S) ≤ v2(S ′).
(2) Consistency with Lebesgue measure: If S is compact,
v2(S) is the Lebesgue measure of S .
(3) Fubini: If S = A× B , v2(S) = v1(A)v1(B).
(4) Rotational invariance: If S and S ′ are related by rotation
about the origin in R2, v2(S) = v2(S ′).



What do these properties have to do with asymptotics of the
integral of e−(x2+y2)/s2 over a set S?
(1) Monotonicity: The integrand is nonnegative.
(2) Consistency with Lebesgue measure: When S is compact,
the integrand goes to 1 uniformly.
(3) Fubini: The integrand factors as e−x2/s2e−y

2/s2 .
(4) Rotational invariance: The integrand is invariant under
rotation.



Why is v2 is uniquely determined by properties (1)-(4)?

Proof sketch:

Triangulate S , using a mix of ordinary triangles, ideal triangles
with 1 point at infinity, and ideal triangles with 2 points at
infinity.
Show that for each kind of triangle T , properties (1)-(4)
uniquely determine the area of T .
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Alternate calculations of v2(S) with S = {(x , y) : 0 ≤ y ≤ x}:

∫
[0,p) x dx = x2/2 |p0 = p2/2.
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∫
[0,p)(p− y) dy = (py − y 2/2) |p0 = p2 − p2/2 = p2/2.

We can develop, in tandem, a way of measuring polyhedral
sets and a way of integrating polyhedral functions.
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Part III: Hallways



The vertical strip [−1,+1]× (−∞,+∞) has
generalized area (2)(2p) = 4p.
So does every translate [x − 1, x + 1]× (−∞,+∞).
So does every horizontal strip (−∞,+∞)× [y − 1, y + 1].



The intersection of the two strips has area 4.
By inclusion-excusion, the union of the two strips has measure
4p + 4p− 4 = 8p− 4, and so does every translate of this set.



Putting it differently, the generalized measure assigned to the
union of a vertical stripe of width 2 and a horizontal stripe of
width 2 is independent of the choice of origin.

(You may have thought that ν1 and ν2 are peculiar because the
origin plays a privileged role. For many shapes, this peculiarity
persists; but we now see that for some shapes, it goes away.)



This kind of translation-invariance holds for a class of subsets
of R2, consisting of compact polygonal junctions (like
[x − 1, x + 1]× [y − 1, y + 1]) joined by halls, which may be
finite or infinite in length; some of these hallway networks
model simple defects in disk packings.









More generally, consider a hallway with one triangular
junction: three singly-infinite strips projecting orthogonally
from the sides of triangle ABC .



Claim: The sum of the v2 areas of the three half-strips
projecting from the triangle equals p times the perimeter of
triangle ABC , minus twice the area of triangle ABC .



Here’s the proof in the case where the origin lies inside ABC .
(Replace area by algebraic area to get this to work in the
general case.)



For more general hallway networks consisting of finite and
singly-infinite hallways joining up finitely many junctions, the
sum of the areas of the hallways (not including the junctions)
equals p times the sum of the widths of the singly-infinite
hallways minus twice the sum of the areas of the junctions.

In the illustrative case of a 2-junction network, we can prove
this by inclusion-exclusion. The v2 area of the halls network
equals the v2 area of a single-junction network plus the v2 area
of another single-junction network minus the v2 area of a
single doubly-infinite strip.



That is,



equals



plus



minus



Suppose that all the Delaunay cells of P are triangles and
squares with side-length 2 forming a network of hallways and
junctions, with N <∞ infinite hallways. (E.g., the last two
examples had N = 3 and N = 4.)

Claim:

[P]s = (∆2) s2 − (N)(2δπ1/2) s + (A)(2δ) + o(1),

where ∆2 = π/
√
12,

δ = π/
√
12 − π/4 ,

N = the number of infinite hallways, and
A = the total area of the triangular junctions.

Note that the choice of origin makes no difference.



Application to crystal defects: In a packing that’s close to a
hexagonal close packing,

point defects lead to networks with area on the order of 1,
line defects lead to networks with area on the order of p, and
density defects lead to networks with area on the order of p2

(and the location of the origin turns out not to matter).

I’d like to try to apply this “defect calculus” to other sorts of
defects in 2D and 3D lattices, but solid state physicists and
materials scientists are annoyingly topological; they draw
suggestive pictures, but they don’t say precisely where the
atoms are!



I’m not claiming that the ring R[p] will be adequate for the
study of all defects; there are packings with |P |s (or [P]s)
growing like ∆2p

2 + Θ(pc) with 1 < c < 2, for instance (see
Counterexample 4).

To include such packings in our theory, we look at truncated
germs. That is, we look at the behavior of |P |s as s →∞
modulo ≡, where P ≡ P ′ iff |P |s − |P ′|s goes to 0.

We don’t expect trichotomy (|P |s − |P ′|s could exhibit
oscillations with amplitude that don’t go to zero), but we
don’t need trichotomy if what we’re after is a sharpened
notion of optimality; to say that P∗ is optimal, all we need to
know is that for any P , lim inf(|P∗|s − |P |s) ≥ 0.



Part IV: The characterization
of maximal disk-packings



Only one ingredient is missing for the proof of the main
theorem:

Lemma (original source?): In a disk packing of the plane, no
Delaunay cell can have local packing density exceeding π/

√
12.

That is, the fraction of a Delaunay cell that is covered by disks
of the disk-packing cannot exceed π/

√
12. Furthermore,

equality holds if and only if the cell is an equilateral triangle.

Recall that µ̄P is Lebesgue measure of intensity 1 on the disks
reapportioned uniformly over the Delaunay regions, and that
[P]s =

∫
R2 gs d µ̄P .

https://arxiv.org/abs/1009.4322


If P∗ is a hexagonal-close packing, µ̄P is the uniform measure
∆2λ (where λ is Lebesgue measure) on R2.

Otherwise, µ̄P ≤ ∆2λ everywhere (by the Lemma) but there
exists at least one Delaunay cell C whose µ̄P measure falls
short of ∆2λ(C ) by some positive amount, say c ; then
lim inf([P∗]s − [P]s) ≥ c , and since [P∗]s = π∆2s

2 + o(1), we
cannot have [P]s = π∆2s

2 + o(1).

This completes the proof.



Conjecture: The same is true for | · |s (which, unlike [ · ]s ,
extends naturally to higher dimensions).

Conjecture: the optimal 3D sphere packings are the Barlow
packings (the uncountably many packings formed by layers of
hexagonal close-packed spheres).



Part V: Odds and ends



Charles Radin, Lewis Bowen and their collaborators have an
interesting approach to optimal packings whose philosophical
motivations are similar to ours.

However, the theory I’ve outlined today applies in situations
where theirs doesn’t.

https://emis.math.unistra.fr/journals/MPEJ/Vol/11/1.pdf
https://emis.math.unistra.fr/journals/MPEJ/Vol/11/1.pdf


Here are two disk-packings of a quadrant, P and P ′.
P is better at filling the quadrant than P ′ by exactly
1/4 of a disk, in the sense that |P |s − |P ′|s ,
(P)s − (P ′)s , and [P]s − [P ′]s all converge to 1/4.



Is P the best packing of disks in a quadrant?

Do we even know there exists a best packing?

It’s not clear to me how to employ compactness principles or
contraction arguments or any tools at all to prove existence of
an optimum.



Going back to disk-packing of the whole plane, it’s not obvious
that there exists a best non-optimal disk-packing. But I claim
there is one.

Gap conjecture: The most efficient non-optimal disk-packings
are hexagonal close packings with one disk missing.

Note that Counterexample 3 from earlier does not disprove
this; no matter how small ε is, if you displace a half-plane’s
worth of disks by ε, the amount of deficiency introduced
corresponds to removal of infinitely many disks.



As a side-project, I’ve studied optimal packing in 1 dimension,
with various simplifications:
1) discrete, rather than continuous;
2) one-sided, rather than two-sided; and
3) exponential, rather than Gaussian, regularization.

Despite these simplifications, I still do not see robust methods
of proving that optimal packings exist.

See my preprint One-Dimensional Packing: Maximality Implies
Rationality.

See also MathOverflow post Comparing sizes of sets of natural
numbers.

https://arxiv.org/abs/1704.08785
https://arxiv.org/abs/1704.08785
https://mathoverflow.net/questions/248994/comparing-sizes-of-sets-of-natural-numbersk
https://mathoverflow.net/questions/248994/comparing-sizes-of-sets-of-natural-numbersk


I’m hoping that other people, with various analytic and
geometric insights, will help me figure out how to advance
this point of view of packings.

Thank you!

These slides can be found at
http://jamespropp.org/brown18a.pdf.

http://jamespropp.org/brown18a.pdf

