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A classic puzzle

Show that if two opposite 1-by-1 corner-squares of an 8-by-8
square are removed, the remaining region cannot be tiled by
1-by-2 and 2-by-1 rectangles.



The classic proof

Each tile has one white square and one black square.
But the region being tiled has unequal numbers of black and
white squares.



A variant proof

Each tile has total weight zero.

But the region being tiled has nonzero total weight.



A less famous problem

How many tilings are there if you don’t remove those two
opposite corner-squares?



Physics meets graph theory

This is an example of a dimer problem, first considered by
physicists, at the intersection of graph theory and enumerative
combinatorics.

The physicists Temperley and Fisher, and the physicist
independently Kasteleyn, solved the problems simultaneously
and independently in 1961.



From dominos



From dominos to dimers



From dominos to dimers on a



From dominos to dimers on a square grid-graph



Dimers

A dimer is an edge joining two vertices in a graph.

We say that a collection of dimers in a graph is a dimer cover
if every vertex belongs to exactly one dimer in the collection.

Graph theorists call dimer covers perfect matchings.

We say that the tiling model and the dimer model are duals.



Lozenges
Just as dominos are made of two squares joined edge to edge,
a lozenge (or calisson) is made of two equilateral triangles
joined edge to edge.

The problem of the calissons: Show that in any lozenge tiling
of the regular hexagon of side n, there are n2 lozenges in each
of the three possible orientations. (See "The Problem of the
Calissons" by David and Tomei.)



From lozenges



From lozenges to dimers



From lozenges to dimers on a



From lozenges to dimers on a hexagonal grid-graph



Counting dimer covers

Temperley-Fisher and Kasteleyn (1961): The number of
domino tilings of a 2n-by-2n square is

n∏
j=1

n∏
k=1

(4 cos2 jπ

2n + 1
+ 4 cos2 kπ

2n + 1
)

MacMahon (1896, sort of), and MacDonald (1967?): The
number of lozenge tilings of a regular hexagon of side-length n
is

n∏
i=1

n∏
j=1

n∏
k=1

i + j + k − 1
i + j + k − 2

Both formulas exhibit quadratic-exponential growth.



Randomness
A random domino tiling of a large square (chosen from the
uniform distribution) looks more or less the way you’d expect
it to.



Long-range order

But a random lozenge tiling of a large hexagon doesn’t look
very random near the corners!



Why the different behavior?
It’s not about the tiles; it’s about the shape of the boundary.

Here’s a different boundary for lozenge-tilings that makes all
the long-range order disappear.



The Aztec diamond
And here’s a boundary for domino-tilings that gives rise to
long-range order.

Elkies-Kuperberg-Larsen-Propp (1992): The Aztec diamond of
order n has exactly 2n(n+1)/2 domino tilings.



Frozen and temperate regions

For both dominos in an Aztec diamond and lozenges in a
hexagon, there are frozen regions near the corners within
which nearly all possible tilings agree.

That is, for a possible tile-placement near the corner, either
0.000. . . or 99.999. . . percent of the tilings of size n will
include that tile, when n is large.

Putting it differently, if you put a tile-shaped hole in the
region, the number of tilings of the new region is either much
smaller than the number of tilings was before or it is
essentially equal to the number of tilings before.

Meanwhile, in the temperate region in the middle, local
randomness reigns.



Arctic circle theorem for Aztec diamonds

Cohn-Elkies-Propp (1996): The boundary of the frozen region
for random domino tilings of an Aztec diamond of order n is
asymptotically a circle.

(Mathologer made a fun video about this.)

https://www.youtube.com/watch?v=Yy7Q8IWNfHM


Arctic circle theorem for hexagons
Cohn-Larsen-Propp (1998): The boundary of the frozen region
for random lozenge tilings of a hexagon of order n is
asymptotically a circle.

(image by Morales, Pak, and Panova)



Conway, Lagarias, and Thurston
Part of what launched this work on tilings was an article by
Conway and Lagarias along with a follow-up article by
Thurston, posing and solving tiling existence problems that
can’t be solved using coloring arguments and weighting
arguments.

https://www.sciencedirect.com/science/article/pii/0097316590900574
http://personal.cimat.mx:8181/~gil/ciencia_para_jovenes/pensamiento_matematico/thurston.pdf


A trihex tiling problem

"Can you tile a Tn with T2’s?"



Another trihex tiling problem

"Can you tile a Tn with L3’s?"



Renaming the tiles

Stones, bones, and phones:



Conway and Lagarias’ results on trihex tilings

Conway and Lagarias (1990): The "honeycomb triangle" with
n ≥ 1 hexagons on a side can be tiled by stones if and only if
n is congruent to 0, 2, 9, or 11 (mod 12).

Conway and Lagarias (1990): The honeycomb triangle with
n ≥ 1 hexagons on a side cannot be tiled by bones.

Their proof introduced a brilliant and original new method to
the study of tilings: boundary invariants coming from
combinatorial group theory (and a bit of combinatorial
topology, in Thurston’s treatment).



Allowing both tiles

Incidentally, it’s not hard to tile a honeycomb triangle with n
hexagons on a side if we allow both stones and bones, as long
as n is congruent to 0 or 2 (mod 3) so that the number of
hexagons is a multiple of 3.



Trihexes and trimers

Physicists might prefer to think of trihex tilings as trimer
covers of a finite subgraph of a triangular lattice.



The Conway-Lagarias invariant
For a simply-connected honeycomb region R and a tiling T of
R by stones and bones, let I (T ) be the number of
upward-pointing stones minus the number of
downward-pointing stones. E.g., I (T ) = 3− 1 = 2 for the
tiling T shown below.

Conway and Lagarias showed that I (T ) depends only on the
region R , not the tiling T !



How they did it

One way of describing what Conway and Lagarias did (closer
in some ways to Thurston’s treatment) is to assign areas to
tiles in a weird way, by transporting the whole tiling to a
parallel universe and measuring areas there.

Here area means the algebraic area enclosed by a plane
curve: it’s positive if the curve encloses a region
counterclockwise, it’s negative if the curve encloses a region
clockwise, and it could be zero if the curve crosses itself (e.g.,
a symmetrical figure-eight curve encloses signed area zero).



From tiles to words

Label the edges in the honeycomb 1, 2, and 3 as shown. Then
we read off the labels as we travel around a tile
counterclockwise. We never see two identical labels in a row.



From words to weird words

Create a new word that winds where the original word
weaves and vice versa. (Weaving means iji ; winding means
ijk with k 6= i . Alternative terminology: tacking and turning.)



From weird words to weird paths

Now take that weird word and turn it into a weird path,
reversing the procedure we used to turn the original path into
the original word.



Punchline

Bones turn into figure-eights that enclose signed area

0;

∆-stones turn into closed paths enclosing signed area

+3;

and ∇-stones turn into closed paths enclosing signed area

−3.

So the number of upward-pointing stones minus the number of
downward-pointing stones equals the signed area enclosed by
the weirdification of the boundary of the original region being
tiled, which clearly doesn’t depend on the tiling.



"Yes, but how many tilings are there?"

In how many ways can one tile a honeycomb triangle with n
hexagons on a side by stones and bones?

David DesJardins wrote a program to count tilings of regions
like this, although first we need to apply a skewing, as in
Conway and Lagarias’ article:



The Online Encyclopedia of Integer Sequences

After running his program for small n, David entered his
numbers into the OEIS and discovered others had already
explored the question:



Changing the question

Nobody’s found a formula for the terms of
https://oeis.org/A334875 counting stones-and-bones tilings
of honeycomb triangles, but a different class of regions has led
to some interesting conjectures.

For motivation, watch the video of my talk at the
Combinatorics and Arithmetic for Physics workshop hosted
last year at IHES.

Essentially, benzels are to honeycomb triangles as Aztec
diamonds are to squares; they’re designed to be
just-barely-tileable at the boundary so that large-scale
structures are likely to form and propagate into the interior of
the region.

https://oeis.org/A334875
https://www.youtube.com/watch?v=ANzukenVxvU&list=PLx5f8IelFRgGSqZwky4xh-J67jdpAkOrY&index=8


What do benzels look like?
Benzels form a two-parameter family, with parameters a and b
satisfying a ≤ 2b − 2 and b ≤ 2a − 2. Here is the 5,7-benzel,
tiled by bones:

(Note that I’ve rotated my hexagonal cells relative to the kinds
used earlier in my talk.)



Why "benzel"?



Building a benzel, step 1



Building a benzel, step 2



Building a benzel, step 3



The 4,6-benzel, tiled by stones

All the stones point the same way, so the Conway-Lagarias
invariant tells us it has only one tiling.

I believe (but have not yet proved) that the a, b benzel can be
tiled by stones alone exactly when a + b is 1 (mod 3).



Tiling with bones alone: audience quiz

On the other hand, hardly any benzels can be tiled by bones
alone. For instance, with a, b ≤ 10, only the 5,7-benzel (and
the 7,5-benzel) can be tiled by bones alone.

But there is another (with larger a, b). Any guesses?

So can the 12,15-benzel.

But there is another. Any guesses?

So can the 22,26-benzel.

What’s the pattern?
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Paired pentagonal numbers

Theorem (March 2022): The a, b-benzel can be tiled by bones
alone only if a, b are paired pentagonal numbers n(3n ± 1)/2.

Proof sketch:
1. Compute the Conway-Lagarias invariant I (R) (three cases)
2. Show that the only feasible case is a + b ≡ 0 (mod 3), with

I (R) = (a + b − 3a2 + 6ab − 3b2)/6.
3. Set I (R) = 0. Solving for b in terms of a, show that

24b + 1 must be a perfect square.
4. Show that this happens only when a and b are paired

pentagonal numbers.



1 kind of stone, 2 kinds of bones
Allow 1 (of the 2) kinds of stones and 2 (of the 3) kinds of
bones. How many tilings are there? With 3 ≤ a, b ≤ 15:

2 0 0 0 0 0 0 0 0 0 0 0 0
0 0 2 0 0 0 0 0 0 0 0 0 0
0 2 0 0 0 0 0 0 0 0 0 0 0
0 0 0 8 0 0 0 0 0 0 0 0 0
0 0 0 0 0 8 0 0 0 0 0 0 0
0 0 0 0 8 0 0 0 0 0 0 0 0
0 0 0 0 0 0 48 0 0 0 0 0 0
0 0 0 0 0 0 0 0 48 0 0 0 0
0 0 0 0 0 0 0 48 0 0 0 0 0
0 0 0 0 0 0 0 0 0 384 0 0 0
0 0 0 0 0 0 0 0 0 0 0 384 0
0 0 0 0 0 0 0 0 0 0 384 0 0
0 0 0 0 0 0 0 0 0 0 0 0 3840



Double factorials

Conjecture: When a and b both equal 3n, or when one is
3n + 1 and the other is 3n + 2, the number of tilings of the
a, b-benzel with 2 kinds of bones and 1 kind of stone allowed
is 2× 4× · · · × 2n.



2 kinds of stones, 2 kinds of bones

Allow 2 (of the 2) kinds of stones and 2 (of the 3) kinds of
bones. How many tilings are there? With 3 ≤ a, b ≤ 10:

2 1 1 1 1 1 1 1
1 4 6 1 1 1 1 1
1 6 1 16 22 1 1 1
1 1 16 48 1 68 90 1
1 1 22 1 224 512 1 304
1 1 1 68 512 1 3360 6736
1 1 1 90 1 3360 15360 1
1 1 1 1 304 6736 1 168960

Hiding along one diagonal are 2, 6, 22, 90, 394, 1806, 8558,
41586, 206098, . . . , which I didn’t recognize but the OEIS did:
these are the large Schroder numbers.



A job for superseeker

Another diagonal gives a sequence 2, 48, 15360, 65601536,
3737426853888, . . . whose nth entry is an enormous number
with no prime factor larger than 4n.

It should be given by a product formula like the
MacMahon/MacDonald formula.

OEIS didn’t recognize these terms.

"This looks like a job for Superseeker!"



A job for the DOMINO listserv

Superseeker wasn’t able to crack it, so I posted to the
DOMINO listserv, and David DesJardins was able to find the
pattern:

It worked for the next value of k as well, so it seems likely to
be right. But we have no proof.



2 kinds of stones, 3 kinds of bones

There are no conjectural product formulas, but two diagonals
of the table have regular 2-adic behavior.

With a = n and b = 2n − 3, the number of tilings goes
0,0,0,0,. . . (mod 2);
2,2,2,2,. . . (mod 4);
2,6,2,6,. . . (mod 8).

I conjecture that the residues mod 2k are periodic mod 2j for
some j ("2-adic continuity").

Likewise for a = n and b = 2n − 4.



Where does 2-adic continuity come from?

I know of just one (proved) example of 2-adic continuity
arising from enumeration of tilings.

Let T (n) be the number of domino tilings of a 2n-by-2n
square. It was long known that T (n) can be expressed as
2nS(n)2 for some integer S(n).

Henry Cohn showed that the sequence S(n)
(https://oeis.org/A065072) is 2-adically continuous.

His proof used the exact formula of Temperley-Fisher and
Kasteleyn.

But in our examples we have no exact formula!

https://oeis.org/A065072


Honeycomb triangles revisited

Let’s take another look at the sequence
https://oeis.org/A334875 counting tilings of honeycomb
triangles by stones.

The multiplicity of the prime 2 in the factorizations of the
nonzero terms in this sequence are 0, 0, 1, 3, 2, 3, 4, 3, 4, 3,
5, 8, 6, 8 which seem to show an upward drift.

Conjecture: The number of tilings goes to zero 2-adically.

https://oeis.org/A334875


Mutations

Open problem: Can every stones-and-bones tiling T of a
simply-connected honeycomb region be obtained from every
other tiling T ′ by means of a sequence of "2-flips", each of
which replaces 2 tiles by 2 other tiles?

If true, this would yield the invariance of the Conway-Lagarias
invariant as a corollary, since it can be checked that 2-flips
don’t change the value of I (T ).



Random tilings

Preliminary results indicate that along the boundary of a
benzel, a random stones-and-bones tiling is “close to
nonrandom”.

I would expect that the tilings exhibit long-range order.

But: how do you generate tilings uniformly at random? I don’t
know!



An accessible counting problem
Form a honeycomb parallelogram with 3 hexagons on its short
sides and n hexagons on its long sides.

Forbid bones that are parallel to the long sides of the
parallelogram, but allow the other four types of tiles.

How many tilings are there?



Thanks!

That’s all I got; thank you for listening!

Slides for this talk are at http://jamespropp.org/rutgers22.pdf
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