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Overview

In many number of fields of mathematics (e.g. number theory),
many extremely deep and delicate theorems may be understood to
assert that “thus-and-such behaves as if it were random”.

Sometimes such assertions are proved on an ad hoc basis, but
ideally one would want probabilistic methods that work in these
non-probabilistic contexts.

I’m going to show you a very simple example in which we can get
this kind of method.

It’s an artificial example, because it’s a deterministic system that
doesn’t occur in the wild; it was rigged to mimic a particular
random system.

But it’s of interest in its own right, and it may contain clues about
the link between random and non-random processes.
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What I won’t talk about

A related example is rotor-router aggregation, which I won’t have
time to discuss, but you can read Lionel Levine and Yuval Peres’
articles on the arXiv,

http://arxiv.org/abs/0704.0688

http://arxiv.org/abs/0712.3378

and you can go to Tobias Friedrich’s stunning website

http://rotor-router.mpi-inf.mpg.de/

which shows images created with an algorithm Friedich developed
with Levine, described in

http://arxiv.org/abs/1006.1003
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The π/8 theorem for random walk in Z2

A particle that leaves (0, 0) and performs unbiased random walk in
Z2 will hit the site {(0, 0), (1, 1)} again with probability 1.

The probability that the particle will hit (1, 1) before it returns to
(0, 0) (the “escape probability”) is pesc = π/8.

(I’m not sure who first proved this, or the more general result with
arbitrary targets, which involves more complicated rational
functions of π.)

A much easier result is that a random walk from (0, 0) will hit
(1, 0) before it returns to (0, 0) with probability 1/2.
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Rotor walk in Z2

To each site (i , j) in Z2 associate a 4-state “rotor” whose four
states correspond to the four nearest neighbors of (i , j).

A particle executes a deterministic walk determined by two rules:

1. After the particle arrives at a target ((0, 0) or (1, 1)), it gets
replaced at the source (0, 0). (It’s helpful to have two copies of
(0, 0): one a source and one a target.)

Alternatively, one can imagine that when a particle arrives at a
target, a new particle is placed at the source.

2. After the particle arrives at a non-target vertex (i , j), it
advances the rotor at (i , j) to the next state in counterclockwise
order, and moves to the neighbor of (i , j) indicated by the current
state of the rotor.

6 / 36



Fylfot initial conditions

We also assume that the initial configuration of the rotors is as
shown below (the black dot indicates where the origin is):
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What it looks like

Go to http://www.cs.uml.edu/∼jpropp/rotor-router-model/

Click on “The Applet”.

Change Graph/Mode to “2-D Walk”.

(Note: This applet uses clockwise, rather than counterclockwise,
progression of rotors.)
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The weak π/8 theorem for rotor walk in Z2

Take the many-particles point of view (when a particle gets
absorbed at a target, a new particle is released from the source).

Let k(n) denote the number of particles absorbed at (1, 1) among
the first n particles released from (0, 0).

Theorem: k(n)/n → pesc = π/8.
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The confluence property of rotor-routing

If n indistinguishable particles are placed at the source, the order in
which you advance them (obeying the rotor-router rules) doesn’t
affect the number that get absorbed at each target.

(This property is often called the “abelian property”.)

In particular, instead of letting one particle walk until it hits a
target, and then another, and then another, etc. you could
advance each particle one step, then another, etc.
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Why the weak π/8 theorem is true

When n is really large compared to m, the first m steps of
rotor-routing looks like a diffusion process on Z2.

In particular, the proportion of particles that have been absorbed
at (1, 1) is close to pesc,m := the probability that a particle released
from (0, 0) gets absorbed at (1, 1) within m steps.

But pesc,m is close to pesc when m is large.

This argument can be used to show that

k(n)/n − π/8 = O(1/(log n)).

But with more work we can do much better.
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The strong π/8 theorem for rotor walk in Z2

Theorem:
|k(n) − nπ/8| = O(log n).

(That is, |k(n)/n − π/8| = O((log n)/n) ≪ O(1/ log n).)

For a full proof, see http://arxiv.org/abs/0904.4507: “Rotor Walks
and Markov Chains” by Alexander Holroyd and James Propp.
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Ingredients of the proof

1. Harmonic functions

2. Rotor values

3. Sum-rearrangement and telescoping

4. A recurrence lemma

5. A Green’s function estimate

6. The truncated harmonic series estimate
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1. Harmonic functions

Let h(v) be the probability that a particle that executes a random
walk starting from v will escape (i.e., arrive at (1, 1) before arriving
at (0, 0)).

(Technicality: We need two copies of (0, 0).
At (0, 0)source, h() takes the value pesc;
at (0, 0)target , h() takes the value 0.)

Then h() is harmonic away from the target set;
that is, for all v other than (1, 1) and (0, 0)target,
h(v) equals the average of h(w)
as w varies over the neighbors of v .
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2. Rotor values

Say that a particle at v has value h(v).

We can assign values h(e) to the rotor-states e so that when a
particle updates the rotor at v from e to e′ and moves to the
associated neighbor w of v , the sum of the values is preserved:

h(v ′) + h(e′) = h(v) + h(e).

(Call this the “conjugacy relation”.)
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Why can rotors be assigned values consistently?
For each vertex v , we can choose an arc e emanating from v and
assign any value we like to h(e). The conjugacy relation forces us
to take h(e′) = h(v) + h(e)− h(v ′), h(e′′) = h(v) + h(e′)− h(v ′′),
etc., where e′ is the cyclic successor of e at v , e′′ is the cyclic
successor of e′ at v , etc., and where e′ points from v to v ′, e′′

points from v to v ′′, etc.

The only constraint we have to worry about is that when we’ve
cycled around v , returning to e, our rule must assign h(e) the
same value as before.

That is, the quantities h(e′) − h(e), h(e′′) − h(e′), . . . summed
over a full period must equal 0.

But this sum equals
(h(v) − h(v ′)) + (h(v) − h(v ′′)) + · · · = deg(v)h(v) −

∑
w

h(w),
where w ranges over the neighbors of v , and the harmonicity
property of h() says that this vanishes.
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3. Rotor values (concluded)

When the particle travels from the source to the target set, the
value of the particle plus the values of all the rotors that it visits
along the way (“the value of the whole system”) doesn’t change.

When we move the particle from a target vertex t back to the
source, the value of the rotors doesn’t change and the value of the
particle increases by p − h(t), which is p − 1 < 0 if t = (1, 1) and
p − 0 = p > 0 if t = (0, 0)target .

(Here p = pesc for short.)
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3. Sum-rearrangement and telescoping

How does the value of the system change when we send n particles
through it, all of which start at (0, 0)source and end at (1, 1) or
(0, 0)target?

On the one hand, the change equals

(k)(p − 1) + (n − k)(p) = np − k;

on the other hand, the change equals the change in the total value
of the rotors.

So if we can bound how much the total value of the rotors has
changed, we can bound k − np.
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4. A recurrence lemma

We use an ad hoc lemma that says that the first n particles all stay
within distance O(n) of the origin, so that there aren’t that many
rotors contributing to the change in the total value of the rotors.

(This is where we make use of the very special initial conditions.)
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5. A Green’s function estimate

We express h() in terms of the discrete Green’s function for Z2 and
show that the total change in the value of the rotors in the nth
square shell surrounding the origin can’t contribute more than
O(1/n).
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6. The truncated harmonic series estimate

The sum of the first O(n) terms of the harmonic series is O(log n).
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What’s missing from the proof

1. The conclusion is too weak.

2. The hypotheses are too strong.
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1. The conclusion is too weak

Empirically, it appears that the upper bound log n is far from tight.

Indeed, for more than half of the values of n between 1 and 104,

|k(n) − (π/8)n| < 1/2.

Note that for a third of these values of n, the fractional part of
(π/8)n lies between 1/3 and 2/3, so for these n there doesn’t exist
any integer k such that |k − (π/8)n| < 1/3!

Judging from the data, it’s conceivable that k(n) − (π/8)n is
bounded (so that k/n − π/8 = O(1/n)).

This is clearly the most one could hope for, since
|k(n) − (π/8)| > 1/3 for a set of n’s of density 1/3.
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A digression about regression

There’s a sense in which rotor-routing may “tune itself to π/8”
with error o(1/n) (even though I just explained to you why you
can’t expect to have |k(n)/n − π/8| = o(1/n)).

Specifically, if you draw the regression line through the points
(i , k(i)) for all i between 1 and n, its slope seems to differ from
π/8 by something like 1/n3/2.
I’ll touch upon this in my upcoming probability seminar talk.
The method of Holroyd-Propp seems to fail completely in this
context.
What can take its place?
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2. The hypotheses are too strong

The Holroyd-Propp proof is not general enough: the initial
conditions to which the method of proof applies are very special.

The proof does go through if the initial conditions are modified in
only finitely many places. But that’s not saying much.

To get a more general result, we would need a more flexible way to
estimate the amount by which the rotor values change when n

particles pass through the system.
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To infinity and beyond

Lionel Levine and I have empirically studied what happens when all
the rotors are initially aligned.

Particles can wander off to infinity, but that’s okay: it can be
shown that each rotor gets updated only finitely often, so it still
makes sense to ask what happens when all the particles have either
hit a target or wandered off to infinity.

A theorem of Holroyd and Propp (originally proved by Schramm)
shows that the number of escapes to infinity in the first n trials
(call it e(n)) is o(n), and that k(n)/n goes to π/8.

We don’t know how big e(n) is; we know that e(n)/n goes to 0,
but it appears to go to 0 quite slowly (empirically, one might even
think it was converging to a non-zero constant, even though we’ve
proved that it doesn’t).
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Getting random

What about random initial conditions?

I believe that there’s a probability measure on initial conditions
that’s more natural than IID initial conditions, namely “maximally
random acyclic initial conditions” where the rotors can’t exhibit
any cycles.

(This makes sense, since cycles can’t spontaneously appear: one
acyclic configuration can only yield another one. See the next slide
for more on this.)

I’ll touch on this in my probability seminar talk too. There I’ll
mostly focus on the case of finite-state Markov chains, since that’s
a case that I understand much better. I haven’t thought through
the infinite-state case.
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Why cycles go away

Suppose that the rotor at v points to w , and that the particle has
visited v (but is no longer at v). Then the last time the particle
left v , it went to w .

Now suppose that the rotor-configuration has a cycle; that is, there
are vertices v0, v1, v2, . . . , vm = v0 such that the rotor at vi points
to vi+1 (0 ≤ i ≤ m − 1), and the particle is no longer at any of the
vi ’s.

This gives a contradiction (consider the last time the particle was
at one of the vi ’s)!

So cycles are transient (aside from a possible cycle involving the
rotor at the vertex that the particle currently occupies).

One can use this to show that the IID measure on initial conditions
is not preserved by rotor-routing.

28 / 36



What I suspect

Start with IID initial conditions for the rotors on Z2.

Perform “cycle popping” a la David Wilson until all cycles are
gone.

I believe that the resulting measure is preserved by rotor-routing.

Are there other probability measures that are preserved by
rotor-routing?

Maybe the one I’ve described is the only one.
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Random versus non-random routing

One thing I’d like is a way to put random walk on Z2, and in
particular the |k(n) − pn| = O(

√
n) estimate, into the same

framework as rotor-router walk.

I know how to do this for finite-state Markov chains, but there are
technical problems for random walk on Z2.

I’d like to show that when n successive particles go through the
system, the value of the rotors typically changes by O(

√
n).

Can anyone see a way to prove this?
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Getting rid of the targets
Suppose we put down fylfot initial conditions for the rotors but
don’t move particles from (1, 1) back to (0, 0); we just treat (1, 1)
as a site like any other, with a rotor of its own that determines
where particles that leave (1, 1) go next.

Then the particle that leaves (0, 0) will execute an orderly
sequence of ever-growing inbound and outbound spirals.

Let nt(v) be the number of times site v gets visited up to time t.

A theorem of Holroyd and Propp says that as t → ∞, the ratio
nt(v)/nt(w) converges to the ratio µ(v)/µ(w), where µ is the
measure on Z2 that’s stationary for the random walk.

In this case the stationary measure is (non-finite) uniform measure,
so µ(v)/µ(w) = 1.

And indeed one has h(v)− h(w) bounded, so the convergence to 1
is fairly fast: nt(v)/nt(w) − 1 = O(1/t1/3).
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A beautiful process in search of a beautiful theorem

If one does target-less rotor-router walk on Z2 with all rotors
initially pointing in the same direction, Lionel Levine noticed that
something beautiful happens:

It would be great if we could prove something about this!
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Directed walk in a quadrant

Suppose we only allow steps to the North and the East.

Even this rotor-walk has interesting (purely empirical) patterns.

See http://jamespropp.org/quincunx.gif (or
http://jamespropp.org/galton.swf for the “guided tour”).
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Discrete analytic function theory?

I called h(v ′) + h(e′) = h(v) + h(e) a “conjugacy relation”.

I suspect that there’s a way to see h as a discrete analytic function
of some kind, where its values on the edges are conjugate to its
values on the vertices.

Can this point of view be pushed through? (It’s not the standard
flavor of discrete analytic function theory.)
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Is complex dynamics already lurking here?

Such a point of view would probably improve our understanding of
rotor-router aggregation.

Tobias Friedrich’s pictures of rotor-router aggregation (see
especially the “lrdu blob”) bear an amazing resemblance to
pull-backs of Apollonian gaskets in C via the map z 7→ 1/z2 (see
http://jamespropp.org/RRcircles.pdf).

What kind of math could explain this?
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The last slide of this talk

I’m happy to talk about this stuff further with anyone who’s
interested;

My office hour is at 11 am on Tuesdays and Thursdays in 1063
Evans.

I divide my out-of-the-house time between Evans, MSRI, and
nearby cafes.

Slides for this talk are on-line at

http://jamespropp.org/csps12.pdf
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