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Hat problems are all the rage these days, proliferating on
various web sites and generating a great deal of
conversation—and research—among mathematicians

and students. But they have been around for quite a while in
different forms. For example, a variant of Problem 3 shows up
in Puzzle-Math by George Gamow and Marvin Stern (The
Viking Press, 1958; pp. 77–78) as a question about three
travelers with dirty faces. (This was EB’s introduction to the
field.) Martin Gardner also wrote about them in Aha! Insight
(W.H.Freeman & Co., 1978). 

In all these problems hats of specified colors are placed on
players’ heads. Each can see the colors of some or all of the
other player’s hats, but not his own, and the goal of the
problem is to provide a strategy players’ can agree on before
the play of the game that will allow some maximal number of
players to correctly guess the colors of their hats. Incorrect
guesses might be ignored, or might lead to severe punish-
ments! Players are not allowed to communicate with each
other during play of the game and may only speak a single
word—a guess as to the color of one’s own hat—if a game
permits any speaking at all! Some of these problems are psy-
chological or philosophical and many are deeply mathemati-
cal. At the very least, they are fun to think about. Enjoy!

1. Warm-up: Two Players
Albert and Bilbert are about to play a game in which hats—

either rouge or puce—will be placed on their heads. Each will
be able to see the color of his partner’s hat, but not the color of
his own. At the blow a whistle Albert and Bilbert will simulta-
neously make a guess as to the color of his own hat. Incorrect
guesses will not be punished. A win consists of at least one
correct guess.

What strategy can Albert and Bilbert agree upon to secure
a win? 

2. One-hundred Players and One-hundred Colors
Following the same rules as question 1, one-hundred

players will play the same game with hats that can be any of
100 different colors. (Not all colors need be used.) Each player
can see the colors of her 99 colleagues. If a win consists of at

least one correct guess and no penalty for incorrect guesses,
devise a strategy that guarantees a win.

3. Waiting it Out 
Angelina, Bettina, and Charlina sit in a circle, blindfolded.

Hats—either rouge or puce—are placed on their heads. When
the blindfolds are removed each lass is asked to raise a hand if
she sees a rouge hat on one or both of her friends. Based solely
on the information provided by these gestures—or lack thereof
—is it possible for at least one woman to correctly announce
the color of her own hat (if players agree to keep silent unless
they are certain of their answer)? Is there ever a scenario in
which this cannot be done?

Comment: It is fun to reenact this experiment by holding
playing cards to one’s forehead, raising a hand upon sight of a
red card.

4. How Long to Wait?
One hundred blindfolded pixies sitting in a circle have hats

—either rouge or puce—placed on their heads and are told that
there is at least one puce hat among the group. When their
blindfolds are removed, each pixie sees the hats of her 99
colleagues, but has no hint as to the color of her own hat. 

A clock counts off the minutes. At each minute mark any
pixie who thinks she knows the color of her own hat can speak
up and make a guess. If after 100 minutes no pixie speaks, all
will be eliminated. If, before then, some pixie speaks up and is
incorrect, all players will be eliminated. Only if some pixies
speak, all correctly, at some minute up to the 100 minute mark
will the group survive. Is there a strategy the pixies can agree
upon before play of this game to ensure their survival? 

5. Dark Consequences
This time 100 blindfolded gnomes stand in a line, back-to-

front. Each gnome’s hat is either rouge or puce, and there is at
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least one puce hat among the gnomes (and the gnomes know
this). Upon the removal of the blindfolds each gnome can see
the hats of the gnomes in front of him, but not behind him.
(Thus the gnome at the back of the line can see 99 hats, the
gnome at the front, none.) 

Starting at the back of the line, each gnome, in turn, will be
asked to say either “My hat is puce” or “pass.” The game will
end—positively—as soon as some gnome makes the former
statement and is correct! If a gnome incorrectly claims his hat
is puce, all will be eliminated. If all gnomes choose to say
“pass,” then all shall be eliminated. 

Devise a strategy that guarantees the gnomes’ survival.

6. Quite Gory
Ten gnomes stand back-to-front in a line each wearing

either a rouge or puce hat. There need not be a puce hat.
Starting at the back of the line with the gnome who can see
nine hats each gnome will make a guess as to the color of his
own hat. Gnomes who guess correctly will be freed. Those that
guess incorrectly will be immediately executed. (No passes in
this game!) Gnomes will hear the guesses made behind them
and the consequent sighs of relief or screams of horror. 

Knowing that they are about to play this game, what
strategy could the gnomes agree upon to ensure the survival of
a maximal number of gnomes? How many gnomes?

7. Gory and Confusing
Same as question 6 but this time there are 100 different

possible colors of hats! 

8. Return to the Option to Pass
[This puzzle, and its solution, is due to 9th-grader Alex

Smith of St. Mark’s School, MA.]
Ten gnomes again stand in a line, back-to-front, each with

a hat—rouge or puce—placed on his head. The color of each
gnome’s hat is determined by the toss of a coin (and the
gnomes know this). Each gnome can see the colors of the hats
in front of him. 

Starting at the back of the line, each gnome is asked, in turn,
to either make a guess as to the color of his hat or say PASS. If
any single gnome makes an incorrect guess, all will be
immediately executed. If all gnomes say pass, all will be
executed. The gnomes will only survive if at least one guess is
made and all guesses offered are correct. 

What strategy could the gnomes agree upon to ensure them
a maximal probability of survival? (Assume that each gnome
can hear the guess made behind him.) 

9. Three Gnomes, GNO Information
Three gnomes are about to play yet another perilous game

of life and death. They will sit in a circle and an evil villain

will again place on each gnome’s scalp a colored hat. The color
of each hat—rouge or puce—will be determined by a coin
toss. As before, each gnome will see the colors of his two
colleagues’ hats, but not the color of his own hat. 

At the signal of the villain, the three gnomes will
simultaneously each guess the color of his own hat or say pass.
If at least one gnome makes a correct guess and no-one makes
an incorrect guess, then all three gnomes will live. If there is at
least one incorrect guess amongst the group, or if all three
gnomes say pass, they will all die. There will be absolutely no
communication of any form between gnomes during play of
this game. 

Devise a scheme that assures the gnomes 75% chance of
survival as a group. 

10.  2n – 1 Gnomes, GNO Information
Seven gnomes are about to about to play the same game as

the gnomes in question 9, and then 15 gnomes, and then 31
gnomes. Devise a general scheme that gives a group of  2n – 1
gnomes (for n some integer) maximal chance of survival. 

11.  2n – 1 Gnomes and a Smidgeon of Shared
Information
[This variation is again due to Alex Smith.]

Repeat questions 9 and 10, but this time the gnomes can
make their guesses one at a time. (Assume that they can hear
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each other’s guesses.)  Obtain much better odds of survival. 

12. Absolutely no Leeway
One-hundred pixies are placed in a room and hats—either

rouge or puce—are placed on their heads, with color
determined by a toss of a coin. Each pixie can see all her
colleagues’ hats, but not her own. At the sound of a bell each
and every pixie must make a guess as to the color of her hat—
no passes—and they must all do so simultaneously. Each pixie
that makes a correct guess survives, all those that make an
incorrect guess die. 

Devise a strategy that the pixies can agree upon before play
of the game to assure the survival of a maximal number of
their group. What is that maximal number?

Answers:
1.  Albert guesses the hat color he sees on Bilbert and Bilbert
opposite the hat color he sees on Albert. 

2. Label the hat colors 0 to 99 and number the players 0 to
99. Have each player sum the colors she sees, working mod
100, and guess the color number that brings this sum up to the
number she has been assigned as a player  (again working mod
100). If the sum of all hat colors, mod 100, is s, then player s
is sure to make a correct guess.  

Taking it further: Prove that if N people play this game with
hats of C different colors, then this strategy is sure to produce
at least                correct guesses. Prove that no strategy can be
sure to improve on this!

3. If all three hats are puce, then no student will raise a hand
and each lass knows immediately that her hat is puce.

If there is just one rouge hat among the group, then two
women raise their hands and each player knows immediately
the color of her own hat. 

If there are two rouge hats among the group, then all three
players raise their hands. The students with the rouge hats
know immediately the color of their own hats (“If my hat were
puce, why would my rouge-topped colleague be raising her
hand?”). The student with the puce hat is unsure of her color.

A potential difficulty occurs if all three hats are rouge. No
player can immediately deduce the color of her own hat and the
group will be silent. But then each woman will reason: “If my
hat were puce, then someone would have spoken. My hat must
therefore be rouge.” All three will speak simultaneously. 

Comment: It is interesting to see how, in practice, a group
reacts to the situation of three rouge hats. (If players play with
cards, eventually three randomly chosen cards will be red.)
How long is the group willing to wait to be confident of a
three-rouge situation?

Taking it further: Play and analyze the game with four
players (again with rouge and puce hats). Five players? 

4. If a pixie sees k rouge hats, she should announce puce at the
(100 – k)-th minute.

Taking it further: What if the pixies weren’t told that there is
at least one puce hat among the group? What is the best they
could hope for with regard to their survival?

5. A gnome should say “My hat is puce” if he sees no puce hats
in front of him. The first gnome to say this will be correct. 

Taking it further: Can the gnomes guarantee their survival if
they were not sure of the presence of a puce hat? 

6. The gnome at the back of the line, who sees nine hats, says
“puce” if the count of puce hats he sees is odd, “rouge”
otherwise. Each of the remaining nine gnomes, upon hearing
the announcements made behind him and seeing the hats
before him, can now correctly deduce the color of his own hat.
The survival of nine out of ten gnomes is assured. 

7. Number the colors 0 through 99. Working mod 100, the
gnome at the back of the line announces the sum of the colors
he sees. Each of the remaining nine gnomes, upon hearing the
announcements made behind him and seeing the hats before
him, can now correctly surmise the color of his hat. As before,
the survival of nine out of ten gnomes is assured.

8. The first gnome, the one who sees 9 hats, should say rouge
if he sees 9 puce hats, and pass otherwise. Each gnome
thereafter should say “puce” if some gnome before him made
a guess, rouge if all the gnomes who declared before him
passed and he sees nothing but puce hats in front of him, and
pass otherwise. The gnomes are assured survival as a group in
every possible arrangement of colored hats except one: when
all hats are puce. The gnomes thus have a 1023/1024 chance of
survival.

Taking it further: What changes if the person placing hats on
the gnomes’ heads is malicious and is able to assign the colors? 

9. Have each gnome make a guess only if he sees among his
colleagues two hats the same color. His guess should be the
color opposite of what he sees. Of the eight equally likely
possibilities for hat colors among the three gnomes, the group
shall survive in six of those scenarios.

10. For N = 2n – 1 players, the maximal chance of survival is
N/(N + 1) = (2n – 1)/2n. One attains this using the following
strategy, which is closely tied to the mathematics of error-
correcting codes.

Give every gnome a number from 1 to N = 2n – 1 written as
an n-bit string in binary. (Player 0, for instance, is assigned the
string 000…0, player 1 the string 000…01, and so forth.) We’ll

N C/⎢⎣ ⎥⎦
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add such strings bit-wise mod 2, that is, without carries, and
denote this addition by    Thus, for this addition, 

(This type of addition is known as “string-wise exclusive-or”
or “nim-sum”.) From now on the word sum refers to a sum of
strings added bitwise (mod 2), with each string being a vector
representation of a position number. Also, note that, mod 2,
we have –1 = 1, and so for a string k we have –k = k. 

Have each gnome compute her Visible Rouge Sum (VRS),
that is, the sum of those numbers whose owners she sees wear-
ing a rouge hat. A gnome guesses rouge if her VRS is 0 (the
all-zero bit string) and puce if her VRS equals her own num-
ber. Otherwise, the gnome passes. This strategy does the trick.
Here’s why:

First, suppose the sum of all numbers of rouge-hatted gnomes
is 0. A puce-hatted gnome will have VRS = 0, since her own
number does not contribute to the total. By the strategy, she
guesses rouge—incorrectly. A rouge-hatted gnome with
number k will have his VRS = – k = k, since his number does
contribute to the total. By the strategy, he guesses puce—also
incorrectly. Thus all gnomes guess and do so incorrectly. This
is a losing configuration. 

On the other hand, suppose the sum of all numbers of
rouge-hatted gnomes is j ≠ 0. If gnome j is wearing a puce hat,
she sees j and guesses puce; if she is wearing a rouge hat, she
sees 0 and guesses rouge. In both cases, gnome j guesses cor-
rectly. For k ≠ j, however, player k sees j k which is neither
0 nor k; and by the strategy, player k passes. Only one gnome
makes a guess and does so correctly, so this is a winning con-
figuration. 

Finally, there are 2n possible sums of all rouge-hatted
gnomes. The N = 2n – 1 nonzero sums lead to a win, and the
one 0 sum leads to a loss. Hence, the probability of a win is
exactly N/(N + 1).

To see why no given strategy can do better than this, con-
sider making a table of all 2n possible distributions of hats and
the guesses, or passes, each gnome would make in each sce-
nario. As each gnome’s response is governed only by the hats
she sees, each correct guess made by a gnome in one scenario
is matched by an incorrect guess in another scenario, the one in
which this gnome’s hat is of opposite color. Thus if there are c
correct guesses distributed throughout the entire table of
scenarios, there are also c incorrect guesses. 

A strategy that leads to optimal chances of survival for the
group “places” all the incorrect guesses among as few
scenarios as possible and “spreads” out all the correct guesses
through as many as possible. In fact, ideally, there would be c
scenarios in which just one gnome makes a correct guess and
the rest pass, no scenarios in which each gnome passes, and as
few scenarios as possible with gnomes making incorrect

01011 11001 10010⊕ = .

guesses. (In fact, the least number of such scenarios we can
hope for is c/N.) This gives an upper bound on the probability
of the group surviving, namely: 

As we have seen, for N = 2n – 1, this upper bound is
attainable. And it is not too difficult to show that it is attainable
only for these numbers.

With c scenarios that lead to a win, we have the probability
of surviving is also given by c/2N. This leads to the equation
(N +1)c = N · 2N, stating that N · 2N is a multiple of N + 1. But
since N and N + 1 are coprime, we must have that N + 1 is a
factor of 2N and so is a power of two: N + 1 = 2n, for some n.
That is, N must be of the form 2n – 1.

Taking it further: What if N is not one less than a power of
two? (This remains an area of active research.) 

Taking it even further: What if the players are allowed two,
or even three, rounds of guessing?  

11. The gnomes can pretend they are standing in a line and
follow the strategy of question 8! If there are N gnomes, they
have a (2N – 1)/2N chance of survival (and if N = 2n – 1, this
equals                              , much closer to 1 than before!).

Taking it further: Is this the optimal chance of survival?  

12. The pixies should arrange themselves in pairs and each pair
should follow the strategy of question 1. This guarantees the
survival of 50 pixies. 

As the colors of the hats are chosen by the flip of a coin
(and no information of any kind can be deduced by any
individual player during play of this game) each player has
precisely a 50% chance of survival. Thus the expected number
of players to survive among the group is 50. One cannot
guarantee the survival of more. 
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