Continuum spanning trees: proposed by James Propp

Does the uniform spanning tree model in Z?, studied by Russell Lyons,
Robin Pemantle, Robert Burton and others, admit a continuum limit as the
grid-size goes to zero?

Let us limit the question to the case 2 < d < 4, since that is the case
in which Pemantle obtains a non-trivial measure supported on the set of
spanning trees of Z¢.

One intriguing feature of the question is that it is not initially clear what
sort of geometric object a continuum tree spanning R¢ would be. Certainly
it is not a point-set in RY, for it would have to be nothing but the space
in its entirety! On the other hand, there are reasons to believe that such
a continuum object would have an interestingly high degree of symmetry
(rotational symmetry for all d and perhaps conformal symmetry for d = 2),
so the reward for a successful construction might be great: it could be an
important step in the attempts of mathematical physicists to understand
how lattice models, taken to the continuum limit, can manifest isotropy that
is not present at any finite stage.

It is best to step back from spanning trees conceived naively as sets of
vertices and edges and try to find some other description that can be taken
to the limit more readily. Here are three possibilities, in which successively
easier compactness arguments can be applied to give constructions for the
measure we desire.

(a) Given two vertices of a tree, there is a unique path in the tree from
one to the other. Conversely, knowing the function that takes each pair of
vertices to the associated path tells us the tree. Hence we might model a
tree spanning R? as a function that takes every pair (u,v) € (R%)? to a path
joining v and v. Recent (and still unpublished) work of Itai Benjamini and
Oded Schramm and of Harry Kesten shows that for d = 2 and d = 3, but
not for d = 4, the path joining the grid-points x and y in a uniform spanning
tree of Z? tends to stray from x and y by no more than a distance that is
linear in the separation of the two points. Using this “tightness” result and a
compactness argument, one can show that a (possibly non-unique) weak limit
exists for the law of this path as the grid-size goes to zero. This is the same
as the continuum limit of loop-erased random walk. Note that it is possible
that in the continuum limit, loop-erased random walk is self-intersecting.
Can one prove anything about this? (It should be mentioned that recent



work of Chad Fargason on Brownian motion is essentially equivalent to the
work of Benjamini, Schramm, and Kesten.)

(b) Given three vertices of a tree, not lying on a single path, there is a
unique vertex at which they “meet” (if the three vertices lie on a path, it
is the middle vertex of the three; otherwise, the meeting-point is the unique
vertex in the tree from which there exist edge-disjoint paths to each of the
three vertices). Thus we could model a tree spanning R as a function from
(R%)3 to R (In the case d = 2 we might want the range to be R? x {+1, -1},
where the sign specifies the handedness of the meeting-point, relative to the
ordering of the three vertices.) Benjamini and Schramm have looked at this
in the case of the “pillow-case graph”, consisting of two large grid-squares
identified along their boundaries. This graph is asymptotically conformally
equivalent to a sphere. Three vertices of the graph, along with their meeting-
point, thus determine four points on the sphere, with a unique cross-ratio.
Benjamini and Schramm have done empirical work that strongly suggests
that, asymptotically, the probability distribution governing this cross-ratio
does not depend on which three points on the pillow-case graph are chosen.
This supports the conjecture that the continuum limit shows conformal in-
variance. It would be interesting to see if the handedness-bit is distributed
in a %,% way, as conformal invariance would require. For d = 2 and d = 3,
the tightness result from (a) implies the tightness we need here to deduce
the existence of a (not necessarily unique) sub-sequential limit-distribution;
for d = 4, tightness fails, and the meeting-point does not have a limiting
distribution (under the appropriate normalization).

(c) Given four distinct vertices in a tree, we may look at the minimal
sub-tree containing them; there are four distinct topologies this sub-tree
can manifest. First, there may be some (necessarily unique) “hub” vertex
admitting edge-disjoint paths to all four vertices (the hub might or might not
be one of those four vertices themselves). Or, if this is not the case, then there
must be a unique way to partition the four vertices into two pairs such that
the vertices in each pair are joined by vertex-disjoint paths (that is, out of the
three a prior: ways of dividing the four into two and two, exactly one will have
this property). Therefore we may model a tree spanning R? as a function
from (R%)* to a four-element set, where the four elements correspond to the
aforementioned topologies on the sub-tree that has the specified vertices as
leaves. It is not hard to show that this information allows one to reconstruct
the tree in its entirety. Also, Schramm has pointed out to me a simple



random walk argument that shows that the first of the four topologies (that
is, the case in which there exists some vertex admitting edge-disjoint paths
to all four vertices) has probability zero in the continuum limit. In this case
a 4-tuple in R? would determine a triple of probabilities summing to 1. It
would be interesting to check whether this distribution manifests rotational
invariance (and, in the case d = 2, conformal invariance).

In each case, there might be a way to show, without actually giving an
explicit construction, that the weak limit is unique. In any event, numerical
experiments are easy to perform, using loop-erased random walk for efficient
generation of spanning trees of finite graphs.



