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1 Introduction

The dynamical systems we are interested in are essentially families of func-
tions from Z? to a set S of “symbols”. The group Z?* acts on such functions
f by translation: (T.f)(y) = f(z +y) (z,y € Z?). If a family of functions is
closed under translation, it is called a Z*-shift. Many interesting Z?-actions
can be put into this framework. The basic theory of symbolic Z?-actions is
given in [Schl], along with a catalogue of important examples.

In this paper we introduce a new invariant for these systems.

Instead of limiting ourselves to discussing families of functions from Z?
to 9, we will work in a slightly broader setting that includes more general
dynamical systems such as the set of Penrose tilings of the plane. Define an
album over R? as a family F of functions f : D — S, where D C R? and S is
a discrete topological space. In the case where F is a Z*-shift, D = Z? and F
is invariant under the action of Z2. We say that the album F is of finite type
if there exists a cover of R? by countably many sets U; of bounded diameter
and families F; of functions from U; to S, such that a function f: D — §
belongs to F if and only if for all 7 the restriction of f to U; belongs to F;.
An equivalent definition is that F is of finite type if there exists a bounded-

diameter cover {U;} such that a function f: D — S belongs to F whenever



for all 7 there exists a function f; in F that agrees with f on Us,.

If the album F is a Z*-shift and is of finite type, we will call it a sub-
shift of finite type. This coincides with the usual definition except that we
are allowing the alphabet S to be infinite. Most specific albums and sub-
shifts discussed in this article are of finite type, but our general results apply
without this constraint.

Put a metric on F by defining

1
d(f. f') = v/
Vo) = T ar el 7 2 Py
where || - || is the Euclidean norm on R? and where we write f(z) = f'(z) if

flz) = f'(x) orif f(x), f'(x) are undefined (that is, if x & D). This makes
F a complete metric space in which f, — f if and only if for every bounded
set B C R?, f, agrees with f everywhere on B for all n sufficiently large.
As a topological space F is totally disconnected. Nevertheless, we will see
that by regarding R? x F as the inverse limit of a family of spaces related to
F, we can make sense of the notion of connecting two elements f, f’ of F by
something like a path, obtaining in the process a notion of a “fundamental
group” for the album F.

Let S = S(F) be the product space R* x F. Given a bounded subset
B C R?, define an equivalence relation ~5 on S by putting (z, f) ~g (2/, f')
(v,2’ € R* f, f' € F)ifand only if # = 2’ and f(y) = f'(y) for all y in the
translated set B +  C R? (the “B-neighborhood of 2”) for which f(y) is

defined. Equivalently: if we define the scene of f at = to be the restriction
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of f to B+ x (that is, to B + 2 Ndomf), then (x, f) ~p (z, f') if and only
if f and f’ have the same scene at .

Let Sg be the quotient space S/~p (“scene-space”), with the quotient-
map pg : S — Sp. A subset of Sp is open if and only if its pre-image in
S is open. For all B, B’ with B C B’ we get a canonical restriction map
Sp: — Sp (continuous). Fix zo € R? and fo € F, and let ¢ = pg(zo, fo) and
q = ppi(xo, fo). Then ¢ is the image of ¢’ under the restriction map Sp/ —
Sp, and we obtain a homomorphism m(Sg/, ¢') = m1(SB, ¢), where m1(Sg, q)
denotes the fundamental group of Sg relative to the basepoint ¢ (similarly for
q',Sg1). Thus the directed system of bounded sets B C R?, where arrows are
inclusions, gives rise to an inverse system of groups G = m1(Sg, pa(0, fo)),
where arrows are group homomorphisms going the other way. We define GG,
as the inverse limit of these fundamental groups. It is not hard to show that
(o is independent of z¢. If the inverse system {Sg} satisfies a property
we call “projective connectedness”, then G, turns out to be independent
of fo as well; in this case we call it the (projective) fundamental group of
the album F and denote it by Wfroj(S(}—)). Projective connectedness will
be defined in Section 3. For now it suffices to describe it as a novel kind
of mixing property, and to remark that all the examples considered in this
paper (other than in Section 4) exhibit this property. A factor map (i.e., a
shift-commuting continuous surjection) from one Z?-subshift to another gives

rise to a group homomorphism between their projective fundamental groups.



Henceforth, when there is no danger of confusion we will drop the modifier
“projective”.

The remainder of this article is organized as follows. First, we will lay
some groundwork for the fundamental group by considering two examples in
an informal way (Section 2). We then discuss inverse limits of spaces and
fundamental groups (Section 3), and apply this to scene-space (Section 4); in
particular we prove, as a special case of a more general result on albums, that
the fundamental group of a Z?-subshift is invariant under topological conju-
gacy (Theorem 1). The two sections that follow calculate the fundamental
group for two important and instructive special cases, namely, the full shift
(Section 5, Theorem 2) and the square ice model (Section 6, Theorem 3).
Thereafter (Section 7) we give a concrete characterization of covering factor
maps in terms of (cardinality and separation) properties of their fibers, and
proceed to prove that, if a factor map from a subshift F to another subshift
G is d-to-1 and covering, where F and G are projectively connected and G is
compact, then the fundamental group of F is isomorphic to an index-d sub-
group of the fundamental group of G. One consequence of this is that there
exists no non-trivial constant-to-one covering factor map from a full shift to
itself. We also show (Section 8) that there exist subshifts of finite type that
have the same entropy and periodic point data but are distinguished by their
fundamental groups. We prove there that every group of order d arises as the

fundamental group of a d-to-1 factor of a full shift. One can view these results



as giving a first step towards the classification of constant-to-one factors of

full Z2-shifts.

2 Examples

To get an intuitive picture of scene-space, think of S as a totally disconnected
stack of copies of R? (or sheets), one for each function f € F; each sheet
is decorated in accordance with the associated f, and has a projection map
to the standard (undecorated) copy of R*. Tet B be some bounded set
(it is helpful to think of it as a disk centered on the origin). Then ~p
identifies points in two sheets if they lie above the same point in R? and if
the respective planes have identical decoration within the B-neighborhoods
of the two points. Sp is thus a space each of whose elements is given by a
B-shaped aperture in R? (i.e. a translate of the bounded set B) together with
a decoration of the enclosed region. We may think of points in scene-space
as pairs (z, f), where f is a function on B + z that arises as the restriction
of some function in F. Note that the fiber of Sg above any point z in R? is
discrete. Any continuous map from R? to Sg that is a one-sided inverse of
the projection map takes R? to a subset of Sp homeomorphic to R?; we call
this subset a section of Sg. (It would be more consonant with tradition to
call the map the section, rather than its image, but since points in Sg retain
their R*labelling, this is merely a technical distinction.) A section is thus

a way of assigning a scene to B + x for each z € R?, such that overlapping



scenes agree. When F is of finite type, by taking B to be sufficiently large
we can guarantee that every section of Sg comes from a (unique) sheet in S
via the projection map pg.

A path in Sp is a “movie” in which the aperture travels through R? with
scenery appearing along the way. That is, a path ((x;, f,) : 0 <t < 1) in
Sp is given by a path (z; : 0 <¢ < 1) in R?, together with a set of scenes
f, on the respective sets B + z;; the scenes must be locally consistent with
one another, in the sense that for all x, f,(z) (viewed as a function of #) is
locally constant on its domain (a subset of [0, 1]).

The simplest paths in S are those that come from a single function f
and from a path (; : 0 <t < 1) in R?: for each ¢, let f, be the restriction
of f to B+ x; (if x; is constant, we call the path trivial). We say that such
a path lies on a single section in Sg. Not all paths are of this type; indeed,
if we let (z; : 0 <t < 1) be a path that crosses itself (say z;, = x4, = %),
then one can have a path ((z¢, f,) : 0 <¢ < 1) in Sp such that f, and f,
do not agree at z*, let alone in a B-neighborhood of z*.

A loop in S is a path whose endpoints coincide. For an example of a
loop, let F be the full (two-dimensional) 2-shift {0, 112 viewed as a set of
functions from Z? C R? to {0,1}, and let B be the closed 1-by-1 square
centered on (0,0). Consider the loop L in Sg in which the center x; of the
1-by-1 square aperture travels from (0,0) to (6,0) to (6,6) to (0,6) to (0,0),

with the “all-0’s” scenery shown in Figure 1. (As in many of our pictures,



we indicate the location of the origin by underlining the associated symbol.)
Let I denote the projection of L into R%. Then any homotopy of L in R?
lifts to a homotopy of L in Sg. (To see this, return to our original, un-
quotiented picture: every homotopy in R? lifts to a homotopy in the all-0’s
sheet o of § = R? x F, which maps down to a homotopy in Sg under the
projection pg.) In particular, if we homotopically transform the loop in R?
into a trivial loop, we will do the same for the loop in Sg. That is, the loop
L is contractible. More generally, any loop that lives on a single section of
Spg is contractible.

For a more interesting example, consider the loop L in Sg in which the
center x; of the 1-by-1 square aperture travels from (0,0) to (6,0) to (6,6)
to (0,6) to (0,0) to (0,—6) to (—6,—6) to (—6,0) to (0,0), with the scenery
shown in Figure 2. (Part (a) shows the scenery for 0 < ¢ < 3/8; part (b),
for 3/8 <t <5/8; and part (¢), for 5/8 <t < 1.) With the exception of the
symbol “17” seen at (0,0) at time ¢t = 1/2+4¢, our movie shows the symbol “0”
everywhere. This loop does not live on a single section, as in the preceding
example; nevertheless [ is contractible. For, let oy be the all-0’s sheet in &,
and let oy be the sheet with a 1 at the origin and 0’s everywhere else, with
images 7o, 1 in Sg; note that @5 and &y are pinched together everywhere
except in a 1-by-1 square centered on the origin. The portion of the loop
L that goes through the origin at time ¢ = 1/2 4 ¢ can be homotopically

“pushed out of the way” without leaving the section &y. This new loop skirts



the origin at time ¢t = 1/2 so that the symbol 1 is never seen, which insures
that the loop can now be shrunk down on the section 7.

It will be shown later that in the case of the full 2-shift, if B is an open
2m-by-2m square then every loop in Sp is contractible — that is, the group
m1(Sp) is trivial. This is not true if B is a general bounded set in R? (such
as an annulus), but this fact will not trouble us; since every bounded set
lies in an m-by-m square for m sufficiently large, the inverse limit of the
fundamental groups of the spaces Sg will be trivial.

The same analysis that works for the full 2-shift (or indeed the full n-shift
for any positive integer n) can also be used to show that the fundamental
group of the “two-dimensional golden mean subshift” [Sch1] is trivial. On
the other hand, for the square ice model [Lieb], the fundamental group is Z.
Recall that a state for the square ice model is an orientation of the edges of
the infinite square grid satisfying the divergence condition: each vertex has
indegree 2 and outdegree 2 (see Figure 3(a)). It is more convenient to work
with the dual model, in which vertices become squares and vice versa, with
each oriented edge getting rotated 90 degrees clockwise about its midpoint
(see Figure 3(b)). States of the dual model must satisfy the curl condition:
each 1-by-1 square cell of the grid must have two of its edges oriented clock-
wise and the other two oriented counterclockwise. It follows that around any
simple closed lattice path, there must be equal numbers of clockwise and

counterclockwise edges. Now observe that in Figure 3(c), there is no way of



filling the interior of the square so as to obtain a dual ice-configuration, for
along the loop L (drawn in bold) there are 12 counterclockwise edges and
only 4 clockwise edges. One can show that for sufficiently large B the curl
around a loop is invariant under homotopy of the loop in Sg. This implies
that for such B, §g has fundamental group G'g = Z, where the obstruction to
contractibility comes from the non-trivial curl along loops. This phenomenon
does not disappear if we make B larger, or if we pass to the inverse limit
with respect to B; that is, G, = Z.

The dimer model on a square grid [Kast] can be analyzed by much the
same method as the square ice model. We remind the reader that the dimer
model is the Z?-shift whose points are the ways of choosing certain edges of
the infinite square grid to serve as “bonds,” in such a way that each vertex of
the grid lies on exactly one bond. The partial configuration shown in Figure
4, with bonds represented by bold line segments, cannot be extended to the
full interior of the annular region, since this region has 1 more black vertex
than white vertex under an obvious alternating coloring. Once again, the
fundamental group is Z, except that now the obstruction to contractibility
is the imbalance between the number of white vertices and black vertices
enclosed. This group Z is arrived at in a different way by Thurston [Thur],
in his exposition of the Conway-Lagarias theory of “boundary invariants”; he
uses a dual picture, in which a dimer-cover of an infinite square grid becomes

a domino-tiling of the plane.



3 Topological Preliminaries

If P:[0,1] — X is a path in a topological space X, we denote by [P] the
path-class of P, i.e. the set of paths that have the same initial point P(0) and
terminal point P(1) as P and are homotopic to P. If the terminal point of [P]
coincides with the initial point of [@], then the composition [Q]o[P] = [Q-P] is
well-defined; the set of path classes under this form of restricted composition
forms the fundamental groupoid of X, which we denote by mpath(X).

We denote by m1(X, ) the fundamental group of X based at x € X. If
X is path-connected, so that m;(X, ) is independent of x, we simply write
m(X).

If X,Y are topological spaces with ¥ : X — Y continuous, we let 1,
denote the induced homomorphism from the fundamental group(oid) of X
to the fundamental group(oid) of Y.

Suppose that ¢ : X — Y is a covering map. Given a point * € X and a
path P in Y with P(0) =y = ¢(x), we let P denote the lift of P to X with
initial point x. When P is a closed loop, we refer to the self-map of the fiber
over P(0) determined by P as the monodromy of the loop.

Let (A, <) be a directed set, indexing a system of topological spaces
X, (a € A) equipped with commuting continuous maps 7> : X5 + X,
(o, 3 € A, o = [3). The inverse (or projective) limit of the inverse system
{X., %} is the set of @ € [[,e4 Xo having the property that 7<(z,) =

xg for all o, € A with a = (3; we write + = Lim, ., and we denote
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the inverse limit by Lim,c4 X, or just X.. We define projection maps
Dot Xoo — Xo, @ = x,. We take the topology on X, that is generated by
pre-images of open sets under the maps p,. If By, By are subsets of A having
the property that for all §; € By there exists 3y € By with 3y > 3, then
the maps 1"1<% induce a canonical map from Limgep, X5 to Limgep, X if
moreover it happens that for all 33 € By there exists 3; € By with §; = (3,
(“mutual domination”), this map is bijection, and the two inverse limits
coincide (i.e. are homeomorphic as spaces).

Similarly, if {G,,¥?<°} is an inverse system of group(oid)s G,, (a € A)
with commuting group(oid) homomorphisms #<* : G5 «+ G, (o, 3 € A,
a = [3), then the inverse limit is the set G, of ¢ € Tl ea Go satisfying
VP(g,) = gs; it becomes a group(oid) if one puts (gog')e = gaog,. As
before, Limgep, G = Limgep, G provided that every element of By (resp.
B3) is dominated by some element of By (resp. By).

If {X,,¥%°} is an inverse system of spaces, and =z is in Lim, X,, then
we obtain an inverse system {m(X,,z,),??<?} of fundamental groups; its
projective limit is the projective fundamental group of {X,} at the point =,
and its elements are projective loop-classes. For x € X, we let Wfroj(Xoo, )
denote the projective fundamental group of { X, } at x. This inverse limit of
fundamental groups is not to be confused with 7 (X, ), the fundamental
group of an inverse limit of spaces; however, we retain the X., (instead of

the more accurate { X, }) for notational convenience, and to remind ourselves
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that an element of Wfroj(Xoo, x)is a projective loop-class that is naturally seen

as having a “basepoint” in the space X..
In an analogous way, we can define the projective fundamental groupoid

g;‘zf;(Xoo) of an inverse system of spaces. An element of this groupoid, called

T
a projective path-class, is a mapping that assigns to each a@ € A a path-class
[P,] in X,, subject to the consistency condition 2 [P,] = [Ps]; such a
path-class has well-defined “endpoints” Lim, P,(0) and Lim, P,(1) in X.

We say that the inverse system {X,} is projectively connected if for all
z,2" € X there is a projective path-class with endpoints = and 2’. (The
phrase “projectively homotopically path-connected” is more descriptive but
unwieldy.) In order for X, to be projectively connected, it is necessary
that all the spaces X, be path-connected, but this condition alone is not
sufficient; consider for instance the solenoid obtained as the inverse limit of
ST ¢ 61 ¢ S' « ... under the doubling map. On the other hand, in order
for X, to be projectively connected it is not necessary for X, itself to be
path-connected; indeed, for all the examples we will study X, is a totally
disconnected set.

It is not hard to show that if {X,} is projectively connected, then the
group Wfroj(Xoo, z) is independent of the basepoint @ € X,. In this case, we
write the projective fundamental group as simply Wfroj(Xoo).

If we have two inverse systems { X, }, {Y, } along with maps X, — Y, that

commute with all the maps within each inverse system, there is an induced
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map ¢ from Lim, X, to Lim, Y, which in turn induces a group homomor-
phism from Wfroj(X,:L') to Wfroj(Y,;/)(:Jc)). Moreover, if {X,} is projectively
connected, then so is {Y,}. In any case, if the maps X, — Y,, are covering

maps, then every projective path-class in Y., lifts to a projective path-class

m X..

4 Subshifts and Albums

The scene-spaces Sp introduced in Section 1, along with the restriction maps
Spr — S (B’ 2 B), form an inverse system {Sg} of topological spaces. It
is easy to check that the inverse limit of this system is just &, endowed with
its original topology. (One can think of S as “projective scene-space”.) The
spaces Sg may be non-Hausdorff, but we can still define paths, loops, etc. in
all these spaces, and thereby define, for every (z, f) € R*xF = § = LimpSs,

the fundamental group

ﬂ_{moj(87 (l’, f)) = Limgp ﬂ-l(SvaB(xv f))

(where pgp is the canonical projection & — Sg). To avoid congestion of
notation, we will often write m;(Sg, (x, f)) instead of 71(Sg, pa(x, [)).
Given a subshift F, viewed as a set of maps from Z? to S, we can obtain
other subshifts by pre-composing a map from Z? to S with an automorphism
of the group Z%. This is called a reparametrization of the Z?-shift. The
reparametrization changes the geometry of the scene-spaces but not their

topology nor the way they map to each other, and so has no effect on Wfroj.
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That is, the projective fundamental group is invariant under reparametriza-
tion. Also note that if we replace Z?* by a finite-index subgroup (also isomor-
phic to Z?), the resulting Z*-action must have the same fundamental group
as the original.

We now consider invariance of Wfroj under topological conjugacy. Take
sets D, D' C R?, and let F, ' be families of functions having these respective
domains. A mapping ¢ : F — F’ is uniformly continuous (with respect to
the metric defined in Section 1) if and only if there exists a bounded set
A C R? (the aperture of continuity) such that as f varies over F, the value
of ¥(f) € F at a point @ € D’ is determined by the values taken by f on
the set (A + )N D. If ¢ is uniformly continuous and surjective we say that

F'is a factor of F.

Factor Lemma: A factor of a projectively connected album is projectively

connected.

Proof: Suppose ¥ : F — F' is a uniformly continuous surjection with
aperture of continuity A. Then % induces a continuous map Satp(F) —
Sp(F'") (for all bounded sets B) and thus gives a homomorphism from G415 =
m1(Sa+p(F)) to Gy = m(Se(F')) (with tacit basepoints parp(z, f) and
pe(z,(f))). If Fis projectively connected, then the results at the end of

Section 3 guarantee that F’ must be projectively connected as well. a
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If the uniformly continuous surjection ¢ : F — F’ is invertible and its
inverse ¥»~! is uniformly continuous, we call ¥ an isomorphism of albums,
and say that F’ is isomorphic to F. It is easily checked that the property of

being of finite type is preserved under isomorphism.

Theorem 1: The projective fundamental group of a Z*-shift is invariant

under topological conjugacy.

Proof: Since a conjugacy between Z?-shifts yields an isomorphism be-
tween the associated albums, it will suffice to prove a more general result,
namely, that the projective fundamental group of an album is invariant under
album isomorphism.

Consider albums F, F’, isomorphic via 1. By the Factor Lemma, if
either of F, F’ is projectively connected then so is the other. Suppose 1) has
aperture of continuity A and 1»~' has aperture of continuity A’. We get a
homomorphism from G445 to G’ and from G4, g to G for all bounded
sets B. Consider the composite inverse system given by the groups G'g and
Gy (with B varying over the bounded subsets of R?), together with all the
maps G — Gp, Gy — G (B’ 2 B) and all the maps Gayp — G,

"vip — G'B. Note that the subsystems {G'g} and {G'3} satisfy the mutual
domination condition discussed in Section 3, so the respective inverse limits
coincide. Hence, 7P™(S(F)) and 7P™(S(F")) either are isomorphic to one

another (the projectively connected case) or else are both undefined. a
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Theorem 1 assures us that the projective fundamental group of a subshift
is an intrinsic topological property of the dynamical system, and does not
depend on any specific symbolic encoding of the subshift. One is therefore
entitled to ask for a definition of the fundamental group that does not make
use of a specific album. This can easily be done, at least for compact systems.
If X is a compact space on which Z? acts, and ~ is an equivalence relation on
X whose finitely-many equivalence classes are both closed and open, then we
may define S. in an obvious way. These scene-spaces form a directed system
that includes the system of Sg’s, and we may obtain the same inverse limit
as before. Verification is routine.

The proof of Theorem 1, with minor alterations, yields a lemma that is
0j

useful for computing 7§ in many concrete cases.

Sequence Lemma: Let By C By, C ... be a cofinal sequence of nested
bounded subsets of R?, i.e. suppose every bounded subset of R? is a subset of

some B,,. Then G, is isomorphic to the inverse limit of {Gpg, : 1 <n < oo}.

Proof: By cofinality, the mutual domination condition is satisfied, whence

the sub-system has the same inverse limit as the full system. a

There is another lemma that will help us to compute the projective fun-
damental group for specific albums F. To state it, we need a definition. Let

nZ? denote the lattice nZ x nZ C R? Say that a path in R? is n-straight
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if it consists of edges of length n, each of which joins two nearest neighbors
in nZ?, and if no edge in the path occurs twice or more in immediate suc-
cession (that is, no edge is traversed in one direction and then immediately
re-traversed in the other direction). Say that a path in a scene-space Sg is

n-straight if its projection into R? is n-straight.

Straightening Lemma: Fix a basepoint (x, f) € S, let g be any element of
Goo = Wfroj(S, (x, f)), let B be a bounded subset of R*, and let n be a fived
integer. Then gp (an element of n1(Sp, (x, f))) has a representative (that is,

a loop in Sg) that is n-straight.

Proof: Let B’ be a square in R? containing B, such that the exterior of
B’ in R* is at (L') distance n from B. Since gg lifts to G, it lifts to Gpi;
let L be a loop in Sp: whose projection down to Sp is in the homotopy class
9B, with projection (z; : 0 < ¢ < 1) in R For all ¢, let y; be the point
in nZ? closest to z;. Then one can use the points 1y, to construct a loop
(2 : 0 <t <1)in R? that is n-straight and stays within distance n of z;
(so that z; + B is a subset of x; + B’). For each ¢, let 775 be the scene that
is inside z; + B (according to the scenery associated with the loop L); then

((z¢, f4) : 0 <t < 1) is an n-straight representative of gp. O

It can be useful to have a concrete picture of a scene-space Sp as a 2-

complex. This we now describe.
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Suppose that the domain D of an album F of finite type is Z2. Then
by a suitable block-encoding (as in [MaPa]), we can construct an album
isomorphic to F in which the sets U; in the definition of finite type are the
integer translates of the horizontal segment joining (0,0) and (1,0) together
with the integer translates of the vertical segment joining (0,0) and (0,1).
Without loss of generality, we may assume we are dealing with such a recoded
F. We also wish to impose an “extension property,” which may entail some

loss of generality. Specifically, we wish to assume that for all s,¢,u, v in the

symbol-set S and all ¢, 7 in Z, if there exist fi, fa, f3, f4 in F such that

fl(l .]) =S5, fl(l‘l'l.]) :tv
foli,g+1) =u, Lli+1,j+1) =,
fS(Z .]) =S5, f3(lv.] + 1) =u,
fai+1,7) t, fii+1,7+1) =,

then there exists f € F such that
fl,5)=s, fi+1,5)=1t f.j+1)=u, fi+1,7+1)=

All of the examples we study in this article have the extension property. We
will assume throughout the rest of this section that the property holds.
Now suppose that the aperture B is a square of the form (—m,m) x
(—m,m). By once again passing to a higher block presentation of the album,
we may without loss of generality restrict ourselves to the case m = 1. In
this situation, the scene-space Sp admits a simple description as an infinite
collections of squares with some identifications along their boundaries, in the

spirit of [Thur]. More precisely, Sg is an infinite 2-complex with vertex set
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Z? x S, with an edge Ef]t joining ((¢,7),s) to ((¢ +1,7),t) when there exists
an f € F satisfying

fg)=s, fli+1,5) =t
with an edge F’ f]t joining ((4,7),s) to ((¢,j + 1),t) when there exists an
f € F satisfying

fg) =5 fli,5+1) =1,

. ¢ : t ot
and with a face """ spanning ', I’}
9,

(TR 78, .
s BNy By, BT when there exists

]

an f € F satisfying
fGg)=s, Ja+1,5) =1t fl.j+1)=u, fG+1,j+1)=v.

(If this is confusing, it may be helpful to consider the analogous but simpler
state of affairs that prevails in the context of Z-actions; there the scene-space
is a graph rather than a 2-complex.)

Choose a point in Z? x S, and let L be a loop in Sg based at the cor-
responding point in Sg; the loop may be perturbed so that it only travels
along the 1-skeleton, for wherever the loop travels through the interior of
one of the squares, one can perturb it so that it hugs the boundary. Indeed,
further perturbations insure that the loop is composed of edges (that is, no
edges need be partially traversed and then retraced backwards); and we may
insist that no edges may be fully traversed and then immediately retraced
backwards, since such “trivial excursions” can be homotopically shrunk away.

Hence, every loop in Sg is homotopic to one that is 1-straight. (Note: Unlike
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the Straightening Lemma, this fact holds true whether or not the loop lifts
to the inverse limit.) A homotopy between 1-straight loops is generated by
“elementary homotopies,” wherein a portion of a loop that traverses part
of the boundary of a square is “pulled through the square” so that it tra-
verses the complementary portion of the boundary, and any resulting trivial
excursions are excised. In many cases, this point of view furnishes a fully
combinatorial definition of 71(Sg) that is amenable to analysis with the tools
of combinatorial group theory; see [CoLa] and [Thur].

If instead of taking the window B to be open, as above, we take it to
be closed, the scene-space Sp is not a Hausdorff space. It is nevertheless in
some cases a better model to use than the 2-complex constructed above; see
the proof of Theorem 4.

We end this section with some remarks on the relation between connected-
ness properties of scene-spaces (and of inverse limits) and mixing properties
of dynamical systems.

Suppose that the album F has domain D = Z? and is closed under integer
translations. We claim that if the Z*-action on F is topologically mixing,
then Sp is connected. For, fix x1,z9 € R?, fi, fo € F. We wish to find a
path in Sg from pg(z1, fi) to pe(xa, fa). Let f* be an arbitrary function in
F. Since F is mixing, there exists a function f; € F that agrees with f;
on B + x; and with T f* on B + a*, provided only that x* is sufficiently

far away from z. Similarly, there exists a function f} € F that agrees
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with fo on B + x5 and with T,«f* on B + a*, provided only that x* is
sufficiently far away from x5. Hence, taking z* to be suitably far from both
r1 and z9, we may find f{ and f) as above. But then there is a path from
pe(1, f1) = pe(x1, f1) to pe(a*, f1) = p(a™*, T f*) on the f{-section of Sp,
and a path from pg(z*, Ty f*) = pa(a*, f}) to pa(xa, f3) = pa(22, f2) on the
f4-section of Sgp.

On the other hand, suppose the action of Z% on F is imprimitive with
respect to some proper sub-lattice A of Z* (that is, suppose the action of
Z? on F admits as a factor the action of Z? on A; this is the analogue of
periodicity for Z?-actions). For instance, F could be the set of functions
¢ : Z* — 7 subject to the constraint that ¢(u) — ¢(v) = +1 when u,v are
adjacent in Z*, with A the tilted sublattice of index 2. (These functions
will play a key role in the analysis of the square ice model.) F splits into
two components, according to whether the function ¢ takes an even value
or an odd value at the origin, and Sg splits up into two path-components
accordingly. In general, Sg splits up into many path-components, one (or
more) for each element of Z?/A. This will be true for all (sufficiently large) B,
so that we obtain, in the inverse limit, a decomposition of S into projective

path-class components.

5 The Full Shift

Theorem 2: The full n-shift has trivial fundamental group.
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Proof: Let F be the album corresponding to a full shift on an alphabet
of size n, one of whose symbols we call 0. To prove that mej of F is trivial,
we must first show that S is projectively connected. This accomplished, it
suffices to prove that for B = B,, = (—m,m) x (—=m,m), an arbitrary free
loop L in Sg can be shrunk down to a point. For this implies that m(Sg)
(the homotopy group of paths with a fixed basepoint) is trivial for all such
B’s, and by the Sequence Lemma, it follows that the inverse-limit group
Goo = Wfroj is also trivial.

To show that the inverse system {Sg} is projectively connected, let fy be
the constant function sending everything in Z? to 0, let f be some arbitrary
function in F, and let f,, be the function that agrees with f on the square
block B, NZ* = {—-m + 1,..m — 1} x {—m + 1,...,m — 1} and has 0’s
everywhere else. (In Figure 5, we consider a specific example with m = 2
and f(z,y) =14 |z|+ |y| for =2 < 2,y < 2.) Then we can define a path in
Sp that moves from (0,0) to (3m,0) along the f,-section (see Figure 5(a))
and moves from (3m,0) back to (0,0) along the fo-section (see Figure 5(b)).
Call the combined path P,,. We need to check that as m varies, these paths
are homotopically consistent with each other. That is, if m’ > m, we need to
check that the path P,/ in Sg_, projects to a path in Sp,, that is homotopic
to Py, (Figure 5(c) shows P,/ in the case m’ = 3). To this end, let f,./ ., be the
function that agrees with fon {—m/+1,...m'—1} x{—m+1,....m—1} and

has 0’s everywhere else. Then the image of P, in Sg_, can be seen as taking
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its outbound leg (shown in Figure 5(d)) on the f,./,-section rather than
the f,,i-section. We can perturb this outbound path so that its projection
in R?, instead of going directly from (0,0) to (3m’,0), goes via (0,3m) and
(3m’,3m), in the obvious rectilinear fashion, as shown in Figure 5(e). Now
the outbound path lives on the f,,-section (as well as the f,./ ,-section), and
we can undo the detour, obtaining a direct path from (0,0) to (3m’,0), as
shown in Figure 5(f). The resulting closed path is homotopic to P,,, since we
can shrink away the portion of the path that goes from (3m,0) to (3m/,0) and
back. Hence P, does indeed project to P, (up to homotopy). In the inverse
limit, we obtain a projective path-class joining ((0,0), fo) and ((0,0), f) in S.
Since f was arbitrary, projective connectivity follows. Thus the fundamental
group is well-defined (i.e., does not depend on choice of basepoint).

Next fix B = (—=m,m) x (—m,m); we wish to show that an arbitrary
free loop L in Sp can be contracted. By the remarks made near the end of
Section 4, we may suppose that our loop L is 1-straight, so that its projection
into R? is a rectilinear path zg, 2, -+, 2, =20, where the z;’s are points in
Z? such that ||z; — z,44]] = 1 for all i. Let f; denote the scene in x; + B. For
each 7, we choose a point y; in Z?, such that z; + B is disjoint from y; + B,
and such that the line joining z; to y; is either horizontal or vertical and has
only the point x; in common with the unit segment joining x;,_; to x; and the
unit segment joining x; to x;41. See Figure 6, in which the straight undashed

segments form an excerpt of the loop L.
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We now define a new loop L’ homotopic to L, obtained by adding con-
tractible loops based at each point (z;, f;) along the loop. For each i, let
f; be the function in F whose restriction to x; + B is TZ and whose values
outside of x; + B are all 0’s. Then there is a unique path on the f; sheet of §
whose projection down to R? goes from z; to y; via a straight line and then
returns to x; along the same route. The projection of this contractible loop
into Sp is also contractible, so we can insert it into L at the point (z;, f;)
without changing the homotopy class of L. The undashed segments shown
in Figure 6, both straight and curved, illustrate the resulting loop L. (Note
that the paths from z; to y; and back are drawn as arcs, even though they
are in fact straight lines; were we to draw them in a more literal-minded way,
the two paths would coincide.)

Consider now the part of L’ whose projection down in R? goes from y; to
x; to x;49 to y;41. It lifts to a path in S, where it lives on a sheet that shows
the scene f; on z; + B, the scene f,; on z;41 + B, and 0’s everywhere else.
This path can be perturbed so that it skirts (z; + B)U (2,41 + B), and thus
shows only 0’s in its scenery. This homotopic perturbation projects down to
Sp. If we do this for all 7, we get a new loop L”, depicted by dashed edges
in Figure 6. Observe that the loop L” lives on the all-0’s section of Sg, and

thus is contractible. O

It’s worthwhile to point out that if Sg is not a square block, Sp can fail
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to be simply connected. If for instance

B =([=3/2,3/2] x [=3/2,3/2]) \ ([=1/2,1/2] x [-1/2,1/2])

(a 3-by-3 square with a hole in the middle), then 7;(Sg) is not even finitely
generated.

To see why this makes intuitive sense, first consider a path ((2, f;) : 0 <
t < 1), in which z; travels at uniform speed from (0,0) to (4,0) to (4,4) to
(0,4) to (0,0), and f;(y) = 0 for all ¢ between 0 and 1 for all y € Z*N (B +a,),
except that f;((2,0)) =1 for 5/32 < ¢ < 7/32 (which is “inconsistent” with
having f:((2,0)) = 0 for 1/32 < ¢ < 3/32). That is, the aperture slides
four units to the right, such that the scenery at the point (2,0) is initially
invisible, then a 0, then invisible, then a 1, then invisible. The usual tricks
for shrinking a loop do not work here; in fact, it can be shown that there is
no way to get rid of the local “kink” at the point (2,0). We can play this
game with any finite set of points simultaneously, and devise a path which
is tied to all of them. In this way we see that 71(Sg) (for this particular B)
is quite complicated.

Of course, none of these bad paths lift to paths in Sg:, where B’ is the
3-by-3 square (that is, B with its missing middle restored), since we know
that m1(Spr) is trivial. Here we see how taking the inverse limit eliminates
unwanted complexities that can arise from individual scene-spaces.

The method introduced in this section can be used to show that many

two-dimensional shifts of finite type have trivial fundamental group. For
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instance, consider the set of proper 4-colorings of Z? as a Z>-shift, where
a proper 4-coloring of Z? is a map from the grid-graph Z? to the color-set
{0,1,2,3} with the property that no two adjacent vertices of the graph are
assigned the same color. Let fo be either of the two proper 4-colorings of
Z? that use only the colors 0 and 1, in alternating chesshoard fashion. Then
it is not hard to use fy to mimic the proof of Theorem 2 by demonstrating
both the fact that the system is projectively connected and the fact that
an arbitrary free loop in the scene-space is contractible. For instance, the
latter fact is proved in much the same manner as in Theorem 2, by replacing
each scene (z;, f;) on the path L by a suitable (nearby and compatible) scene
(i, fo), and “pushing” the scenes on the path onto the fo-sheet. The needed
trick, due to Klaus Schmidt [Sch2], is the observation that, given a proper
4-coloring of a rectangular excerpt of the graph, we can extend the coloring
along one edge of the rectangle in such a way that each vertex along the
new frontier is given a color that is congruent mod 2 to its fp-color; this is
because each new vertex has only one old vertex constraining it, and the two
new vertices that neighbor it do not constrain it once we have committed
ourselves to giving those vertices colors of opposite parity. This new frontier
can in turn be extended to give a rectangle whose leading edge is colored
precisely as in fy. (Figure 7 shows the scheme, using the same layout as
Figure 6.)

This argument works equally well for k-colorings for any & > 4, but we
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will see below (see Section 7) that the situation is very different for k& = 3.

6 The Square Ice Model

Theorem 3: The square ice model has fundamental group = 7.

Proof: Since the fundamental group is invariant under album isomor-
phism, we may replace square ice with the dual square ice model introduced
in Section 2. Let F be this dual model on the square grid G (with vertex set
Z?), encoded in some fashion as a set of maps with domain D C R

Let F be the set of functions ¢ from Z? to Z, subject to the constraints
that (a) ¢(i,7) =i+ 7 (mod 2) for all (7,7) € Z*, and (b) é(u) — ¢(v) = +1
when u,v are adjacent in Z2. Given ¢ € F, define d¢ to be the orientation
of the grid G in which the edge wuv is oriented from u to v if and only
if o(v) — ¢p(u) = +1. It is easily shown that J sends F to F. For, let
u,v,w,r be vertices of a 1-by-1 square in G, taken in cyclic order; since
[6(u) — H(0)] + [8(0) — ()] + [$() — ()] + [$(x) — S(u)] = 0, two of the
bracketed expressions will be +1’s and two will be —1’s, so that two of the
edges of the square acquire clockwise orientation and the other two acquire
counterclockwise orientation. Conversely, every square ice configuration lifts
to a function ¢ € F. Two functions ¢, ¢’ € F satisfy dé = ¢’ if and only if
¢ — ¢ is a constant ¢ (necessarily even).

The map 0 : F — F is continuous; moreover, it is a covering map, in the
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sense defined in Section 3. Our determination of Wfroj(S(}—)) will hinge on

the determination of Wfroj(S(]?)).

To show that F is projectively connected, it suffices to show that F is
projectively connected (see the remarks made in the last paragraph of Section
3). Our proof is modeled on that of the last section, but we need one extra
idea. Given a partial function ¢ whose domain is a rectangle in Z?, whose
range is in Z, and which satisfies conditions (a) and (b) above, we can in an
iterative fashion define an extension of ¢ to all of Z? that continues to satisfy
(a) and (b). If ¢(i,7) is defined for (i,7) € [A, B] x [C, D], one can extend to
[A, B] x [C, D + 1], by putting

¢(“D“)‘{¢<z’,D>+1 if 6(i, D) < 0

for all + € [A, B]. One can apply the same trick three more times to get
¢ defined on [A —1,B+ 1] x [C —1,D 4+ 1]. (See Figure 8.) Repeating
this ad infinitum, we get ¢ defined on all of Z*. Moreover, this ¢ takes only
the values 0 and 1 outside of some finite region. We call this the natural
extension of our partial function. (Incidentally, this idea can be applied to a
partial function whose domain is a union of two rectangles, provided that the
separation between the rectangles is large compared to the absolute values
of the integers appearing in those rectangles; this observation permits one to
prove that the action of Z2 on F is mixing.)

Let ¢ be the function sending (i,7) € Z* to 0 or 1 according to whether

1 + 7 is even or odd, and let ¢ be some other function in F. For all m,
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let ¢,, be the natural extension of the restriction of ¢ to the square block
B,NZ*={-m+1,..m—1}x{—m+1,....m—1};and let P,, be a path in
Sp that moves away from (0,0) on the ¢,,-section (in the direction of (00, 0))
and returns on the ¢g-section. As in the proof of Theorem 2, one can prove
that if m’ > m, the projection of P, into Sg_, is homotopic with P,,.

To prove that the projective fundamental group of F is Z, we proceed
in two stages. First we show that the projective fundamental group of Fis
trivial. Then we show that the monodromy of a loop in F, when lifted to
.7?, acts on the fiber of the basepoint (= 2Z) by simple addition of an even
integer, and that every even integer arises from the monodromy of some loop
— implying that the projective fundamental group of F is 2Z = Z. (Note

the reliance on covering-space ideas; these are generalized in Section 7.)

~

Consider an element of Wfroj(S(}")), based at ((0,0), ¢g); for each square
block B, it projects to a loop-class in m1(Sp (.7?)) Let L be a representative
of this loop-class. The Straightening Lemma tells us that without loss of
generality, we may assume that L is n-straight, where n is much larger than
the diameter of the block B. We will show that L is contractible as a free
loop. This implies that [L] (the homotopy class of L in m1(Sp (.7?))) is trivial.
Since B is arbitrary, our (arbitrary) element of Wfroj(S(]?)) is the identity,
so that the projective fundamental group of F is trivial.

Let 09 be the ¢g-sheet in S(F), and let @y be its image in SB(]?). We

will show that L can be continuously deformed into a loop that lives in .
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It suffices to consider loops in SB(]?) such that for all (x;, ¢,) on the path, ¢,
takes on only non-negative values in z; + B. Let M; be the maximum value
taken by ¢, on x; + B, and let M be the maximum of the M,’s. Let r;; be
the number of distinct times ¢ for which ¢,(7,7) = M (where two times t,,,
count as “the same” if (¢,7) € x; + B for all ¢ between ¢; and #3), and let
r =3 ez i = 1. We will prove our claim about deformation of loops by
iteratively reducing M and r.

If M =1, then the loop already lives on @y, and we are done. If M > 2,
then we can reduce r (or, if r is already 1, reduce M) in the following way.
Find ¢*, 7%, t* with ¢ (i*, 7%) = M.

Case I: (x4« + B)NnZ?* = (). Since the loop is n-straight, there exist ¢;,,
with ¢, < * < 4 such that x4, z;, are adjacent point in the grid nZ?* and
are consecutive on the loop L, with z; lying somewhere between them. For
definiteness, suppose z;, = (0,0), x5, = (n,0). The scenes ¢, (t; < t < t,)
are all consistent with one another, and thus form a legal rectangular block.
Let & be the natural extension of this block to a full function from Z? to Z.

~

Let o be the corresponding sheet in S(F), and & the corresponding section

in SB(]?). Let ¢/ € F be a modified version of ¢, with

qb/(l,]) :{ qb(lv.])_Z =M-2 if (Zv.]) = (Z*v.]*)

(i, 7) otherwise.
(This is legal, since qg(v) = M — 1 for all four neighbors v of (i*,7*).) Let o’,

@ be the corresponding sheet and section in S(F) and Sg(F), respectively.

Then the segment of the loop between time ¢; and time 5 lives on @ and may
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be perturbed so that its projection into R* goes from (0,0) to (0,n) to (n,n)
to (n,0). But this path lives on & as well as @, and thus may be perturbed
so that its projection into R? once more goes directly from (0,0) to (n,0).
The new loop is like the old, except that the value M achieved by ¢:(:*, %)
for t near t* has been replaced by M — 2. Thus, in the new path either the
maximal M has decreased or the decrease in r;« ;» by 1 has led r to decrease
by 1.

Case II: (w4« + B) N nZ* # (. This is slightly more complicated than
Case I; it becomes necessary to consider three consecutive grid-points in nZ?
along the path. What is more, there are two geometrically distinct sub-cases
to consider, according to whether the n-straight path makes a 90° turn at
the middle grid-point or keeps going straight. The key observation is that we
can perturb L on the ¢-section so that it stays away from the point (¢, 5%)
and then perturb it back on the ¢’-section. We leave details of the argument
to the reader.

In either case, the ordered pair (M, r) has been lexicographically reduced.
Performing this operation sufficiently many times, we eventually achieve M =
1. The loop now lives in @y, and hence is contractible.

This completes the proof that Wfroj(S(]?)) is trivial.

Since S(]?) is projectively connected, so is S(F), and it remains only to
find the projective fundamental group of F, which we will do by determining

the monodromy on a fiber. Consider an element of the projective fundamen-
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tal group of F, and fix a block B; we get a loop-class in Sg(F) from which
we may choose some representative path L. Since d is a covering map, we
can lift I to a path P in Sp (.7?) whose endpoints both lie in some fiber over
Sp(F). Say that P goes from (70, Py) to (zo, ¢y =¢ + c) with ¢ € 2Z. Now
take some other point (xq, ¢, + d) in that fiber, where d is any even constant
we choose, and let P’ be the lift of I to Sg (.7?) with initial point (zo, ¢+ d);
to verify that the monodromy group is 2Z (= Z), we need to know that the
endpoint of P’ in Sg (.7?) is (20, @y + c+d). But this is easily shown. For, the
path ((z¢,¢; +d) : 0 <t < 1) projects under 9 to the same path in Sg(F)
as P = ((z¢, ;) : 0 <t < 1) does, namely P; since ((z4,¢, +d) : 0 <t < 1)
moreover has initial point (wq, ¢, +d) : 0 < ¢ < 1), it must be the desired

path P’ and its endpoint is (21,0, +d) = (21,09 + ¢+ d). O

Interestingly, determining the respective fundamental groups of the in-
dividual spaces Sp seems to be harder than determining the inverse limit
of these groups; the Straightening Lemma played a key role in the proof of
Theorem 3. In fact, we do not know if any or all of the spaces Sg with B a

square block are simply connected.

7 Covering Maps

As an example of a covering map between two-dimensional subshifts of finite
type, let F = G = the full 1-dimensional 2-shift with alphabet Z/2Z, and
define ¥ (f) = ¢g with ¢(:) = f(i)+ f(2 — 1) (mod 2). Note that the map ¥ is
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everywhere 2-to-1. To see that it is a covering map, note that for any g € G
the neighborhood V = {¢' € G : ¢'(0) = g(0)} of g has the property that its
pre-image can be written as the disjoint union of two sets each of which is
mapped homeomorphically to V' by .

One example of a covering map that comes from statistical mechanics is
the two-dimensional Ising model [Baxt]. A state of this model is given by an
array of arrows, each of which points either up or down; all configurations
are allowed, so we are dealing with a full 2-shift. A sample configuration is
shown in Figure 9. We represent an up-arrow by putting a 1 in the associated
face of the infinite square grid, and a down-arrow by putting a 0 in that
face. The energy of the configuration is the sum, over all pairs of adjacent
arrows, of an interaction energy between the two, which takes one value if
the two arrows point in the same direction and another value if they point
in opposite directions. Thus, physicists often depict such a configuration
by drawing edges to mark the boundary between a region of contiguous up-
arrows and a region of contiguous down-arrows; the energy of a configuration
can thus be determined by counting the marked edges. It is not hard to see
that the graphs that arise in this way are precisely those subgraphs of the
infinite square grid in which each vertex has degree 0, 2, or 4. The set of
such subgraphs forms a Z?-subshift of finite type, and it is easy to see that
the map from the full 2-shift to the new shift is 2-to-1.

A more interesting example, also drawn from statistical mechanics, is
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given by the set of proper three-colorings of the square grid [Baxt]. This
is the set of mappings from the vertices of the infinite square grid to the
color-set {0, 1,2} having the property that no two adjacent vertices are as-
signed the same color. See Figure 10. We can turn this into an edge-marked
configuration by giving each edge of the square grid an orientation according
to the rule that an edge that joins a vertex marked i to a vertex marked j
should be oriented from ¢ to j if and only if j —¢ 2 1 (mod 3). It is not
hard to check that the orientations of the square grid that arise in this way
are precisely those that satisfy the curl-constraint of Section 6. Fach such
orientation has a pre-image of size 3 in the set of proper three-colorings.

In the Ising model example, the two pre-images of a point in the “down-
stairs” album are obtained from one another by turning 0’s into 1’s and
vice versa. In the three-coloring example, the three pre-images of a point
in the downstairs album are obtained from one another by cyclic shifts of
the symbols 0, 1, 2. In each case, two points that are in the pre-image of
a single point downstairs have the property of exhibiting different symbols
everywhere. This makes it easy to verify that the mapping between the two
albums is indeed a covering map — simply take V;, to be the set of all points
that agree with y on some arbitrary non-empty subset of Z2.

For the rest of this section, we will restrict ourselves to the study of Z2-
shifts, rather than general albums. We shall use the term “covering map” as a

shorthand for “covering factor map”. We will also, for the most part, restrict
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ourselves to the study of covering maps 1 : F — G for which the Z2-shift G
is compact. Finally, note that by passing to a higher block presentation of
F if necessary, we can always take i) to be a 1-block map.

We say that a factor map ) : F — G between Z?-shifts is totally separated
if whenever f and f’ belong to the same fiber of ¢» we have that f(i,j) #
f'(i,7) for all i,7 € Z. More generally, if b : X — Y is any map between
metric spaces, we call ¢» uniformly separated if there is some ¢ > 0 such that
whenever x and 2’ belong to the same fiber of ¢, we have that the distance
between x and 2’ is at least 4. It is clear that a totally separated factor map
is uniformly separated. Conversely, if a factor map 1) : F — G between Z?2-
shifts is uniformly separated, then for a suitable higher block presentation
F' of F the corresponding factor map ¢’ : F' — G is totally separated.

Proposition 1: Suppose G is compact (as a topological space) and topo-
logically transitive (as a dynamical system). Then every covering map i :
F — G is constant-to-one and uniformly separated.

Proof: Let d be the smallest cardinality for which the set G = {g € G :
|vb=tg| = d} is non-empty, so that its complement is G° = {g € G : |[¢"'g| >
d}. Since v is a covering map, G° is open, and since 1 intertwines with the
actions of Z? on F and G, GG° is invariant under Z2. If (G° were non-empty,
it would have to comprise all of G (by topological transitivity), contradicting
the fact that G is non-empty. Hence GG° is empty, and every g € G has exactly

d pre-images in F. To prove uniform separation, give each ¢ a cylinder-set
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neighborhood that is evenly covered under ¢ and pass to a finite subcover
(using compactness). For each open set O in the finite cover, ¥»~'(0) is
a union of d disjoint cylinder sets which are at positive distance from one
another. Letting O vary and taking the minimum of these distances, we get
a uniform lower bound on the distance between pre-images of points in G. O

As a partial converse, we have:

Proposition 2: Suppose F and G are both compact, with d some positive
integer. Then every d-to-1 continuous map ¢ : F — G that is uniformly
separated is a covering map.

Proof: We first prove that ¢» must be open. For, if ¢ were not open, then
there would be an open set U in F, a point f € U, and a sequence of points
{gn}in G converging to g = ¢(f) such that for each n, " (g,) = {f!,..., f?}
does not meet U. Since F is compact, we may pass to a subsequence of n’s,
which we again index by n, so that { f!} converges, say to f'. Dropping again
to a subsequence of these, we may assume that {f?} converges to some f2.
In this way we continue refining the the sequence of indices until we obtain
that {f?} converges to f?. Then f',..., f? are distinct since f!,..., f? are
S-separated. Also, no f* is in U since the f! are not in U/ and U is open.
By continuity, we have that 1(f') = g. But then {f, f',..., f'} C ¥~"'(g) so
|~ g)| > d, a contradiction.

Now, for g € G, let ¥ (g) = {fi1,..., fa} and take disjoint open sets

Up,...,U; in F with f; € U;, using the fact that F is Hausdorff. Then

36



V; = (U;) is open, and ¢ is in each V;. Let V.= Vi Nn...NV,, so that V is
an open neighborhood of y. If we define W; = U; N¢p='(V), then the W; are
disjoint open sets in F. Since ¢ is (only) d-to-1, ¢»='(V) is just the union
of the W;’s. The continuous map v, restricted to a map from W, to V. is
bijective and open, hence a homeomorphism. a

It is worth noting that for transitive Z-shifts of finite type, a constant-to-
one factor map is necessarily uniformly separated (and so totally separated
up to a conjugacy); see [Nasu]. We do not know if this it true in the Z? case.

Let ¢ be a d-to-1 covering map from F to G, with G topologically transi-
tive and compact. ¢ induces a map from Sg(F) to Sg(G), but this map is,
unfortunately, not generally a covering map. To circumvent this problem, we
introduce a stand-in for Sg(F), the “quasi-scene-space” Sg(}—), which will
turn out to be a covering space of Sg(G). Taking these covering maps to the
inverse limit will allow us to prove Theorem 4.

Since G is compact, there is a finite cover of G by open sets Oy, ..., O, that
are evenly covered by their pre-images in F. Let v, ; denote the restriction
of ¥ to the jth component of the pre-image of O;. Each 1, ; is a homeomor-
phism, so its inverse is a block code relative to some bounded subset B;; of
R?. Since there are only finitely many B; ;’s, there exists a square block B*
of the form [—m, m] x [—m,m] such that any translate of B* contains all of
the B; j’s.

Note that every translate of B* must intersect Z*. By making B* even
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larger, if necessary, we can ensure that for every z € R?, every cylinder set
associated with a particular (B* + x)-scene is evenly covered (use the open
cover Oy, ...,0,).

Given a bounded set B in R?, define B~ as the set of all points z in R?
for which the translate B*+ z is a subset of B. We assume henceforth that B
is sufficiently large that B~ contains B*, and that B is closed, so that B~ is
closed as well. Define the quasi-scene-space Sﬁ(}—) as the set of pairs (z, f)
under the equivalence relation that puts (z, f) ~ (z, f') if and only if f and
f" agree on B~ and ¢ f and v f’ agree on B.

Note that there are “restriction maps” from Sg to Sp, and from 84 to
Sp-. Also note that if the sequence of B,’s is cofinal then the sequence of
B> ’s is cofinal as well. Hence, to specify an element of the inverse limit of
Sp or of m1(Sg) (as B increases up to R?), it suffices to specify an element
of the inverse limit of 8§ or of m((S}).

Since each B-quasi-scene in F determines a B-scene in G, there is a map
Yp from S}f(}“) to Sg(G). The maps g commute with all relevant restriction
maps, and hence induce a map . from projective path classes in S(F) to
projective path classes in §(G). An easy diagram-chase tells us that 1, of a
non-trivial projective path class in S(F) is a non-trivial projective path class
in §(G); hence, . is injective.

Proposition 3: If ¢ is a d-to-1 totally separated covering map, then g

is a d-to-1 covering map.
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Proof: First we will show that ¢p is d-to-1. Fix (z,9) in Sg(G), where g
denotes the restriction of some particular function ¢ € G to B 4+ x. Since ¥
is d-to-1, there are exactly d functions fi,..., f; that ¢» maps to g, and since
Y is totally separated, no two of these functions f; have the same symbols
anywhere. It follows that the functions f; determine d distinct pre-images of
the scene (x,q) in the quasi-scene-space Sﬁ(}“). To show that there are no
other pre-images, note that since B D B*, the cylinder set V consisting of
those elements of G that agree with g on B + = is a subset of the cylinder
set associated with a B* + x-scene, and hence is evenly covered under ;
that is, ©»=!'(V) consists of d open sets U; each of which is mapped onto V
homeomorphically by ¢, and each of which contains a unique f;. We have d
local inverses of v, taking V' to the respective U;’s; write the ith local inverse
as ¥ ', Since all the points in V agree with ¢ on B, and since each ;" is
a B*-block map, every point in U; = 'V agrees with f; on B~. Hence,
the quasi-scenes that comes from the f;’s are the only ones that are in the
pre-image of (z,9), and so g is d-to-1.

We now consider scenes in Sg(G) that are close to (z,q). Let g,, denote
the restriction of ¢ to (B + ') N Z?*, where 2’ is a point in R? near . Choose
e > 0 such that for all 2’ within distance ¢ of x, B + 2’ contains B~ + z
but does not contain any points of Z* not present in B + z (recall that B
is closed). Since B~ contains B*, the first condition implies that the set of

functions in G that agree with g on B+ 2’ is evenly covered under 1, and the
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local inverses ¥;! introduced above apply to the perturbed scenes (z,7,.)
as well. The second condition implies that the scene g, reveals no symbols
not shown by the scene g, (though it may obscure some of the symbols that
were shown by g,). Hence, the pre-image of (2/,4,,) under 5 consists of
d quasi-scenes associated with the respective f;’s. (Total separation tells us
that these quasi-scenes are distinct.) The set {(2/,7,) : |2/ — x| < €} is
therefore a neighborhood of (2,g,) in Sg(G) that is evenly covered. O
Proposition 4: Suppose f € F, g € G are such that vf = g. Fix
v € R% Then every projective path class in S(G) with initial point (z,q)
lifts to a unique projective path class in S(F) with initial point (x, f).
Proof: We first verify uniqueness. A projective path class in S(G) with
initial point (z,¢) determines a path class [@g] in the scene-space Sg(G)
whose initial point is the image of (z,¢) in Sg(G); such a [@g], by virtue of
Proposition 3, must lift to the unique path class [Pg| in the quasi-scene-space
Sﬁ(}—) whose initial point is the image of (z,¢) in Sg(}—). Since the diagram

Toun(SH(F)) — TERA(S(F))
! N
moun(S5(G) ¢ TIRA(S(9))

commutes, any putative lift of the original projective path class in wgg‘gﬂl(S(g))
up to WE?E&(S(}—)) must map to this particular [Pg] in Tpan(Sk(F)). This
holds for all B, so uniqueness is guaranteed.

To settle the issue of existence, we need to check that the path classes

determined in the above fashion for the different Sg(}—)’s (as B varies) are
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consistent with one another. That is, if B’ D B, [Pg] should be the image in
SY(F) of the path class [Pg/] living in Sk, (F). Diagrammatically:

[Pg] <& [Pa]
! !
[@B] « [@B]

Let [Pg] be the image of [Pg/] in Wpath(Sg(}—)). Since the diagram

wpath(«j}f(}")) ~ Wpath(i¢/(7))
Tpath(SB(G)) ¢ Tpan(Sp(G))

commutes, [Pg] must be a lift of [Qp]. But [Pg] is also a lift of [Q5], and
it has the same initial point, namely, the image of (z, f) in Sg(}—). Hence
[Pg] = [P3], as required. 0

Proposition 5: Let f; (0 < i < d) denote the ith pre-image of g under 1,
and let C; be some projective path class in Sg(F) with initial point (x, fo) and
terminal point (x, f;). We insist that Cqy should be the trivial projective path
class, but we make no constraints on the other C;’s. Then every element of
w{’“’j(S(g), (x,9)), when lifted to a projective path class in S(F) with initial
point (x, fo), can be written in a unique way as the composition of an element
of WfrOj(S(}—), (z, fo)) and one of the C;’s.

Proof: We choose the C; whose terminal point is the same as the terminal

point of the lifted projective path class in S(F). Verification is routine. O

Theorem 4: Assume that F and G are Z*-shifts, with ¢ : F — G a d-to-1

covering map. Assume that F (and hence G) is projectively connected, with

proj

G compact. Then 77" (F) is abstractly an index-d subgroup of w{’“’j(g).
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Proof: Take z, g, and f;’s as above. Proposition 5 implies that every
element of w{’“’j(S(g), (z,9)) can be written in a unique way as a composi-
tion of an element of ;/)*(Wfroj(S(}—), (z, fo))) and some ¥.3;. (Here we make
use of the injectivity of ¢..) Also, Cy gives us a map from w{’“’j(S(g), (z,9))
to Wfroj(S(}—), (z, fo)) that respects composition of loop classes. Therefore
B (TS (F). (2. o)) is & subgroup of 2P™I(S(G), (,)). What is more
{1.3;} forms a system of coset representatives, so that ;/)*(Wfroj(S(}—), (z, fo)))
is an index-d subgroup of w{’“’j(S(g), (z,9)). By projective connectedness
(and the fact that . is injective), these two groups are isomorphic to Wfroj(}—)

and w{’“’j(g), respectively. O

Combining Theorems 2 and 4, we obtain:

Corollary: FEvery Z?-shift that admits a d-to-1 covering map from a full

shift has a fundamental group of order d. a

In particular, for d > 1, there can be no d-to-1 covering map from a full
shift to itself. More generally, no Z2-shift with finite 7™ admits a non-trivial
covering map onto itself.

Another consequence of Theorems 2 and 4 is that no projectively con-
nected Z?-shift admits a d-to-1 covering map onto a full shift, with d > 1.
This is analogous to Kammeyer’s result [Kamm] that there are no d-point

mixing cocycle extensions of the full-shift (d > 1). Kammeyer’s result does
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not immediately imply ours, since not every covering-extension of a ZZ2-shift
is a cocycle extension. On the other hand, we do not know if our result im-
plies Kammeyer’s, because we do not know whether every cocyle-extension
of a Z*-shift is automatically covering.

Theorem 4 applies directly to the examples described at the beginning
of this section. It does not, however, apply to the ice-system F and lifted
ice-system .7?, since the map between them is countable-to-one. Fortunately,
the problem is remediable. Everything in Propositions 1, 3, 4, and 5 that
concerns d-to-1 maps applies equally well to countable-to-one maps, except
for the construction of the set B*. We used the finiteness of d to guarantee
the existence of a bounded set B* that contains all the B; ;’s associated with
the local inverses 1; ;. In the case of ice, this is easy, since the local inverses

are 1-block maps. Hence this section corroborates the previous section by

proj/

showing that #""(F) is a subgroup of Wfroj(}—) of infinite index. Also, note
that the set of proper three-colorings of the square grid, being a three-point
extension of square ice, has a projective fundamental group that is naturally
identified with the index-3 subgroup of Wfroj(}—).

More generally, to handle the case in which G is not compact, let us say
that a covering map ¢ : F — G is “uniformly covering” if there exists a
bounded set B* such that the B*-cylinder sets are evenly covered under
and such that the local inverse maps are block maps relative to B*. Then

the proof of Theorem 4 goes through much as before.
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8 Further Examples

Until now we have mostly used the framework of Markov shifts in studying
two-dimensional symbolic dynamics, but as our study of the square ice model
might lead one to guess, it is in some ways more convenient to use an enriched
Wang tile framework (see [GrSh]). A Wang tile is normally defined as a 1-
by-1 square tile with each of its four edges marked with some color drawn
from a finite set of colors. Two such tiles may be placed next to one another
(that is, fully sharing an edge) if they assign the same color to the shared
edge. We alter this definition slightly by allowing the vertices of the tile to
be assigned colors as well (distinct from the edge colors); tiles may share a
vertex if they assign the same color to it.

A tile set is a set of Wang tiles, which may be translated (but not rotated)
at will in the plane. The “decision problem” asks whether translates of a
given set of Wang tiles can be used to tile the entire plane. This is known to
be an undecidable problem [Berg]. Nonetheless, the set of such tilings makes
a perfectly nice dynamical system under the action of Z* (though it may be
empty!).

Every two-dimensional Markov shift can easily be encoded in a Wang
tile system (of our kind); one simply creates a set of vertex-marked Wang
tiles, one for each allowed m-by-m block of symbols, with m suitably large.
In the other direction, every Wang tile system can be encoded by a matrix

subshift. For, we may without loss of generality assume that our Wang tile
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system involves no vertex-marking (since we can enrich the edge-markings
so that they tell us the vertex-markings as well). Now we may introduce a
symbol for each tile, and the consistency conditions for adjacent tiles will
translate straightforwardly into adjacency conditions for the symbols. Thus,
every two-dimensional Markov shift is topologically conjugate to a Wang tile
system, and vice versa.

The Wang tiles that will be most interesting to us are those in which the
vertex-colors are elements of some set S, and the edge-colors are elements
of some group (G acting transitively on S. More specifically, we will require
for all s, € S that if two adjacent vertices of a tile are marked s and ¢
(with s either below or to the left of ¢) then the edge between them must be
marked with some g € G that sends s to t. We further require that if the
right, bottom, top, and left edges of a tile are marked ¢y, g2, g3, and ¢4, then
9192 = g39a. We let the tile set consist of all such tiles (unless we specify
otherwise).

If we take GG = S = Z acting on itself by addition, but allow only those
tiles in which edges are marked with 1’s and —1’s, we get the dual ice model,
with fundamental group Z.

If G acts freely on S (i.e., no element of (¢ besides the identity element has
any fixed points), then the vertex-markings determine the edge-markings,
so that we may dispense with the latter without affecting the system. In

particular, if G is finite and S = G with GG acting on itself by multiplication,
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then we get the full shift on the alphabet G (the “full G-shift”). This system
has trivial fundamental group, as was shown in Section 5.

More generally, the set of tilings of the plane by Wang tiles in the G :
S — S situation, viewed as a dynamical system, is a |G|/|S]-to-1 factor of
the full G-shift, assuming G acts transitively on S. In fact, the projective
fundamental group in this case is precisely the stabilizer group Stab s (for
s € 5). Thus, every finite group is 7P of some factor of a full shift. An
example is gotten by letting (G be the 2-element group, acting freely on a
two-element set S. The resulting 2-to-1 quotient of the full 2-shift is the set
of all ways of choosing a subgraph of the infinite square grid so that around
each square face, an even number of grid-edges are chosen (simply choose
the edges that are marked “17). Equivalently (via duality), one can look at
this as the set of all ways of choosing a subgraph of the infinite square grid
so that each vertex has even degree. This is the transformed version of the
2-dimensional Ising model discussed in Section 7.

If we are willing to work with non-compact systems, we can get Wfroj to
be any group G whatsoever (just let S be the one-point G-set), though if
we want our system to be locally compact, as in the case of square ice, then
there are undoubtedly constraints on what Wfroj can be.

We can use Wang tiles to give examples of systems that have the same
entropy and the same behavior on periodic points (combinatorially speak-
0j

ing) but different fundamental groups, so that 77" serves, in at least some
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instances, as the invariant of choice for distinguishing between two systems.
Let (G; and G5 be non-isomorphic groups of order d, with each group acting
on a l-point set S. Each resulting tiling system is a d-to-1 factor of the full
d-shift, and thus has entropy logd. What is more, for any sub-lattice A of
Z?, it can be shown in both cases that the number of A-periodic points in the
subshift is equal to dZ A+ This implies that there is a bijection between
the periodic points of the first system and the periodic points of the sec-
ond that commutes with the dynamics. Nevertheless, the two systems have
fundamental groups Gy and (75, respectively, and so must be non-conjugate.
Three variants of our construction deserve mention. First, suppose F
is the set of tilings of the plane by bounded regions of various sorts. Given
v € R*and f, f' € F, we may define ~ so that (z, f) ~ (z, f') if there exists a
region T' C R? that contains z and occurs as a tile in both f and f’. Then the
fundamental group of the quotient (R?* x F)/~ is exactly the tile homotopy
group in the sense of Thurston [Thur] in the case where all tilings in F live
on a grid. However, (R* x F)/~ is perfectly well-defined in the absence of
a grid; indeed, it would be interesting to compute the fundamental group of
(R? x F)/~ in the case where F is the set of Penrose tilings of the plane.
(Actually, the quotient space is disconnected, but it seems likely that each
connected piece should have the same fundamental group as every other.)
Second, suppose that F is the space of C* functions on R2, topologized

so that f, — f in F if and only f, agrees with f on B for all sufficiently
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large bounded sets B C R?. Let B, be the disk of radius r. Then we get
scene-spaces S, = Sg, (F) for all r > 0. If we take the direct limit as r — 0,
we get the space of germs of C* functions (denote it by Sp). S seems to be
simply connected, though we have not found a proof. In any case, Sy is a
covering space of the space of germs of C* conservative vector fields on R?
(where a vector field is conservative if it is the gradient of some scalar field)
with monodromy group R, so if all of the above is correct, the latter space
of germs is a connected space having R as its fundamental group.

Third, it is possible to apply the notion of scene-space to Z¢ actions for
general values of d, and this yields not only a broader definition of 7P™ but
also allows one to define higher projective homotopy groups. For example,
with d = 3 it appears to be the case that the dimer model on an infinite
cubical lattice has Wfroj trivial and wg’“’j isomorphic to Z. In the other di-
rection, with d = 1 it seems that the projective fundamental group of every
non-trivial subshift of finite type is infinitely generated. This is related to the
fact that one-dimensional subshifts of finite type do not exhibit the “cocyle
rigidity” manifested by many higher-dimensional subshifts (see [Sch2]); that
is to say, one-dimensional dynamical systems typically admit an abundance
of constant-to-one extensions.

To conclude, we will deliver on a promise made at the beginning of our

article. Note that for all z,2’ € R? (z,f) is connected to (z',f) by a

projective path class. This implies that if (z1, f1) and (a2, f2) are connected
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by a projective path class, then so are (2, fi) and (%, f2) for all 2,
in R%. Hence, the decomposition of the product space S = R? x F into
projective path-class components arises from a decomposition of F itself.
Going further in this direction, let us call a projective path-class trivial if it
“lives on a single sheet” — that is, if for every B the class has a representative
in the fundamental groupoid of Sg that lives on a single sheet. If we mod
out the fundamental groupoid by the trivial projective path-classes, we get a
quotient-groupoid whose elements have “endpoints” not in R? x F but in F
itself. This is what we meant when, in Section 1, we spoke of the possibility

of connecting two elements of F by something like a path.
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