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Goal: Replace a random process by a
deterministic process that has the same
average-case behavior but is more tightly
concentrated around that average (“low
discrepancy”).

Tool: Simple local gadgets (rotor-routers).

What is discrepancy, and why are rotor-
routers good at minimizing it?
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I. Local discrepancy and global
discrepancy

Let P be an n-by-n irreducible stochas-
tic matrix with states a, b, c satisfying
p(b, a) = p(c, a) = 1 s.t. the chain a.s.
hits b or c starting from a. That is,
we imagine a particle repeatedly walk-
ing from a source vertex (a) until it gets
absorbed at a sink (b or c), restarting at
a after each absorption.

For all v let h(v) be the probability that
a particle released from v will reach b
before c, so that h(b) = 1 and h(c) = 0,
and h is harmonic away from b and c
(that is

∑

w p(v, w)h(w) = h(v) for all
v 6∈ {b, c}).
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Consider a finite path

x0, x1, . . . , xT−1, xT

in which the particle starts and ends at
a, arriving K times at b and N − K
times at c.

If the path were a typical sample path
of the random walk associated with the
matrix P (a “P -random sample path”),
we would expect K ≈ Np where p =
h(a).

Let’s find a formula that expresses the
discrepancy K−Np in terms of how far
from being P -distributed the path is.
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Write

K − Np = (K − Kp) − (Np − Kp)

= K(1 − p) + (N − K)(0 − p)

= K(h(b) − h(a))

+(N − K)(h(c) − h(a))

=
∑

(h(xt) − h(xt−1))

where the sum is over all 1 ≤ t ≤ T
with xt−1 not a sink.

We can gather together terms of the
sum for which xt−1 = v and xt = w,
obtaining the double sum

∑

v

∑

w

N (v, w)(h(w) − h(v))

where N (v, w) is the number of times
the particle moved from v to w up to
time T , and where v is not a sink.
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So the discrepancy D := K − Np sat-
isfies

D =
∑

v

∑

w

N (v, w)(h(w) − h(v))

while the harmonicity of h(·) at v gives

0 =
∑

w

(N (v)p(v, w))(h(w) − h(v))

(where N (v) =
∑

w N (v, w)); hence D
equals
∑

v

∑

w

(N (v, w)−N (v)p(v, w))(h(w)−h(v)).

That is, the global discrepancy K−Np
can be written as the sum of the local

discrepancies

(N (v, w)−N (v)p(v, w))(h(w)−h(v)).
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If x0, x1, ... is given by a random pro-
cess, the local discrepancies are≈ N1/2,
so the global discrepancy is ≈ N1/2 too.

If x0, x1, ... has smaller-than-random
(subrandom) local discrepancies (say ≈
Nα with α < 1/2) then K − Np will
be subrandom too.

How subrandom can we get?

We can’t do better than α = 0; that is,
choosing the sequence x0, x1, ..., xT so
that the local discrepancies

N (v, w) − N (v)p(v, w)

are bounded .
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II. Rotor-routing in general

Suppose we have a (not necessarily fi-
nite) Markov chain that is locally fi-
nite (for each v, p(v, w) = 0 for all
but finitely many w) and “rational” (all
p(v, w) are rational numbers).

For each state v, in lieu of a d-sided die
(where d = d(v) is a common denom-
inator of the p(v, w)’s), we use a peri-
odic process of period d in which each
w occurs with frequency p(v, w).

Whenever we arrive at a state v, we
choose whichever w is next in succes-
sion.

8



E.g., if p(a, b) = 1
3 and p(a, c) = 2

3, our
periodic process could be cbccbccbc....

The 1st time we leave a, we go to c;
the 2nd time we leave a, we go to b;
the 3rd time we leave a, we go to c;
etc.

Note that the local discrepancies asso-
ciated with transitions from a to b and
from a to c stay bounded, and indeed
vanish whenever the number of visits to
a is divisible by 3.
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Equivalently, we can imagine that ver-
tex a has a three-state rotor ρ associ-
ated with it that has one state pointing
from a to b and two states pointing from
a to c. The states are cyclically ordered.
To move the particle forward one step,
advance the rotor to its next state and
move the particle to the state that the
rotor points to.

E.g., if there is a particle at a and the
rotor at a currently points from a to b,
rotate the rotor so that it points from a
to c and then route the particle from a
to c.
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More generally, we generate an infinite
sequence (x0, ρ0), (x1, ρ1), (x2, ρ2), . . .
where x0 ∈ V is some initial vertex,
ρ0 : V → V is some initial setting of
the rotors, and (xt+1, ρt+1) is obtained
from (xt, ρt) as follows:

1) rotate the rotor at xt in ρt and
leave the other rotors at all other ver-
tices alone, obtaining ρt+1; and

2) route the particle at xt to xt+1 :=
ρt+1(xt).

This is the rotor-router process, and
the sequence x0, x1, x2, . . . is a rotor-
router walk in V .

Rotor-routing is deterministic, but more
importantly, it minimizes the local dis-
crepancy of the walk x0, x1, x2, . . . .
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Theorem (Holroyd-Propp): Consider an
irreducible recurrent Markov chain with
states a, b, c satisfying p(b, a) = p(c, a) =
1, with h(·) defined as before. Suppose

C := 1+
1

2

∑

u∈V \{b,c},
v∈V

d(u)p(u, v)|h(u)−h(v)|

is finite. Then for any rotor walk and
all t,
∣

∣

∣

∣

h(a) − nt(b)

nt(b) + nt(c)

∣

∣

∣

∣

≤ C

nt(b) + nt(c)
,

where nt(b) (resp. nt(c)) is the number
of times the walk visits b (resp. c) before
time t.
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Instead of routing particles from b and
c back to a, we can imagine that each
time a particle gets absorbed at a sink,
it stays there, and a new particle is re-
leased from the source.

Or: We can imagine that many particles
start at the source, and we let them suc-
cessively travel through the state-diagram
of the Markov chain until absorption.

Abelian property: If there are mul-
tiple particles on the state-diagram of a
Markov chain, so that at each instant
you have a choice of which one to ad-
vance via rotor-routing, the choices you
make don’t matter. The end result is
the same when all the dust settles (i.e.,
when all particles have been absorbed).
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For instance, you can advance each par-
ticle one step, then advance each parti-
cle another step, and so on, until ev-
ery particle has been absorbed (“tan-
dem rotor-routing”).

This gives us an easy way to see that the
absorption frequencies in a rotor-router
simulation agree with absorption prob-
abilities for random simulation (though
it doesn’t explain why discrepancy is
small):

If we put N particles at a and have
them do tandem rotor-routing, a randomly-
chosen particle does something close to
a P -random walk.
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E.g., if we start with N = 999 particles
at a, with p(a, v) = p(a,w) = 1

2, 500
of the particles will go one way and 499
will go the other way.

Part of what makes rotor-routing have
such low discrepancy is that discrepan-
cies like |12 − .499| fall like 1/N .

But the other smart thing rotor-routing
does is that the next time there are an
odd number of particles at a, the round-
ing will go the other way.
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The Holroyd-Propp article gives other
examples of the concentration phenomenon
for rotor-routing, where rotor-routing for
N trials give approximations to proba-
bilistic quantities (e.g. stationary mea-
sures and hitting times) that differ from
the true values by O(1/N ), in contrast
to ordinary random simulation, which
gives errors on the order of 1/

√
N .

Also, if the rotor-and-particle system re-
turns to a configuration it’s already vis-
ited, then it will behave thereafter in a
periodic fashion, and its behavior over
the course of one period will give exact
values of the probabilistic quantity in
question.
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History of rotor-routing:

• Eulerian walkers model

• load-balancing

• whirling tours

Recent applications:

• derandomized diffusion (Cooper, Do-
err, Friedrich, Spencer, Tardos)

• diffusion-limited aggregation (Levine
and Peres)

• rumor-spreading (Doerr, Friedrich,
Künnemann, Sauerwald)
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Markov chains with irrational transition
probabilities can also be fit into the frame-
work of discrepancy-minimization, but
we can no longer use a finite-state router
at each vertex.

E.g., if p(1, 2) = α and p(1, 3) = 1 − α
with α irrational, then there is a unique
protocol for routing the particle so that
after the particle has left 1 for the nth
time, the number of times it went to 2 is
the integer closest to nα and the num-
ber of times it went to 3 is the integer
closest to n(1 − α).

For out-degree > 2, things are a lit-
tle more complicated; see the section of
Holroyd-Propp on “stack-walk”.

18



A nice example of rotor-routing is the
“goldbug walk” on {−1, 0, 1, ...} where
states b = −1 and c = 0 are absorb-
ing, all other states are transient, and
p(i, i−2) = p(i, i+1) = 1

2 for all i ≥ 1.

This walk has leftward drift, so the prob-
ability of absorption in {b, c} is 1.

To see what happens when all rotors ini-
tially point to the right, run
http://jamespropp.org/

rotor-router-model/

with Graph/Mode set to 1-D Walk.

If we attend to where the successive par-
ticles end up, we see that the whole sys-
tem, made of infinitely many (1/2, 1/2)
rotors, behaves like a single (α, 1 − α)
rotor, with α = (−1 +

√
5)/2.
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By the Abelian property, we could also
put lots of particles at 0 at the start
(N , say) and let them do rotor-walk in
tandem; Nα ± O(1) of them will be
absorbed at −1 and N (1 − α) ± O(1)
will be absorbed at 0.

The same is true if the rotors initially
point to the left, except that one parti-
cle will never get absorbed; it just wan-
ders off to the right forever.
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To take full advantage of the Abelian
property in situations where some of the
particles wander off to infinity, it’s help-
ful to define simulation in “transfinite
time”.

E.g., in the goldbug system with all ro-
tors initially pointing to the left, we let
the first particle wander off to infinity,
leaving leftward-pointing rotors in its
wake, and “thereafter” continue to add
other particles, all of which get absorbed
at −1 and 0.

Specifically, we define rotor-simulation
indexed by ordinals of the form mω + t
where m, t are non-negative integers.

This may be possible for some m and
not others.
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E.g., consider ordinary rotor-walk on Z
where all rotors to the left of 0 point
to the right and all other rotors point
to the left. We can simulate from time
0 to time ω (the particle goes to +∞)
and from time ω to time 2ω (the particle
goes to −∞), but from time 2ω to time
3ω, each site gets visited infinitely often
so it’s impossible to say what state the
rotors are in at time 3ω.
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On the other hand, consider the Markov
chain whose state space is {0, 1, 2, . . . }
where state b = 0 is absorbing and
p(i, i− 1) = 1

3 and p(i, i+1) = 2
3 for all

i > 0 (biased random walk with right-
ward drift-rate 1

3).

Regardless of the initial setting of the
rotors, the particle runs off to infinity
during its nth run if and only if it did
not run off to infinity on the n − 1st
run, for all n ≥ 3 (but not necessarily
n = 2), in agreement with the fact that
the escape probability is 1

2.

In this case, the transfinite rotor-walk is
defined for all times of the form mω+t.
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What controls the well-definedness of
transfinite rotor-walk is the following fact:

Recurrence/transience dichotomy:

An infinite rotor-walk on a connected
graph either visits every vertex only finitely
often or visits every vertex infinitely of-
ten.

(Proof: Every neighbor of a vertex that
gets visited infinitely often must be vis-
ited infinitely often.)

If a vertex gets visited only finitely of-
ten, the rotor at that vertex has a lim-
iting (indeed, eventual) setting; if a ver-
tex gets visited infinitely often, the lim-
iting setting does not exist.
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Rotor-walks can be more recurrent than
random walks: Landau and Levine show
that for rotor-walk on an infinite binary
tree with source at the root, if we set
the rotors so that the first time a parti-
cle leaves a vertex v it goes toward the
root, the particle will visit the root in-
finitely often.

Rotor-walks can be more more transient
than random walks in the short run:
rotor-walks on Zd can go off to infin-
ity (this a.s. doesn’t happen for random
walk on Zd).

However, a rotor-walk cannot be more
transient than its random counterpart
in terms of asymptotic escape-frequency.
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Theorem (Schramm): For transfinite rotor-
walk, let In be the number of times the
walk goes to infinity before the nth re-
turn to a. Then lim supn→∞ In/n is at
most the probability that random walk
started from a never returns to a.

In particular, if the walk is recurrent,
In/n → 0.
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III. Rotor-routing on Z2

For rotor-walk in Z2, it’s natural to have
rotors that cycle through the four direc-
tions as N,E,S,W,N,E,S,W,...

Cooper and Spencer proved that there
is a small finite constant C (less than
10) such that if one starts N particles at
the origin and lets them execute T steps
of tandem rotor-walk, the discrepancy
between

# of particles at site v at time T
and

N times p(T )(0, v)
is at most C, for all v,N, T and all
initial configurations of the rotors!

27



In fact, Cooper and Spencer showed that
an analogous bounded discrepancy prop-
erty holds for any initial distribution of
the N particles on the even sublattice
{(i, j) ∈ Z2 : i + j is even} (not just
the distribution where all the particles
start at 0).

The bound is independent of the initial
distribution of the particles.

Boundedness also holds if the rotors cy-
cle in the pattern N,S,E,W,N,S,E,W,...
(thought the constant C is different).

Boundedness also holds for Zd for all
d (though the constants are worse, and
might grow quickly with d).
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Back to absorption probabilities:

Let a = (0, 0), b = (1, 1), c = (0, 0).

(Technically we need two copies of (0, 0),
one a target and one a source, so p(b, a) =
p(c, a) = 1 and p(a, b) = p(a, c) = 0.)

It’s known that the probability that a
particle emitted from a arrives at b be-
fore it arrives at c is p = π/8.

To see how closely rotor-walk concen-
trates around this value, see
http://jamespropp.org/

rotor-router-model/

with Graph/Mode set to 2-D Walk.

(What sort of stable structures does the
rotor-configuration exhibit?)
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Theorem (Holroyd-Propp): With rotors
that cycle clockwise and initial condi-
tions

. . . .

N N N N N N N E

W N N N N N E E

. W W N N N E E E .

. W W W N E E E E .

. W W W W S E E E .

. W W W S S S E E .

W W S S S S S E

W S S S S S S S

. . . .

we have D = K − Np = O(log N ),
where N is the number of particles emit-
ted from a, K is the number of particle
absorbed at b, and p = π/8.
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Proof sketch: Recall from the start of
the talk that the discrepancy D equals
∑

v

∑

w

(N (v, w)−N (v)p(v, w))(h(w)−h(v))

(with v not a sink). The rotor-router
protocol guarantees that the differences
N (v, w) − N (v)p(v, w) are uniformly
bounded, so, using standard facts about
the potential kernel for two-dimensional
random walk, we can show that the in-
ner sum is on the order of 1/|v|2.
If we had to sum over all v ∈ Z2, this
would diverge like the harmonic series
(since the number of points at distance
n± 1

2 from the origin is on the order of
constant time n).
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However, the initial conditions we picked
guarantee that when N particles have
gone through the system and been ab-
sorbed, the sites that have been visited
lie in the 2N -by-2N square centered at
(1
2,

1
2) (the combinatorial details are omit-

ted here), and for sites that have not
been visited, the contribution to the dis-
crepancy D is 0.

Hence, the global discrepancy is bounded
by the harmonic series truncated after
O(N ) terms, which is O(log N ).
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The method of proof works for any finite
target set: Let p be the probability that
a random walk in Z2 that walks from
source vertex (0, 0) until it hits the finite
target set B stops at a particular vertex
b in B. If one performs N successive
runs of a rotor-router walk in Z2 from
(0, 0) to B, the number of runs that stop
at b is Np ± O(log N ).
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What’s wrong with this theorem:

It’s not general enough.

E.g., the concentration phenomenon seems
to be just as strong if we use the initial
configuration

. . . .

E E E E E E E S

N E E E E E S S

. N N E E E S S S .

. N N N E S S S S .

. N N N N W S S S .

. N N N W W W S S .

N N W W W W W S

N W W W W W W W

. . . .

even though the proof given above doesn’t
apply.
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What’s wrong with this theorem:

It’s not sharp enough.

The observed discrepancy DN after N
trials seems to be a lot less than log N .

In 10,000 trials, |DN | < 0.5 for 5, 070
of the trials. That is, more than half
the time, the number of absorptions at
b during the first N trials is equal to the
integer closest to Np.

We have |DN | < 2.05 for all N ≤ 104.

Is |DN | bounded? Unknown!

Yuval Peres points out that if the sum-
mands in our truncated harmonic series
are uncorrelated, we would expect the
global discrepancy to behave like the
random sum ±1 ± 1

2 ± 1
3 ± ..., which

is a.s. bounded.
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IV. Open problems

For the initial conditions in the Holroyd-
Propp theorem on hitting probabilities
in Z2, how does the discrepancy D grow
as a function of N?

We know it’s O(log N ), but the data
suggest a better bound is possible.
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How many escapes to infinity can hap-
pen if we use other initial conditions?

We know the number of escapes must
be o(N ) (by Schramm’s result).

We know it need not be O(1) (e.g., con-
sider the initial rotor-setting with all ro-
tors aligned).

For rotor walk on Z2 with no sinks, and
all rotors initially aligned, the data for
small N wouldn’t lead you to guess the
o(N ) result. Here’s a plot of number of
visits to the origin (horizontal axis) ver-
sus number of escapes to infinity (verti-
cal axis), from (0, 0) to (1884, 458):
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What about Z3?

About five years ago I did a transfinite
rotor-router simulation of walk on Z3

with N = 106, with all rotors initially
aligned; it gave the escape probability
to four (but not five) significant figures.
So in this case discrepancy is almost
certainly not bounded, but it might be
smaller than O(

√
N).
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Joel Spencer and I ask what happens
if the rotors are set up in {(x, y, z) :
x, y, z ∈ Z} so that the first time a
particle visits (x, y, z) it moves to the
neighbor for which |z| is smallest, unless
z is already 0, in which case the particle
moves to the neighbor for which |y| is
smallest, unless y is already 0, in which
case the particle moves to the neighbor
for which |x| is smallest.

Is this rotor-walk recurrent?
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V. Pure fun (popcorn not included)

Lionel Levine: rotor walk on Z2 with
all arrows initially aligned

Ander Holroyd: ditto, but with biased
random initial conditions: p(North) =
p(East) = 1

2, p(South) = p(West) = 0.

Tobias Friedrich: directed DLA (Diffusion-
Limited Aggregation)

• fully random

• rotor-router, with random initial con-
ditions

• rotor-router, with simple conditions
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