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Part I: Kernel smoothing
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The punchline

If you want to estimate the asymptotic mean value

X = lim
n→∞

(X1 + X2 + · · · + Xn)/n

of a deterministic or random numerical sequence X1,X2, . . . , and
there are patterns (especially periodicities) in the sequence, then
there may be better way to estimate X than to take the
unweighted average

X̂N = (X1 + X2 + · · · + XN)/N

for a single large N; weighted (“smoothed”) averages such as

>

XN = ((1)(N)X1+(2)(N−1)X2+· · ·+(N)(1)XN ) /
N(N + 1)(N + 2)

6

often do better.
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A baby example from QMC integration

Let f (x) = x(1 − x) and I =
∫ 1
0 f (x)dx = 1/6, and let Xn = f (xn)

where
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∞

1 = (0,
1

2
,

1

4
,

3

4
,

1

8
,

5

8
, . . . )

(the van der Corput sequence), so that X = I .

Then for N ≈ 106, it appears that X̂N = I ± O(1/N1.3) and
>

XN = I ± O(1/N1.7).
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A strange example ...

Suppose U,V are independent Uniform([0, 1])’s and

Xn = ⌊nU + V ⌋ − ⌊(n − 1)U + V ⌋ ∈ {0, 1},

so that (Xn)
∞

1 is a sequence of 0’s and 1’s with random density U

and random phase V .

Xn = φU(nU + V ) where φU(t) is 1 if the fractional part of t lies

in (0,U) and 0 otherwise, so that
∫ 1
0 φU(t) dt = U.

X = lim
n→∞

(X1 + X2 + · · · + Xn)/n

= lim
n→∞

(⌊nU + V ⌋ − ⌊V ⌋)/n (by telescoping)

= U.

Then X̂N = U ±O(1/N) and
>

XN = U ±O(1/N3/2) (3/2 is exact).
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... but an important one

This example may seem arcane, but it’s actually natural; (Xn)
∞

1 is
an example of a Sturmian sequence, and we’ll see that Sturmian
bit-streams are good for driving Markov chains.

A Sturmian bit-sequence of density p has the property that the
sum of any k consecutive bits is either the floor of kp or the ceiling
of kp. This is as low-discrepancy as an integer-valued random
variable with expected value kp can be!

The fact that we can empirically reconstruct (i.e., estimate) X

with high accuracy from X1,X2, . . . translates into analogous
reconstruction properties for Markov chains driven by X1,X2, . . .
(as we’ll see in parts II and III).
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Kernel Smoothing Kills Sinusoids

Claim: Suppose f (t) is a constant plus a finite sum of sinusoids
(possibly with irrational and incommensurable periods), and let
Xn = f (n), so that X = limn→∞(f (1)+ f (2)+ · · ·+ f (n))/n. Then

X̂N = X ± O(1/N)

and
>

XN = X ± O(1/N2).

Proof idea: One can evaluate the unsmoothed and smoothed
average for each sinusoid individually.

Kernel smoothing the data is tantamount to squaring the length of
our time-series, and it’s a linear procedure; we don’t have to look
at the data and try to guess what the periods are.
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Part II: Rotor-routing
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CUD vs. rotor-routing

Owen et al. ask: When can Completely Uniformly Distributed
streams be used instead of IID streams for simulation?

P. et al. ask: When can periodic/Sturmian streams be used instead
of IID streams?
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Gambler’s ruin

Consider the Markov chain with state-space S = {0, 1, 2, 3, 4},
where state 1 is the initial state, states 1, 2, and 3 are transient,
and states 0 and 4 are absorbing:

p1,2 = p2,3 = p3,4 = p,

p1,0 = p2,1 = p3,2 = 1 − p,

p0,0 = p4,4 = 1.
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Lifting to space-time

We replace the chain by its “space-time lift” with “space-time
states” (i , t) in S × N for i ∈ S and t ∈ N = {0, 1, 2, . . . };

p(i ,t),(i+1,t+1) = p,

p(i ,t),(i−1,t+1) = 1 − p.
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Escape probability via simulation

Our goal is to estimate empirically the escape probability pesc (the
probability of reaching 4 before reaching 0).

Of course in this case there’s an exact formula for pesc; this is a
pedagogical example and a proof-of-principle, not a genuine
application!

We commence a new trial (starting a new particle at the top) each
time the lifted chain reaches a state (0, t) or a state (4, t),
outputting a 0 or a 1 respectively. When we’ve recorded N

output-bits, we compute their sum, K ; K/N is our empirical
estimate of pesc.
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Ordinary Monte Carlo

The usual thing we do is drive the process using Bernoulli (IID)
bit-streams of density p, one for each space-time state (i , t) (with
i transient).

(Actually, what we really do is use a single bit-stream, but that’s
equivalent to the procedure I described, since the streams are all
IID and independent of one another.)

Then K/N = pesc ± O(1/N1/2).
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Negatively Correlated Monte Carlo

But we get a better empirical estimate of pesc if we use a
Sturmian bit-stream of density p for each space-time state (i , t)
with i transient; the correlations don’t hurt us, and the low
discrepancy helps us.

“Tricky but true”: Each output-bit is Bernoulli(pesc).

There are dependencies between one trial and the next, so these
Bernoulli(pesc) output-bits are correlated, but these correlations are
of the negative (variance-reducing) kind.

We get K/N = pesc ± O((log N)/N).
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“What about states with more than two successors?”

By generalizing the class of Sturmian sequences we can design
infinite sequences (or “streams”) in any finite alphabet with
prescribed frequencies summing to 1, such that for any k, the
number of occurrences of any symbol in any length-k subword of
the infinite word takes on only finitely many values.

We can associate such a driving stream with each state (i , t) of
the lifted Markov chain, where the different symbols correspond to
the allowed transitions from that state.
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From space-time rotors to space-routers

We do even better if we use a single driving stream for each
space-state i , instead of each space-time state (i , t).

(Individual trials are no longer Markovian — they have long-term
self-correlations. But the escape probability for this non-Markov
process can be shown to be the same as for the original Markov
process.)

We get K/N = pesc ± O(1/N) (the log factor goes away).
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Rotor-routing for stationary probabilities

So far we’ve looked at escape probabilities.

Similarly, one can estimate the stationary probability of a particular
state i as K/N, where K is the number of times state i occurs
during a run of length N.

For ordinary Monte Carlo, K/N = π(i)±O(1/N1/2) (where π(·) is
the stationary measure).

For rotor-routing, K/N = π(i) ± O(1/N).

The implicit constant can be large if the chain has many states. A
better result from Holroyd-P. says that rotor-routing can be used
to estimate probability ratios π(i)/π(j) to within O(1/N).

19 / 29



Connections to previous work

The Holroyd-P. results apply to all Markov chains with finite
state-space and to some (sufficiently recurrent) Markov chains
with infinite state-space.

The Holroyd-P. results apply with deterministic rotor-settings. The
results stated above for space-rotors (with randomized

rotor-settings) are all direct consequences.

The results stated above for random space-time rotors require new
arguments (not yet published).
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Can we do better?

If we are trying to assess pesc (or some other probability) from a
sequence of N random (but not necessarily independent) bits, each
with expected value pesc, the best we can hope to do (for
geometry-of-numbers reasons) is estimate pesc to within O(1/N2).

Monte Carlo has error O(1/N1/2).

Rotor-router has error O(1/N1).

Can we get a better exponent?
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Part III: Kernel smoothing and rotor-routing
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Relative stationary probabilities

If one performs rotor-routing and records the order of the
respective visits to states i and j (with π(i) and π(j) bounded
away from 0) and performs smoothing on the resulting sequence in
order to estimate π(i)/π(j), one typically sees error falling off like
O(1/N1.5).
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Escape probabilities

Likewise, smoothing appears to give consistent improvement in
estimates of pesc.

Typical performance is around O(1/N1.5).

In fact, smoothed rotor-routing works well even when the
state-space is infinite (so that the linear algebra method of
computing pesc is not applicable), e.g., random walk on Z2, where
error for rotor-routing has been proved to fall like O((log N)/N)
and error for smoothed rotor-routing seems to fall like O(1/N1.5).
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I want more information (just 5 more slides)

I’d appreciate leads to relevant literature I may not know about.

I’d also welcome suggestions for problems to tackle with these
methods.
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If you want more information (just 4 more slides)

See the slides from my longer talk on this subject: “Rotor-routing,
smoothing kernels, and reduction of variance: Breaking the
O(1/n) barrier”.

If you prefer a talk less focused on rotor-routing and more focused
on kernel smoothing, and you have Mathematica, see the slides
from my talk “How well can you see the slope of a digital line?
(and other applications of averaging kernels)”. (If you don’t have
Mathematica, you can download the Mathematica player and look
at the Mathematica player version of the slides.)

For much more about rotor-routing, see my article with Ander
Holroyd on rotor-routing: “Rotor Walks and Markov Chains”,
arXiv:0904.4507.

26 / 29

http://jamespropp.org/mitprob11b.pdf
http://jamespropp.org/Slope.nb
http://www.wolfram.com/player
http://jamespropp.org/Slope.cdf
http://arxiv.org/abs/0904.4507


Summary (just 3 more slides)

For determining escape probabilities, mean hitting times, and
relative stationary probabilities of Markov chains, the error of
rotor-router estimates (using space-rotors) is provably O(1/N) for
all finite Markov chains and all sufficiently recurrent infinite
(discrete) Markov chains (sometimes with an extra factor of log N).

If one applies smoothing, the error can (apparently) be brought as
low as 1/N1.5 (this has only been proved in very special cases, but
experimental evidence supports the general claim).
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Summary (just 2 more slides)

These problems are in in regimes where exact methods (for finite
state spaces) or iterative methods (for infinite state spaces) beat
rotor-routing, even with the extra accuracy provided by smoothing.

Most (though not all) of the successes of the method are in a toy
domain where simulation runs are long compared to the “effective
size” of the state space of the Markov chain, so that most of the
states (measured by mass, not cardinality) get visited many times.

This is far from the domain of ordinary MCQMC — but the fact
that such a simple trick as rotor-routing works as well as it does
suggests that if the fundamental idea can be applied in other
settings, simulation error might be reduced.
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Summary (last slide)

But in any case, if you’re using MCQMC and your runs exhibit
periodicities, you should try smoothing them with an averaging
kernel!
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