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Overview

There’s a well-developed theory of enumeration of domino tilings
of polyominos and diamond tilings of polyiamonds.

What else with a similar flavor is out there waiting to be studied?

Trihex tilings of polyhexes!
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Trihexes

In a honeycomb grid there are three ways to join three hexagons to
form a connected polygon. Nobody has given them coordinated
names, so I’ve called them the stone, the bone, and the phone.
(“Bone” is a shortening of “tribone”, Thurston’s name for this
kind of tile; I chose “stone” to rhyme with “bone”, and Timothy
Chow suggested “phone” for the third kind of trihex.)

(“Bone” is sometimes used as a synonym for “domino”.)
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Stones and bones

There is a natural way to 3-color the cells in the honeycomb grid
(unique up to permutation of colors). Under this coloring, each
stone and each bone consists of one hexagonal cell of each color,
just as the square grid can be 2-colored (using the usual
checkerboard coloring) so that every domino consists of one square
cell of each color.

But phones don’t have this property, so we’ll forbid them.
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Conway and Lagarias

Tilings of regions by stones and bones were first seriously studied
by Conway, Lagarias, and Thurston in the 1980s.

6 / 41



Conway and Lagarias

To explain their main result, we’ll need to distinguish between
right-pointing stones and left-pointing stones.
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Conway and Lagarias

Conway and Lagarias showed that triangles like this can be tiled by
stones alone provided the side-length (n = 6 in the example)
satisfies a certain mod-12 condition, and that such triangles can
never be tiled by bones alone.

A major tool in their proof was a theorem showing that if a region
R can be tiled by stones and bones, the number of right-pointing
stones minus the number of left-pointing stones is independent of
the tiling; it depends on the region R alone.

Even more interesting than the result was the method:
combinatorial group theory.
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Thurston

Thurston (“Conway’s Tiling Groups”) rephrased the method using
cell complexes and combinatorial topology.

A few years later I (“A pedestrian approach to a method of
Conway, or, A tale of two cities”; password is aztec) presented the
method in a more low-tech way, using what I called “shadow
paths” (implicit but not emphasized in Thurston’s paper). It’s ad
hoc but more accessible. Instead of doing a straight rewrite of
Thurston, I applied the shadow path method to a problem about
tetrominoes.

Today I’ll show how shadow paths can be applied in the original
setting of the result of Conway and Lagarias (before applying the
method to prove something new).
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Into the shadows

We’ll shadow the 1-skeletons of tilings in a weird way that can turn
boundaries of tiles into self-intersecting paths. By measuring the
algebraic area “enclosed” by the shadows we learn things about the
original tiling.

The algebraic area associated with a plane curve is a signed
quantity: it’s positive if the curve encloses a region
counterclockwise, it’s negative if the curve encloses a region
clockwise, and it could be zero if the curve crosses itself (e.g., a
symmetrical figure-eight curve encloses signed area zero).

For a curve in a grid, it’s the sum, over all grid-cells C , of the
winding-number of the curve around C .
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Even and odd vertices

Call vertices in the hexagon grid even if they have edges
emanating at 0, 120, and 240 degrees and odd if they have edges
emanating at 60, 180, and 300 degrees.

Note that a path in the honeycomb grid alternates between even
vertices and odd vertices.
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Weaving and winding

Consider three consecutive edges e, e ′, e ′′ in a path that travels
along edges in the honeycomb grid. We say that this part of the
path is weaving if e and e ′′ are parallel and winding otherwise.
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Shadowing a path

We say a path P ′ in the 1-skeleton of the honeycomb grid
shadows another such path P of the same length if for all i the
ith vertex of P ′ has the same parity (even vs. odd) as the ith
vertex of P, and P ′ weaves where P winds and vice versa.

The shadow of a general closed path can be a non-closed path and
vice versa, but if P is the (counterclockwise) boundary of a stone
or bone (necessarily a closed path), and P ′ shadows P, then P ′ is
closed as well.
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Shadowing a right-pointing stone

The shadow of the counterclockwise boundary of a right-pointing
stone is the counterclockwise boundary of a right-pointing stone,
enclosing algebraic area +3 (measured in hexagons).
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Shadowing a left-pointing stone

The shadow of the counterclockwise boundary of a left-pointing
stone is the clockwise boundary of a left-pointing stone, enclosing
algebraic area −3 (measured in hexagons).
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Shadowing a bone

The shadow of the counterclockwise boundary of a bone is a
self-intersecting “barbell” path that encircles one hexagonal cell in
a counterclockwise direction and one hexagonal cell in a clockwise
direction, thus enclosing algebraic area zero.

16 / 41



Shadowing a tiling

The shadows of the boundaries of the cells in a stones-and-bones
tiling of a region R fit together to give a tangle of stones and
barbells.

The sum of the signed areas of the shadows of the tiles is
3nR − 3nL + 0nB where nR is the number of right-pointing stones
in the tiling, nL is the number of left-pointing stones in the tiling,
and nB is the number of bones in the tiling.

But the sum of the signed areas of the shadows of the tiles also
equals the signed area enclosed by the shadow of the boundary of
R, which doesn’t depend on the tiling.

So 3nR − 3nL + 0nB is independent of the tiling.
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The Conway-Lagarias invariant
nR − nL (or 3(nR − nL)) is the Conway-Lagarias invariant of R.

To show that a region R cannot be tiled by bones alone, it’s
enough to show that its Conway invariant is nonzero. And to do
that, it’s enough to exhibit one tiling with nR 6= nL, e.g.:
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The Conway-Lagarias invariant

But this trick isn’t always helpful for handling infinite families of
regions, e.g., the two-parameter family of regions I call benzels.

Something more algebraic is needed.
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Benzels

Here’s an example of a benzel, specifically the (5,7)-benzel:
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Benzels
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Benzels

The (a, b)-benzel is what we get when we replace 5 and 7 in the
diagram by a and b respectively, for integers a, b satisfying
2 ≤ a ≤ 2b and 2 ≤ b ≤ 2a, retaining only those hexagonal cells
that lie fully inside the bounding hexagon.

What justifies the definition are the nice (mostly still unproved)
formulas that arise; see “Trimer covers in the triangular grid” and
“Trimer covers in the triangular grid: twenty mostly open
problems”.
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Bones tilings of the (5,7)-benzel

As we’ll see most benzels can’t be tiled by bones alone, but the
(5,7)-benzel can, indeed in two different ways:
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Tiling 1: Inner tiles
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Tiling 1: Intermediate tiles
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Tiling 1: Outer tiles
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Tiling 2: Inner tiles

27 / 41



Tiling 2: Intermediate tiles
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Tiling 2: Outer tiles
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Bones tilings of the (5,7)-benzel

In both tilings, we get a signed tiling of the “signed region” given
by the shadow of the boundary of the benzel:
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Bones tilings are rare

For 2 ≤ a, b ≤ 10 (with a ≤ 2b and b ≤ 2a), the only pairs (a, b)
such that the (a, b)-benzel can be tiled by bones are (5,7) and
(7,5).

For all other pairs in this range, one can prove that no such tiling
exists by finding a stones-and-bones tiling of the (a, b) benzel with
unequal numbers of right-pointing stones and left-pointing stones,
thus proving that the Conway-Lagarias invariant is nonzero.

But I don’t know how to apply this approach systematically (rather
than ad hoc) so that it can be used to reason about infinitely
many pairs (a, b) at once.

One needs to do more than draw pictures!
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Main theorem

Kim and Propp (2022): The (a, b)-benzel (can be tiled by bones if
and only if there exists k ≥ 2 such that a = k(3k − 1)/2 and
b = k(3k + 1)/2 or vice versa.

The method of proof of the negative result (the “only if” part) is
fairly algebraic. One proves that the (unrescaled) Conway-Lagarias
invariant of the (a, b)-benzel is

(−3a2 + 6ab − 3b2 + a + b)/2 if a + b ≡ 0 (mod 3),
(a2 − 4ab + b2 + a + b − 2)/2 if a + b ≡ 1 (mod 3),
(−3a2 + 6ab − 3b2 − a− b + 2)/2 if a + b ≡ 2 (mod 3)

and then applies elementary number theory to show that (a, b)
must be of the required form.
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Describe the boundary
Let’s focus on the case a + b ≡ 0 (mod 3). The shadow of the
boundary of the (a, b)-benzel is given by

(ab′cb′)s(ba′bc′)t(bc′ac′)s(cb′ca′)t(ca′ba′)s(ac′ab′)t (1)

where s = (2a− b)/3 and t = (2b − a)/3 and the six unit vectors
a, a′, b, b′, c, c′ are as shown:
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A Gauss formula

If vectors v1, . . . , vn satisfying v1 + · · ·+ vn = 0 are laid
head-to-tail, forming a closed path, the algebraic area enclosed by
the path is

1

2

∑
1≤i<j≤n

vi × vj (2)

where (x1, y1)× (x2, y2) = x1y2 − y1x2.

E.g., a unit square encircled counterclockwise by a path consisting
of the vectors +i , +j , −i , and −j has area

1

2
( (+i)× (+j) + (+i)× (−i) + (+i)× (−j)

+ (+j)× (−i) + (+j)× (−j) + (−i)× (−j) )

=
1

2
((1) + (0) + (−1) + (1) + (0) + (1)) =

1

2
(2) = 1
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The Conway-Lagarias invariant of a benzel

Combining (1) and (2), one concludes that there exist constants
C1,C2,C3,C4,C5,C6 such that the Conway-Lagarias invariant of
the (a, b) benzel with a + b ≡ 0 (mod 3) is given by

C1a
2 + C2ab + C3b

2 + C4a + C5b + C6

Then you can solve for C1,C2,C3,C4,C5,C6 by drawing six
pictures (and solving a system of linear equations).

Similar analyses work when a + b ≡ 1 and a + b ≡ 2.

Then you can hand the problem to a number-theorist and they’ll
tell you that the Conway-Lagarias invariant vanishes precisely when
{a, b} = {k(3k − 1)/2, k(3k + 1)/2} for some k ≥ 2.
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The “if”

How do we know that such a tiling exists if {a, b} =
{k(3k − 1)/2, k(3k + 1)/2} for some k ≥ 2?

(I just used the Conway-Lagarias invariant to show you that the
“only if” claim holds.)

Jesse Kim found a construction that works for all k at the Open
Problems in Algebraic Conference earlier this year.
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The (12,15)-benzel: the boundary

37 / 41



The (12,15)-benzel: the shadow of the boundary
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The (12,15)-benzel, tiled à la Kim
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Random tilings (preview)
Thanks to David desJardins’ TilingCount program, we see that
random tribone tilings of “k(3k ± 1)/2 benzels” will exhibit some
sort of “freezing” near the boundary, as one sees for domino tilings
of Aztec diamonds and diamond tilings of hexagons:
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That’s all I got

Thanks for listening!
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