
1 Background

For a matrix A, let A(i, j) denote its (i, j)th entry. Suppose An is an n-by-n matrix and
An+1 is an (n + 1)-by-(n + 1) matrix. We define Ak recursively in terms of Ak+1 and Ak+2

by

Ak(i, j)Ak+2(i + 1, j + 1) = Ak+1(i, j)Ak+1(i + 1, j + 1) + λAk+1(i + 1, j)Ak+1(i, j + 1)

if Ak+2(i + 1, j + 1) 6= 0 and Ak(i, j) = 0 otherwise, in which case we write An → An−1 →
· · · → A1. The λ-determinant of a pair (An, An+1) is the sole entry of A1. Let the λ-
determinant of a matrix An be the λ-determinant of the pair (An, C), where C is the (n+1)-
by-(n + 1) matrix each of whose entries is 1. Note that the (−1)-determinant of a matrix is
just its determinant. Let Λ(A) denote the 1-determinant of A.

Let the Aztec diamond graph be the dual graph of an Aztec diamond, and a weighted
Aztec diamond graph (WAD) be an Aztec diamond graph with associated edge weights.
Designate by W (F ) the sum of the weighted perfect matchings of a WAD F . An S-WAD is
a WAD whose entries are chosen from the set S; in this paper we will be using {0, 1}-WADs
almost exclusively.

[DEFINE AZTEC OCTAGONS HERE]

2 Kuo Recurrence

Consider the Aztec diamond graph as tilted 45 degrees. A face of an Aztec diamond graph
of order n corresponds to any bounded face of an Aztec diamond graph of order n+1, which
include unbounded faces of the Aztec diamond graph of order n. Call two faces F,G of the
graph vertex adjacent (in which case we write F |G) if they share a common vertex but not
an edge, and vertex connected if either F |G or there is a finite set {F1, F2, . . . , Fn} of faces in
the graph such that Fi|Fi+1 for all i, F |F1, and Fn|G. Call a face a major face if it is vertex
connected to the upper left face and a minor face otherwise. The major faces of an Aztec
diamond F form a finite square lattice; call the one in column i, row j F (i, j). Similarly,
the minor faces of F form a finite square lattice; label them F (i, j). If F is a WAD, let
F (i, j)ne, F (i, j)nw, F (i, j)se, F (i, j)sw represent the weightings of the northeast, northwest,
southeast, and southwest edges bordering F (i, j), respectively.

Given a WAD F of order n, let Fne, Fnw, Fse, Fsw be the northeast, northwest, southeast,
and southwest order n − 1 weighted Aztec subdiamonds, and let Fm be the inner order
n− 2 weighted Aztec subdiamond. If we let the edge multiplying factors ne, nw, se, sw be the
weights of the northeast, northwest, southeast, and southwest edges of F , then the number
of weighted matchings of F is given in [1] by the recurrence

W (F )W (Fm) = neswW (Fnw)W (Fse) + nwseW (Fne)W (Fsw). (1)

2.1 Edge Weights

Given a {0, 1}-WAD F , create a square matrix M whose (i, j)th entry is equal to F (i, j)nwF (i, j)se+
F (i, j)neF (i, j)sw (the edge factor of F (i, j)). If F is weighted all 1 within some Aztec suboc-
tagon and in a brickwork pattern outside this region (in which case we say that the octagon
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is embedded in the WAD), the 1-determinant of M is equal to the number of weighted match-
ings of F . This comes almost immediately from (1), the only trick being that it works in
general only if the possible weights are 0 and 1, in which case the edge multiplying factors
drop out.

2.2 Face Weights

Given an order n Aztec diamond graph F , the total minor faces of F are the canonically-
defined F (i, j) where i, j range from 0 to n+1 (i.e. defined such that they uphold the lattice
structure of the minor faces). The face weight of a total minor face F (i, j) is either (i) the
number of edges selected immediately around F (i, j) in a nonzero weighted perfect matching
of F if this is a fixed value in any such matching, or (ii) 1 otherwise.

Given an order n {0, 1}-WAD F whose edges are all weighted 1 within some Aztec
suboctagon, and the rest of whose edges are weighted in a brickwork pattern [CLARIFY
BRICKWORK PATTERN], let M be the (n + 1)-by-(n + 1) matrix whose (i, j)th entry is
the face weight of F (i, j). Then if F is weighted all 1 within some Aztec suboctagon and
in a brickwork pattern outside this region, the 1-determinant of M is equal to the number
of weighted matchings of F . The proof is immediate, since the intermediate n-by-n matrix
used to take the 1-determinant is equal to the matrix used in the edge weighting picture.

3 Embedding Rectangles

The above techniques can be used to find the number of perfect matchings of rectangle
graphs, which are Aztec octagons, by embedding them in WADs via appropriate weighting.
All edges of the embedded rectangle should be weighted 1, and the rest of the edges of the
Aztec diamond must be weighted in a brickwork pattern (if the can be; otherwise we must
choose a different embedding of the rectangle). Note that if a given rectangle cannot be
embedded in any WAD, it is odd-by-odd and thus has zero matchings. In the following
examples, an edge weight of 1 is represented by a darkened line, and all other edges are
weighted 0. The shading is included only to highlight the region under consideration.
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In this figure the leftmost example corresponds to

[
1 2
2 1

]
→ 5, the middle example

to




1 2 1
2 2 1
1 1 0


 →

[
6 4
4 1

]
→ 11, and the rightmost example to




0 1 1 0
1 2 2 1
1 2 2 1
0 1 1 0


 →




1 4 1
4 8 4
1 4 1


 →

[
12 12
12 12

]
→ 36.

[THIS PICTURE WILL BE MADE TO LOOK MUCH NICER, AND MORE WILL BE
ADDED, INCLUDING ONES WITH FACE AND EDGE WEIGHTINGS RIGHT ON THE
PICTURE. AND THE SPACING ISSUE WILL BE FIXED. HOW MANY EXAMPLES
ARE GOOD TO ADD?]
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