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I. Context

Non-probabilistic probability the-
ory

Probabilistic phenomena keep turning
up in non-probabilistic contexts.

E.g., the binary digits of π are not ran-
dom in the usual measure-theoretic sense,
or in the information-content sense, or
in the algorithmic sense; yet if you pre-
tended they were random, you could ex-
perimentally “verify” the Central Limit
Theorem.

To explain this sort of phenomenon, we
may need to go back to pre-Kolmogorov,
frequentist definitions of randomness.
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Probability vs. frequency

Let P be a stochastic matrix with eigen-
value 1 having multiplicity 1, and let π
be the unique probability vector with
πP = π.
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Fundamental theorem of recurrent finite
Markov chains (probability version):

Suppose X0, X1, ... are random variables
taking values in {1, 2, ...,m} such that
Xn+1 is conditionally independent of
X0, ..., Xn−1 given Xn, with

Prob(Xn+1 = j | Xn = i) = pi,j

for all i, j, n.

Then for each i, i almost surely occurs
in X0, X1, . . . with asymptopic frequency
π(i); that is, a.s.

N (i; n)/n → π(i)

as n → ∞ where

N (i; n) = |{k < n : Xk = i}|.
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Fundamental theorem of recurrent finite
Markov chains (frequency version):

Suppose x0, x1, ... are in {1, 2, ...,m}
such that for all i, j, i is followed by
j with asymptotic frequency p(i, j).

Then for all i, i occurs in x0, x1, . . . with
asymptotic frequency π(i).
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Local discrepancy and global dis-
crepancy: an example

Let P be a stochastic matrix with two
sink vertices b, c with p(b, b) = p(c, c) =
1 such that the chain a.s. hits b or c from
any starting state i.

For all i let h(i) be the probability that
a particle released from i will be ab-
sorbed at b (rather than c), so that h(b) =
1 and h(c) = 0.

Note that
∑

j

p(i, j)h(j) = h(i)

for all i; i.e., h is harmonic. (More com-
pactly: Ph = h.)
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Suppose a particle repeatedly walks from
source vertex a until it hits a sink (b or
c), restarting at a after each absorption.

Consider a finite path

x0, x1, . . . , xT−1, xT

in which the particle starts and ends at
a, arriving K times at b and N − K
times at c.

If the path were a typical sample path
of the walk, we would expect K ≈ Np
where p = h(a).

Let’s find a formula for K − Np.
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Write

K − Np = (K − Kp) − (Np − Kp)

= K(1 − p) + (N − K)(0 − p)

= K(h(b) − h(a))

+(N − K)(h(c) − h(a))

=
∑

(h(xt) − h(xt−1))

where the sum is over all 1 ≤ t ≤ T
with xt−1 not a sink.

We can gather together terms of the
sum for which xt−1 = i and xt = j,
obtaining the double sum

∑

i

∑

j

N (i, j)(h(j) − h(i))

where N (i, j) is the number of times the
particle moved from i to j up to time
T , and where i is not a sink.
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So the discrepancy D := K − Np sat-
isfies

D =
∑

i

∑

j

N (i, j)(h(j) − h(i))

while the harmonicity of h(·) at i gives
∑

j

(N (i)p(i, j))(h(j) − h(i)) = 0

(where N (i) =
∑

j N (i, j)); hence D
equals
∑

i

∑

j

(N (i, j)−N (i)p(i, j))(h(j)−h(i)).

That is, the global discrepancy K−Np
can be written as the sum of the local

discrepancies

(N (i, j) − N (i)p(i, j))(h(j) − h(i)).
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If x0, x1, ... is given by a random pro-
cess, the local discrepancies are≈ N1/2,
so the global discrepancy is ≈ N1/2 too.

If x0, x1, ... has smaller-than-random
(subrandom) local discrepancies (say ≈
Nα with α < 1/2) then K − Np will
be subrandom too.
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II. Rotor-routing in general

Suppose we have a (not necessarily fi-
nite) Markov chain that is locally finite
(for each i, p(i, j) = 0 for all but finitely
many j) and “rational” (all p(i, j) are
rational numbers).

How would we follow these transition
probabilities p(i, j) so as to miminimize
local discrepancy?

For each state i, in lieu of a d-sided die
(where d is a common denominator of
the p(i, j)’s), we use a periodic process
of period d, such that each j occurs with
frequency p(i, j).

Whenever we arrive at a state i, we
choose whichever j is next in succession.
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E.g., if p(a, b) = 1
3 and p(a, c) = 2

3, our
periodic process could be cbccbccbc....

The 1st time we leave a, we go to c;
the 2nd time we leave a, we go to b;
the 3rd time we leave a, we go to c;
etc.

Note that the local discrepancies asso-
ciated with transitions from a to b and
from a to c stay bounded, and indeed
vanish whenever the number of visits to
a is divisible by 3.
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Equivalently, we can imagine that ver-
tex a has a three-state rotor associated
with it that has one state pointing from
a to b and two states pointing from a
to c. The states are cyclically ordered.
To move the particle forward one step,
advance the rotor to its next state and
move the particle to the state that the
rotor points to.

E.g., if there is a particle at a and the
rotor at a currently points from a to b,
rotate the rotor so that it points from a
to c and then route the particle from a
to c.

This is the rotor-router process. It
is deterministic, but more importantly,
it minimizes local discrepancy.
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History:

• Eulerian walkers model

• load-balancing

• whirling tours

Recent applications:

• diffusion-limited aggregation (Levine
and Peres)

• rumor-spreading (Friedrich)
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It’s instructive to think about simple
Markov chains, such as ordinary ran-
dom walk on

o-----o-----o-----o

0 1 2 3

Suppose the initial setting of the rotors
is

o-> o-> <-o <-o

0 1 2 3

Then a particle that starts at 0 goes

010123210123...

Note that the proportion of the time
that the particle spends in the four states
converges to (1/6, 2/6, 2/6, 1/6), which
is the stationary measure for the chain.
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Theorem (Holroyd-Propp): For any fi-
nite rational Markov chain, if x0, x1, . . .
is a rotor-router walk on the states of
the chain, then

|tπ(v) − nt(v)| ≤ [explicit constant]

for all t > 0, where nt(v) is the number
of 0 ≤ s < t with xs = v.

Intuition for the weaker claim nt(v)/t →
π(v): If we treat nt(·) as a vector and let
πt = nt/t, then ntP−nt is bounded be-
cause of the definition of rotor-routing,
so πtP − πt → 0, so πt → π (by the
uniqueness of the stationary measure).
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Now use the same graph again, but think
of states b = 0 and c = 3 as absorbing
states (or sinks) and state a = 1 as the
source (gambler’s ruin with n = 3).

Suppose the initial setting of the rotors
is

o o-> <-o o

0 1 2 3

(the rotors at 0 and 3 are unused and
hence omitted).

Then a particle that starts at 1 goes

10123101210123101210123...

Note that the proportion of the time
that the particle arrives at the two sinks
converges to 2/3 and 1/3 which are the
respective absorption probabilities.
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Equivalently, we can imagine that each
time a particle gets absorbed at a sink,
it stays there, and a new particle is re-
leased from the source.

Or: We can imagine that many particles
start at the source, and we let them suc-
cessively travel through the state-diagram
of the Markov chain until absorption,
under the stricture that a particle can’t
start to move from the source until its
predecessor has been absorbed by a sink.

But is this stricture necessary?
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Abelian property: If there are mul-
tiple particles on the state-diagram of a
Markov chain, so that at each instant
you have a choice of which one to ad-
vance via rotor-routing, the choices you
make don’t matter. The end result is
the same when all the dust settles (i.e.,
when all particles have been absorbed).

So the stricture can be dropped.
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This gives us intuition for why the ab-
sorption frequencies in a rotor-router sim-
ulation agree with absorption probabil-
ities for random simulation.

E.g., in our example, when the number
of particles N that start at 1 is large,
and we move them in tandem (each takes
a step, then each takes a step, etc.),
≈ N/2 of them arrive at 0 in 1 step,
≈ N/8 of them arrive at 0 in 3 steps,
≈ N/32 of them arrive at 0 in 5 steps,
etc. So

≈ N/2 + N/8 + N/32 + . . . = 2N/3

of the particles get absorbed at 0.

(At each stage there is new error intro-
duced, but after log 1/ǫ steps all but ǫN
of the particles have been absorbed.)

20



Note that if we look at the states of the
rotors at the instant of absorption, only
three possibilities keep on occurring:

o o-> o-> o

0 1 2 3

and

o <-o <-o o

0 1 2 3

and

o <-o o-> o

0 1 2 3
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The fourth configuration

o o-> <-o o

0 1 2 3

can’t occur after both states 1 and 2
have been visited, since that would re-
quire that the last time the particle vis-
ited 1 it went to 2 and the last time the
particle visited 2 it went to 1, which is
impossible since the particle is currently
at 0 or 3.

Even if we allow ourselves to repeat-
edly choose between adding a particle
at 1 and adding a particle at 2 (letting
the added particle walk until it is ab-
sorbed), we cannot ever arrive at the
fourth rotor-configuration (with all par-
ticles absorbed) once states 1 and 2 have
both been visited.
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We say that the first three rotor-configu-
rations are recurrent and the fourth is
transient.

More precisely, a rotor-configuration is
recurrent if it can be obtained from any
other rotor-configuration by a succes-
sion of operations each of which adds
a particle to the state-diagram and lets
it do rotor-walk until it is absorbed.

The recurrent rotor-configurations are
precisely those that contain no cycles;
see “Chip-firing and rotor-routing on fi-
nite digraphs” by Holroyd, Levine, Mészáros,
Peres, Propp, and Wilson: arXiv:0801.3306

This is why we adopt the convention of
rotating the rotor before we route the
particle, rather than the reverse.
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The Holroyd-Propp article gives other
examples of the concentration phenomenon
for rotor-routing, where rotor-routing for
N trials give approximations to prob-
abilistic quantities (e.g. hitting times)
that differ from the true values by O(1/N ),
in contrast to ordinary random simula-
tion, which gives errors on the order of
1/
√

N .

Also, if the rotor-and-particle system re-
turns to a configuration it’s already vis-
ited, then it will behave thereafter in a
periodic fashion, and its behavior over
the course of one period will give exact
values of the probabilistic quantity in
question.

(See our earlier examples of four-state
Markov chains.)

24



Some quantities (like mean squared hit-
ting time) do not fit into the rotor-router
framework directly, but can be made
to do so if we use more than one kind
of particle and have more complicated
routing rules.
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Markov chains with irrational transition
probabilities can also be fit into the frame-
work of discrepancy-minimization, but
we can no longer use a finite-state router
at each vertex.

E.g., if p(1, 2) = α and p(1, 3) = 1 − α
with α irrational, then there is a unique
protocol for routing the particle so that
after the particle has left 1 for the nth
time, the number of times it went to 2 is
the integer closest to nα and the num-
ber of times it went to 3 is the integer
closest to n(1 − α).

For out-degree > 2, things are a lit-
tle more complicated; see the section of
Holroyd-Propp on “stack-walk”.
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A nice example of rotor-routing is the
“goldbug walk” on {−1, 0, 1, ...} where
states b = −1 and c = 0 are absorb-
ing, all other states are transient, and
p(i, i−2) = p(i, i+1) = 1

2 for all i ≥ 1.

This walk has leftward drift, so the prob-
ability of absorption in {b, c} is 1.

To see what happens when all rotors ini-
tially point to the right, run
http://jamespropp.org/

rotor-router-model/

with Graph/Mode set to 1-D Walk.

If we attend to where the successive par-
ticles end up, we see that the whole sys-
tem, made of infinitely many (1/2, 1/2)
rotors, behaves like a single (α, 1 − α)
rotor, with α = (−1 +

√
5)/2.
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By the abelian property, we could also
put lots of particles at 0 at the start
(N , say) and let them do rotor-walk in
tandem; Nα ± O(1) of them will be
absorbed at −1 and N (1 − α) ± O(1)
will be absorbed at 0.

The same is true if the rotors initially
point to the left, except that one parti-
cle will never get absorbed; it just wan-
ders off to the right forever.
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To take full advantage of the abelian
property in situations where some of the
particles wander off to infinity, it’s help-
ful to define simulation in “transfinite
time”.

E.g., in the goldbug system we let the
first particle wander off to infinity, leav-
ing leftward-pointing rotors in its wake,
and “thereafter” continue to add other
particles, all of which get absorbed at
−1 and 0.

Specifically, we define rotor-simulation
indexed by ordinals of the form mω + t
where m, t are non-negative integers.

This may be possible for some m and
not others.
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E.g., consider ordinary rotor-walk on Z
where all rotors to the left of 0 point
to the right and all other rotors point
to the left. We can simulate from time
0 to time ω (the particle goes to +∞)
and from time ω to time 2ω (the particle
goes to −∞), but from time 2ω to time
3ω, each site gets visited infinitely often
so it is impossible to say what state the
rotors are in at time 3ω.
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On the other hand, consider the Markov
chain whose state space is {0, 1, 2, . . .}
where state b = 0 is absorbing and
p(i, i− 1) = 1

3 and p(i, i+1) = 2
3 for all

i > 0 (biased random walk with right-
ward drift-rate 1

3).

Regardless of the initial setting of the
rotors, the particle runs off to infinity
during its nth run if and only if it did
not run off to infinity on the n − 1st
run, for all n ≥ 3 (but not necessarily
n = 2), in agreement with the fact that
the escape probability is 1

2.

In this case, the transfinite rotor-walk is
defined for all times of the form mω+t.
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What controls the well-definedness of
transfinite rotor-walk is the following fact:

Recurrence/transience dichotomy:

An infinite rotor-walk on a graph either
visits every vertex only finitely often or
visits every vertex infinitely often.

(Proof: Every neighbor of a vertex that
gets visited infinitely often must be vis-
ited infinitely often.)

If a vertex gets visited only finitely of-
ten, the rotor at that vertex has a lim-
iting (indeed, eventual) setting; if a ver-
tex gets visited infinitely often, the lim-
iting setting does not exist.
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Rotor-walks can be more recurrent than
random walks: Landau and Levine show
that for rotor-walk on an infinite binary
tree with source at the root, if we set
the rotors so that the first time a parti-
cle leaves a vertex v it goes toward the
root, the particle will visit the root in-
finitely often.

Rotor-walks can be more more tran-

sient than random walks: sample paths
can go off to infinity (this a.s. doesn’t
happen for random walk)

However, if we look at matters in the
proper frequentist way, a rotor-walk can-

not be more transient than its random
counterpart, asymptotically.
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Theorem (Schramm): For transfinite rotor-
walk, let In be the number of times the
walk goes to infinity before the nth re-
turn to a. Then lim supn→∞ In/n is at
most the probability that random walk
started from a never returns to a.

In particular, if the walk is recurrent,
In/n → 0.
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III. Rotor-routing on Z2

For rotor-walk in Z2, it’s natural to have
rotors that cycle through the four direc-
tions as N,E,S,W,N,E,S,W,...

Cooper and Spencer proved that there
is a small finite constant C (less than
10) such that if one starts N particles at
the origin and lets them execute T steps
of tandem rotor-walk, the discrepancy
between

# of particles at site v at time T
and

N times p(T )(0, v)
is at most C, for all v,N, T and all
initial configurations of the rotors!
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In fact, Cooper and Spencer showed that
an analogous bounded discrepancy prop-
erty holds for any initial distribution of
the N particles on the even sublattice
{(i, j) ∈ Z2 : i + j is even} (not just
the distribution where all the particles
start at 0).

The bound is independent of the initial
distribution of the particles.

Boundedness also holds if the rotors cy-
cle in the pattern N,S,E,W,N,S,E,W,...
(thought the constant C is different).

Boundedness also holds for Zd for all
d (though the constants are worse, and
might grow quickly with d).
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For the rest of this talk I’ll focus instead
on absorption probabilities.

Let a = (0, 0), b = (1, 1), c = (0, 0).

It is known that the probability that a
particle emitted from a arrives at b be-
fore it arrives at c is p = π/8.

To see how closely rotor-walk concen-
trates around this value, see
http://jamespropp.org/

rotor-router-model/

with Graph/Mode set to 2-D Walk.

(What sort of stable structures does the
rotor-configuration exhibit?)

37



Theorem (Holroyd-Propp): With rotors
that cycle clockwise and initial condi-
tions

. . . .

N N N N N N N E

W N N N N N E E

. W W N N N E E E .

. W W W N E E E E .

. W W W W S E E E .

. W W W S S S E E .

W W S S S S S E

W S S S S S S S

. . . .

we have D = K − Np = O(log N ),
where N is the number of particle emit-
ted from a, K is the number of particle
absorbed at b, and p = π/8.
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Proof sketch: Recall from the begin-
ning of the talk that the discrepancy D
equals
∑

v

∑

w

(N (v, w)−N (v)p(v, w))(h(w)−h(v)).

The rotor-router protocol guarantees that
the differences N (v, w) − N (v)p(v, w)
are uniformly bounded, so, using stan-
dard facts about the potential kernel for
two-dimensional random walk, we can
show that the inner sum is on the order
of 1/|v|2.
If we had to sum over all v ∈ Z2, this
would diverge like the harmonic series
(since the number of points at distance
n± 1

2 from the origin is on the order of
constant time n).
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However, the initial conditions we picked
guarantee that when N particles have
gone through the system and been ab-
sorbed, the sites that have been visited
lie in the 2N -by-2N square centered at
(1
2,

1
2) (the combinatorial details are omit-

ted here), and for sites that have not
been visited, the contribution to the dis-
crepancy D is 0.

Hence, the global discrepancy is bounded
by the harmonic series truncated after
O(N ) terms, which is O(log N ).
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The method of proof works for any finite
target set: Let p be the probability that
a random walk in Z2 that walks from
source vertex (0, 0) until it hits the finite
target set B stops at a particular vertex
b in B. If one performs N successive
runs of a rotor-router walk in Z2 from
(0, 0) to B, the number of runs that stop
at b is Np ± O(log N ).
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What’s wrong with this theorem:

It’s not general enough.

E.g., the concentration phenomenon seems
to be just as strong if we use the initial
configuration

. . . .

E E E E E E E S

N E E E E E S S

. N N E E E S S S .

. N N N E S S S S .

. N N N N W S S S .

. N N N W W W S S .

N N W W W W W S

N W W W W W W W

. . . .

even though the proof given above doesn’t
apply.
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What’s wrong with this theorem:

It’s not sharp enough.

The observed discrepancy DN after N
trials seems to be a lot less than log N .

In 10,000 trials, |DN | < 0.5 for 5, 070
of the trials. That is, more than half
the time, the number of absorptions at
b during the first N trials is equal to the
integer closest to Np.

We have |DN | < 2.05 for all N ≤ 104.

Is |DN | bounded? Unknown!

Yuval Peres points out that if the sum-
mands in our truncated harmonic series
are uncorrelated, we would expect the
global discrepancy to behave like the
random sum ±1 ± 1

2 ± 1
3 ± ..., which

is a.s. bounded.
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For those who like to code:

What happens if all the rotors are ini-
tially lined up?

Some of the trials result in escape to in-
finity; some result in capture at b; some
result in capture at c. We know that
these occur with asymptotic frequencies
0, π/8 and 1 − π/8, but how rapid is
the convergence?
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IV. Open problems

What about Z3?

About five years ago I did a transfinite
rotor-router simulation of walk on Z3

with N = 106, with all rotors initially
aligned; it gave the escape probability
to four (but not five) significant figures.
So in this case discrepancy is almost
certainly not bounded, but it might be
smaller than O(

√
N).
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Joel Spencer and I ask what happens
if the rotors are set up in {(x, y, z) :
x, y, z ∈ Z} so that the first time a
particle visits (x, y, z) it moves to the
neighbor for which |z| is smallest, unless
z is already 0, in which case the particle
moves to the neighbor for which |y| is
smallest, unless y is already 0, in which
case the particle moves to the neighbor
for which |x| is smallest.

Is this rotor-walk recurrent?
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Landau and Levine’s result about re-
current rotor-walk on the infinite binary
tree requires a rather constrained initial
setting of the rotors. If the initial set-
ting of the rotors is random, will the
rotor-walk be transient almost surely?

(Side issue: What do we mean by ran-
dom? What should we mean? On finite
graphs, the uniform measure on rotor-
settings is in many ways less natural
that the uniform measure on the set of
recurrent rotor-settings; how does this
idea carry over into the setting of infi-
nite Markov chains?)
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