
chapter 8

RECURSION AND RECURRENCE RELATIONS

GOALS
An  essential  tool  that  anyone  interested  in  computer  science  must  master  is  how  to  think  recursively.  The  ability  to  understand  definitions,
concepts,  algorithms,  etc.,  that  are  presented recursively  and the  ability  to  put  thoughts  into  a  recursive  framework are  essential  in  computer
science. One of our goals in this chapter is to help the reader become more comfortable with recursion in its commonly encountered forms.
A second goal is to discuss recurrence relations. We will concentrate on methods of solving recurrence relations, including an introduction to
generating functions.

8.1 The Many Faces of Recursion
Consider the following definitions, all of which should be somewhat familiar to you. When reading them, concentrate on how they are similar.

Example 8.1.1. A very common alternate notation for the binomial coefficient K n
k O is C Hn; kL. We will use the latter notation in this chapter.

Here is a recursive definition of binomial coefficients.

Definition:  Binomial Coefficients.   Assume  n ¥ 0 and  n ¥ k ¥ 0.
CHn; 0L = 1
CHn, nL = 1

and      C Hn; kL = CHn - 1; kL + CHn - 1; k - 1L if n > k > 0.

POLYNOMIALS AND THEIR EVALUATION
Definition:  Polynomial  Expression  in  x  over  S  (Non-Recursive).  Let  n  be  an  integer,  n ¥ 0.  An  nth  degree  polynomial  in  x  is  an

expression  of  the  form  an xn + an-1 xn-1 + º⋯ + a1 x + a0,  where  an, an-1, …, a1, a0  are  elements  of  some  designated  set  of  numbers,  S,
called the set of coefficients and an ¹≠ 0.

We  refer  to  x  as  a  variable  here,  although  the  more  precise  term  for  x  is  an  indeterminate.   There  is  a  distinction  between  the  terms
indeterminate and variable, but that distinction will not come into play in our discussions.
Zeroth degree polynomials are called constant polynomials and are simply elements of the set of coefficients.

This definition is often introduced in algebra courses to describe expressions such as f HnL = 4 n3 + 2 n2 - 8 n + 9, a third-degree, or cubic,
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polynomial  in  n.  This  definitions  has  has  drawbacks  when the  variable  is  given  a  value  and the  expression  must  be  evaluated,  For  example,
suppose that n = 7. Your first impulse is likely to do this:

f H7L = 4 µ 73 + 2 µ 72 - 8 µ 7 + 9
= 4 µ 343 + 2 µ 49 - 8 µ 7 + 9 = 1423

A count of the number of operations performed shows that five multiplications and three additions/subtractions were performed.  The first two
multiplications compute 72 and 73, and the last three mutiply the powers of 7 times the coefficients. This gives you the four terms; and adding/-
subtacting a list of  k numbers requires k - 1 addition/subtractions. The following definition of a polynomial expression suggests another more
efficient method of evaluation.

Definition: Polynomial Expression in x over S (Recursive). Let S be a set of coefficients and x any variable.

(a)   A zeroth degree polynomial expression in x over S is a nonzero element of S.
(b)   For n ¥ 1, an nth degree polynomial expression in x over S is an expression of the form p HxL x + a where p HxL is an Hn - 1Lst degree

polynomial expression in x and a œ S.
We can easily verify that f(n) is a third-degree polynomial expression in n over the Z based on this definition:

 f HnL = H4 n2 + 2 n - 8L n + 9 = HH4 n + 2L n - 8L n + 9

Notice that 4 is a zeroth degree polynomial since it is an integer. Therefore 4 n + 2 is a first-degree polynomial; therefore, H4 n + 2L n - 8 is a
second-degree  polynomial  in  n  over  Z;  therefore,  f HnL  is  a  third-degree  polynomial  in  n  over  Z.  The  final  expression  for  f HnL  is  called  its
telescoping  form.  If  we  use  it  to  calculate  f H7L,  we  need  only  three  multiplications  and  three  additions  /subtractions.  This  is  called  Horner's
method for evaluating a polynomial expression.
Example  8.12.   (a)   The  telescoping  form  of  p HxL = 5 x4 + 12 x3 - 6 x2 + x + 6 is   HHH5 x + 12L x - 6L x + 1L x + 6.  Using  Horner's
method, computing the value of pHcL requires four multiplications and four additions/subtractions for any real number c.

(b)   g HxL = -x5 + 3 x4 + 2 x2 + x  has the telescoping form HHHH- x + 3L x L x + 2L x + 1L x.
Many  computer  languages  represent  polynomials  as  lists  of  coefficients,  usually  starting  with  the  constant  term.   For  example,
gHxL = -x5 + 3 x4 + 2 x2 + x  would be represented with the list 80, 1, 2, 0, 3, -1<.   In both Mathematica and Sage, polynomial expressions
can be entered and manipulated, so the list representation is only internal.  Some lower-leveled languages do require users to program polyno-
mial operations with lists.  We will leave these programming issues to another source.

Example  8.1.3.  A  recursive  algorithm for  a  binary  search  of  a  sorted  list  of  items:  r = 8rH1L, rH2L … , rHnL<  represent  a  list  of  n  items
sorted  by  a  numeric  key  in  descending  order.  The  jth  item  is   denoted  rH jL  and   its  key  value  by  r H jL.key.  For  example,  each  item  might
contain  data  on  the  buildings  in  a  city  and  the  key  value  might  be  the  height  of  the  building.  Then  r H1L  would  be  the  item for  the  tallest
building. The algorithm BinarySearch H j, kL can be applied to search for an item in r with key value C. This would be accomplished by the
execution of BinarySearch H1, nL. When the algorithm is completed, the variable Found will have a value of true if an item with the desired
key value was found, and the value of location will be the index of an item whose key is C. If Found stays false, no such item exists in
the list. The general idea behind the algorithm is illustrated in Figure 8.1.2.

FIGURE 8.1.2 Illustration of BinarySearch

In this algorithm, Found and location are  "global" variables to execution of the algorithm.

BinarySearch H j, kL :
Found = False
If J < K

Then
Mid = d( j + k ) / 2t
If rHMidL.key == C

Then
location = Mid
Found = TRUE

Else
If rHMidL.key < C

Then execute BinarySearch(j, Mid - 1)
Else execute BinarySearchHMid + 1 , kL

For the next two examples, consider a sequence of numbers to be a list of numbers consisting of a zeroth number, first number, second number,
… .  If a sequence is given the name S, the kth number of S, is usually written Sk  or  SHkL.
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Example 8.1.4 Define the sequence of numbers B by

B0 = 100 and 

Bk = 1.08 Bk-1  for k ¥ 1

These rules stipulate that each number in the list is 1.08 times the previous number, with the starting number equal to 100.   For example

B3 = 1.08 B2
= 1.08 H1.08 B1L
= 1.08 H1.08 H1.08 B0LL
= 1.08 H1.08 H1.08 100LL
= 1.083 100
= 125.971

Example 8.1.5.  The Fibonacci sequence is the sequence F defined by 

F0 = 1,   F1 = 1 and 

Fk = Fk-2 + Fk-1 for  k ¥ 2.

RECURSION

All  of  the  previous  examples  were  presented  recursively.  That  is,  every  "object"  is  described  in  one  of  two  forms.  One  form is  by  a  simple
definition, which is usually called the basis for the recursion. The second form is by a recursive description in which objects are described in
terms  of  themselves,  with  the  following  qualification.  What  is  essential  for  a  proper  use  of  recursion  is  that  the  objects  can  be  expressed  in
terms of simpler objects, where "simpler" means closer to the basis of the recursion. To avoid what might be considered a circular definition,
the basis must be reached after a finite number of applications of the recursion.
To determine, for example, the fourth item in the Fibonacci sequence  we repeatedly apply the recursive rule for F until we are left with an
expression involving F0 and F1:

F4 = F2 + F3
= HF0 + F1L + HF1 + F2L
= HF0 + F1L + HF1 + HF0 + F1LL
= H1 + 1L + H1 + H1 + 1LL
= 5

ITERATION

On the other hand, we could compute a term in the Fibonacci sequence, say F5 by starting with the basis terms and working forward as follows:

F2 = F0 + F1 = 1 + 1 = 2
F3 = F1 + F2 = 1 + 2 = 3
F4 = F2 + F3 = 2 + 3 = 5
F5 = F3 + F4 = 3 + 5 = 8

This  is  called  an  iterative  computation  of  the  Fibonacci  sequence.  Here  we  start  with  the  basis  and  work  our  way  forward  to  a  less  simple
number, such as. Try to compute F5 using the recursive definition for F as we did for F4 . It will take much more time than it would have taken
to  do  the  computations  above.  Iterative  computations  usually  tend  to  be  faster  than  computations  that  apply  recursion.  Therefore,  one  useful
skill  is  being  able  to  convert  a  recursive  formula  into  a  nonrecursive  formula,  such  as  one  that  requires  only  iteration  or  a  faster  method,  if
possible.
An  iterative  formula  for  C Hn; kL  is  also  much  more  efficient  than  an  application  of  the  recursive  definition.  The  recursive  definition  is  not
without its merits, however. First, the recursive equation is often useful in manipulating algebraic expressions involving binomial coefficients.
Second,  it  gives  us  an  insight  into  the  combinatoric  interpretation  of  C Hn; kL.  In  choosing  k  elements  from  81, 2, . . . , n<,  there  are
C Hn - 1; kL  ways  of  choosing  all  k  from  81, 2, . . . , n - 1<,  and  there  are  CHn - 1; k - 1L  ways  of  choosing  the  k  elements  if  n  is  to  be
selected  and  the  remaining  k - 1  elements  come  from  81, 2, . . . , n - 1<.  Note  how  we  used  the  Law  of  Addition  from  Chapter  2  in  our
reasoning.

BinarySearch Revisited. In the binary search algorithm, the place where recursion is used is easy to pick out. When an item is examined
and the key is not the one you want, the search is cut down to a sublist of no more than half the number of items that you were searching in
before. Obviously, this is a simpler search. The basis is hidden in the algorithm. The two cases that complete the search can be thought of as
the basis. Either  you find an item that you want, or the sublist that you have been left to search in is empty (j > k).
BinarySearch can be translated without much difficulty into any language that allows recursive calls to its subprograms. The advantage to such
a program is that its coding would be much shorter than a nonrecursive program that does a binary search. However, in most cases the recursive
version will be slower and require more memory at execution time.

INDUCTION AND RECURSION
The definition of the positive integers in terms of Peano's Postulates (Section 3.7) is a recursive definition. The basis element is the number 1
and the recursion is that if n is a positive integer, then so is its successor. In this case, n is the simple object and the recursion is of a forward
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type. Of course, the validity of an induction proof is based on our acceptance of this definition. Therefore, the appearance of induction proofs
when recursion is used is no coincidence.

Example 8.1.6. A formula for the sequence B in Example 8.1.4 is B = 100 H1.08Lk for k ¥ 0. A proof by induction follows: If k = 0, then
B = 100 H1.08L0 = 100, as defined. Now assume that for some k ¥ 1, the formula for Bk is true.
           Bk+1 = 1.08 Bk by the recursive definition

= 1.08 I100 H1.08LkM by the induction hypothesis
= 100 H1.08Lk+1 hence the formula is true for k + 1

The formula that we have just proven for B is called a closed form expression. It involves no recursion or summation signs.

Definition: Closed Form Expression. Let E = EHx1, x2, …, xnL he an algebraic expression involving variables x1, x2, …, xn  which are
allowed to take on values from some predetermined set.   E is a closed form expression if there exists a number B such that the evaluation of
E with any allowed values of the variables will take no more than B operations (alternatively, B time units).

Example  8.1.7.  The  sum   EHnL =
k=1

n
k  is  not  a  closed  form  expression  because  the  number  of  additions  needed  evaluate  EHnL  grows

indefinitely with n.   A closed form expression that computes the value of EHnL  is   nHn+1L
2

, which only requires B = 3 operations. 

EXERCISES FOR SECTION 8.1
A Exercises
1.  By the recursive definition of binomial coefficients,  C H5; 2L = C H4; 2L + C H4; 1L.  Continue expanding C H5; 2L  to express it  in terms of
quantities defined by the basis. Check your result by applying the factorial definition of C Hn; kL.
2.   Define the sequence L by L0 = 5 and for k ¥ 1, L k = 2 Lk-1 - 7.   Determine L4  and prove by induction that Lk = 7 - 2k+1.

3.   Let p HxL = x5 + 3 x4 - 15 x3 + x - 10.
(a)   Write pHxL in telescoping form.

(b)   Use a calculator to compute p H3L using the original form of pHxL. 
(c)    Use a calculator to compute p H3L using the telescoping form of pHxL.
(d)   Compare your speed in parts b and c.

B Exercises
4.  Suppose that a list of nine items, (r(l), r(2), . . . , r(9)), is sorted by key in decending order so that r H3L. key = 12 and r H4L.key = 10. List the
executions of BinarySearch that would be needed to complete BinarySearch(1,9) for:

(a)  C = 12
(b)  C = 11

Assume that distinct items have distinct keys.

5.  What is wrong with the following definition of f : R Ø R? 

f H0L = 1 and f HxL = f Hx ê2L ê2 if x ¹≠ 0.
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8.2 Sequences
Definition:  Sequence.   A  sequence  is  a  function  from  the  natural  numbers  into  some  predetermined  set.  The  image  of  any  natural

number k can be written interchangeably as S HkL or Sk  and is called the kth  term of S. The variable k  is called the index or argument of the
sequence.
For example, a sequence of integers would be a function S : N Ø Z .

Example 8.2.1.

(a) The sequence A defined by A HkL = k2 - k,   k ¥ 0, is a sequence of integers.

(b)  The sequence B  defined recursively by BH0L = 2 and B HkL = BHk - 1L + 3 for k ¥ 1 is a sequence of integers. The terms of B  can be
computed either by applying the recursion formula or by iteration.  For example;

BH3L = BH2L + 3
= HBH1L + 3L + 3
= HHBH0L + 3L + 3L + 3L
= HH2 + 3L + 3L + 3
= 11

or

BH1L = BH0L + 3 = 2 + 3 = 5

BH 2L = BH1L + 3 = 5 + 8 = 8 

B H3L = B H2L + 3 = 8 + 3 = 11.

(c)   Let Cr be the number of strings of 0's and 1's of length r having no consecutive zeros. These terms define a sequence C of integers.

Remarks;

(1)   A sequence is often called a discrete function.

(2)     Although  it  is  important  to  keep  in  mind  that  a  sequence  is  a  function,  another  useful  way  of  visualizing  a  sequence  is  as  a  list.  For
example,  the  sequence  A  could  be  written  as  H0, 0, 2, 6, 12, 20, . . . L.  Finite  sequences  can  appear  much the  same way when they  are  the
input to or output from a computer. The index of a sequence can be thought of as a time variable. Imagine the terms of a sequence flashing on a
screen every second. The sk  would be what you see in the kth  second. It is convenient to use terminology like this in describing sequences. For
example, the terms that precede the kth term of A would be A H0L, A H1L, . . . , AHk - 1L.  They might be called the earlier terms.

A FUNDAMENTAL PROBLEM
Given the definition of  any sequence,  a  fundamental  problem that  we will  concern ourselves with is  to  devise a  method for  determining any
specific term in a minimum amount of time. Generally, time can be equated with the number of operations needed. In counting operations, the
application of a recursive formula would be considered an operation.
Example 8.2.2.

(a)     The  terms  of  A  in  Example  8.2.1  are  very  easy  to  compute  because  of  the  closed  form expression.  No matter  what  term you  decide  to
compute, only three operations need to be performed.
(b)   How to compute the terms of B is not so clear. Suppose that you wanted to know B H100L. One approach would be to apply the definition
recursively:

B H100L = B H99L + 3 = HBH98L + 3L + 3 = …

The recursion equation for B would be applied 100 times and 100 additions would then follow. To compute B HkL by this method, 2 k operations
are needed. An iterative computation of B HkL is an improvement: 

BH1L = BH0L + 3 = 2 + 3 = 5
BH2L = BH1L + 3 = 5 + 3 = 8
etc.

Only  k  additions  are  needed.  This  still  isn't  a  good  situation.  As  k  gets  large,  we  take  more  and  more  time  to  compute  B HkL.  The  formula
BHkL = BHk - 1L + 3 is  called a recurrence relation on B.  The process of  finding a closed form expression for B HkL,  one that  requires no more
than some fixed number of operations, is called solving the recurrence relation.
(c)     The determination of  Ck  is  a  standard kind of  problem in combinatorics.  One solution is  by way of  a  recurrence relation.  In fact,  many
problems in combinatorics are most easily solved by first searching for a recurrence relation and then solving it. The following observation will
suggest the recurrence relation that we need to determine Ck  : If k ¥ 2, then every string of 0's and 1's with length k and no two consecutive 0's
is  either  1 sk-1  or  01 sk-2,  where  sk-1  and  sk-2  are  strings  with  no  two  consecutive  0's  of  length  k - 1  and  k - 2  respectively.  From  this
observation  we  can  see  that  Ck = Ck-2 + Ck-1  for  k ¥ 2.  The  terms  C0 = 1  and  C1 = 2  are  easy  to  determine  by  enumeration.  Now,  by
iteration, any Ck  can be easily determined. For example, C5 = 21 can be computed with five additions. A closed form expression for Ck  would
be an improvement. Note that the recurrence relation for Ck  is identical to the one for the Fibonacci sequence (Example 8.1.4). Only the basis is
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different.

EXERCISES FOR SECTION 8.2
A Exercises
1. Prove by induction that B HkL = 3 k + 2, k ¥ 0, is a closed form expression for the sequence B in Example 8.2.1.

2.   (a) Consider sequence Q defined by QHkL = 2 k + 9, k ¥ 1. Complete the table below and determine a recurrence relation that describes Q. 

k QHkL QHkL - QHk - 1L
2
3
4
5
6
7

(b)  Let  A HkL = k2 - k,   k ¥ 0 .  Complete  the  table  below  and  determine  a  recurrence  relation  for  A  .  Notice  thatHAHkL - AHk - 1L - HAHk - 1L - AHk - 2LL = AHkL - 2 AHk - 1L + AHk - 2L

 

k AHkL AHkL - AHk - 1L AHkL - 2 AHk - 1L + AHk - 2L
2
3
4
5

3.     Given k  lines (k ¥ 0) on a plane such that  no two lines are parallel  and no three lines meet  at  the same point,  let  P HkL  be the number of
regions into which the lines divide the plane (including the infinite ones (see Figure 8.2.1). Describe geometrically how the recurrence relation
P HkL = P Hk — 1L + k can be obtained. Given that P H0L = 1, determine P H5L.

FIGURE 8.2.1 Exercise 3

4.   A sample of a radioactive substance is expected to decay by 0.15 percent each hour. If wt, t ¥ 0, is the weight of the sample t hours into an
experiment, write a recurrence relation for w.

B Exercise
5.     Let  M HnL  be  the  number  of  multiplications  needed  to  evaluate  an  nth  degree  polynomial.  Use  the  recursive  definition  of  a  polynomial
expression to define M recursively.
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8.3 Recurrence Relations
In this section we will begin our study of recurrence relations and their solutions. Our primary focus will be on the class of finite order linear
recurrence relations with constant coefficients (shortened to finite order linear relations). First, we will examine closed form expressions from
which  these  relations  arise.  Second,  we  will  present  an  algorithm  for  solving  them.  In  later  sections  we  will  consider  some  other  common
relations (8.4) and introduce two additional tools for studying recurrence relations: generating functions (8.5) and matrix methods (Chapter 12).

Definition: Recurrence Relation.  Let S be a sequence of numbers, A recurrence relation on S is a formula that relates all but a finite
number of terms of S to previous terms of S. That is, there is a k0  in the domain of S such that if k ¥ k0, then S(k) is expressed in terms of
some (and possibly all) of the terms that precede S(k).   If the domain of S is 80, 1, 2, ...<, the terms S H0L, SH1L, . . . , SHk0 - 1L are not defined
by the recurrence formula.  Their values are the initial conditions (or boundary conditions, or basis) that complete the definition of S.

Example 8.3.1.

(a)  The Fibonacci sequence is defined by the recurrence relation Fk = Fk-2 + Fk-1,  k ¥ 2 , with the initial conditions F0 = 1  and F1 = 1. The
recurrence relation is called a second-order relation because Fk  depends on the two previous terms of F. Recall that the sequence C in Section
8.2 can be defined with the same recurrence relation, but with different initial conditions.
(b)  The relation T HkL = 2 THk - 1L2 - k THk - 3L is a third-order recurrence relation. If values of T H0L, TH1L, and T H2L are specified, then T
is completely defined.
(c)   The recurrence relation S HnL = S Hdn ê2tL + 5,  n > 0,  with SH0L = 0 has infinite  order.  To determine S HnL  when n  is  even,  you must  go
back n ê2 terms. Since n ê2  grows unbounded with n, no finite order can be given to S.

SOLVING RECURRENCE RELATIONS
Sequences are often most easily defined with a recurrence relation; however, the calculation of terms by directly applying a recurrence relation
can be time consuming. The process of determining a closed form expression for the terms of a sequence from its recurrence relation is called
solving  the  relation.  There  is  no  single  technique  or  algorithm  that  can  be  used  to  solve  all  recurrence  relations.  In  fact,  some  recurrence
relations  cannot  be  solved.  The  relation  that  defines  T  above  is  one  such  example.  Most  of  the  recurrence  relations  that  you  are  likely  to
encounter in the future as classified as finite order linear recurrence relations with constant coefficients. This class is the one that we will spend
most of our time with in this chapter.

Definition: nth  Order Linear Recurrence Relation. Let S be a sequence of numbers with domain k ¥ 0.  An nth  order linear recurrence
relation on S with constant coefficients is a recurrence relation that can be written in the form

SHkL + C1 SHk - 1L + . . . + Cn S Hk - nL = f HkL   for k ¥ n

where C1, C2, …, Cn are constants and f is a numeric function that is defined for k ¥ n.

Note: We will shorten the name of this class of relations to nth order linear relations. Therefore, in further discussions, S HkL + 2 k SHk — 1L = 0
would not be considered a first-order linear relation.

Example 8.3.2.

(a)   The Fibonacci sequence is defined by the second-order linear relation because Fk - Fk-1 - Fk-2 = 0

(b)  The relation P H jL + 2 P H j — 3L = j2 is a third-order linear relation.  In this case,  C1 = C2 = 0.

(c)  The relation AHkL = 2 HA Hk - 1L + kL can be written as A HkL - 2 AHk - 1L = 2 k. Therefore, it is a first-order linear relation.

RECURRENCE RELATIONS OBTAINED FROM "SOLUTIONS"
Before giving an algorithm for  solving finite  order  linear  relations,  we will  examine  recurrence relations that  arise from certain closed form
expressions. The closed form expressions are selected so that we will obtain finite order linear relations from them. This approach may seem a
bit contrived, but if you were to write down a few simple algebraic expressions, chances are that most of them would be similar to the ones we
are about to examine.

Example 8.3.3.

(a)  Consider D, defined by DHkL = 5 ÿ 2k  , k ¥ 0.   If k ¥ 1,

DHkL = 5 ÿ 2k = 2 ÿ 5 ÿ 2k-1 = 2 DHk - 1L.
Therefore, D satisfies the first order linear relation D HkL - 2 D Hk - 1L = 0 and the initial condition D H0L = 5 serves as an initial condition
for D.

(b)  If CHkL = 3k-1 + 2k+1 + k , k ¥ 0, quite a bit more algebraic manipulation is required to get our result:
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C HkL = 3k-1 + 2k+1 + k Original equation
3 CHk - 1L = 3k-1 + 3 ÿ 2k + 3 Hk - 1L Substitute k - 1 for k and multipy by 3

Subtract the second equation from the first
CHkL - 3 CHk - 1L = -2k - 2 k + 3 3k-1 term is eliminated, this is a first order relation

2 C Hk - 1L - 6 C Hk - 2L = -2k - 2 H2 Hk - 1L + 3L Substitute k - 1 for k in the 3rd equation, mult. by 2
Subtract the fourth equation from the third equation

CHkL - 5 CHk - 1L - 6 CHk - 2L = 2 k - 7 2k+1 term eliminated, this is a 2nd order relation

The recurrence relation that we have just obtained, defined for k ¥ 2, together with the initial conditions C H0L = 7 ê3 and C H1L = 5, define
C.  We could do more algebra to obtain a third-order linear relation in this case.
Table  8.3.1  summarizes  our  results  together  with  a  few  other  examples  that  we  will  let  the  reader  derive.  Based  on  these  results,  we  might
conjecture that any closed form expression for a sequence that combines  exponential expressions and polynomial expressions will be solutions
of finite order linear relations. Not only is this true, but the converse is true: a finite order linear relation defines a closed form expression that is
similar to the ones that were just examined. The only additional information that is needed is a set of initial conditions.

 

Closed Form Expression Recurrence Relation
DHkL = 5 ÿ 2k DHkL - 2 DHk - 1L = 0

CHkL = 3k-1 + 2k+1 + k CHkL - 2 C Hk - 1L - 6 C Hk - 2L = 2 k - 7
QHkL = 2 k + 9 QHkL - QHk - 1L = 2
AHkL = k2 - k AHkL - 2 AHk - 1L + AHk - 2L = 2

BHkL = 2 k2 + 1 BHkL - 2 BHk - 1L + BHk - 2L = 4
GHkL = 2 ÿ 4k - 5 H-3Lk GHkL - GHk - 1L + 12 GHk - 2L = 0

JHkL = H3 + kL 2k JHkL - 4 JHk - 1L + 4 JHk - 2L = 0
Table 8.3.1

Recurrence Relation Obtained from Certain Sequences

Definition: Homogeneous Recurrence Relation.  An nth  order linear relation is  homogeneous  if f HkL = 0 for all k.  For each recur-
rence  relation  S HkL + C1 SHk - 1L + … + Cn SHk — nL = f HkL,  the  associated  homogeneous  relation  is
SHkL + C1 SHk - 1L + … + Cn SHk — nL = 0

Example 8.3.4.   D HkL - 2 D Hk - 1L = 0 is a first-order homogeneous relation. Since it  can also be written as D HkL = 2 D Hk — 1L,  it
should be no surprise that it arose from an expression that involves powers of 2 (see Example 8.3.3a). More generally, you would expect that
the solution of L HkL - a LHk - 1L  would involve ak  .  Actually, the solution is L HkL = LH0L ak  ,  where the value of L H0L  is given by the the
initial condition.

Example  8.3.5.  Consider  the  second-order  homogeneous  relation  S HkL — 7 S Hk - 1L + 12 SHk - 2L = 0  together  with  the  initial
conditions S H0L = 4 and S H1L = 4. From our discussion above,  we can predict  that  the solution to this  relation involves terms of the form
b ak, where b and a are nonzero constants that must be determined. If the solution were to equal this quantity exactly, then

 
SHkL = b ak

SHk - 1L = b ak-1

SHk - 2L = b ak-2

Substitute these expressons into the recurrence relation to get

 b ak - 7 b ak-1 + 12 b ak-1 = 0 HEq 8.3 aL
Each term on the left-hand side of the equation has a factor of b ak-2, which is nonzero. Dividing through by this common factor yields

a2 - 7 a + 12 = Ha - 3L Ha - 4L = 0.   (Eq 8.3b)

Therefore, the only possible values of a are 3 and 4. Equation (8.3b) is called the characteristic equation of the recurrence relation. The fact is
that our original recurrence relation is true for any sequence of the form SHkL = b1 3k + b2 4k, where b1  and b2  are real numbers. This set of
sequences is called the general solution of the recurrence relation. If we didn't have initial conditions for S,  we would stop here. The initial
conditions make it possible for us to obtain definite values for b1 and b2.

 : SH0L = 4
SH1L = 4 > : b1 30 + b2 40 = 4

b1 31 + b2 41 = 4
> : b1 + b2 = 4

3 b1 + 4 b2 = 4 >
The solution of this set of simultaneous equations is b1 = 12 and b2 = -8 and so the solution is  S HkL = 12 3k - 8 4k.

Definition:  Characteristic  Equation.  The  characteristic  equation  of  the  homogeneous  nth  order  linear  relation
SHkL + C1 SHk - 1L + … + Cn SHk — nL = 0  is the nth degree polynomial equation
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an +
j=1

n
C j an- j = an + C1 an-1 + º⋯ + Cn-1 x + Cn = 0 

The left-hand side of this equation is called the characteristic polynomial.

Example 8.3.6.

(a)   The characteristic equation of F HkL - F Hk - 1L - F Hk - 2L = 0 is a2 - a - 1 = 0.

(b)   The  characteristic  equation  of  Q HkL + 2 Q Hk - 1L - 3 Q Hk - 2L - 6 QHk - 4L = 0  is  a4 + 2 a3 - 3 a2 - 6 = 0.   Note  that  the
absence of  a Q Hk - 3L term means that there is not an x4-3 = x term appearing in the characteristic equation.

Algorithm 8.3.1: Algorithm for Solving Homogeneous nth Order Linear Relations.
(a)     Write  out  the  characteristic  equation  of  the  relation  SHkL + C1 SHk - 1L + … + Cn SHk — nL = 0,  which  is

an + C1 an-1 +º⋯ + Cn-1 x + Cn = 0.
(b)   Find all roots of the characteristic equation, called characteristic roots.

(c)   If  there  are  n  distinct  characteristic  roots,  a1,  a2, ...,  an,  then  the  general  solution  of  the  recurrence  relation  is
S HkL = b1 a1k + b2 a2k +º⋯ + bn ank. If there are fewer than n characteristic roots, then at least one root is a multiple root. If a j  is a double
root,  then the b j a jk  term is replaced with Ib j 0 + b j 1 kM a jk.  In general,  if  a j  is  a root of  multiplicity p,  then the b j a jk  term is replaced with
Ib j 0 + b j 1 k +º⋯ + b jHp-1L kp-1M a jk.

(d)   If n initial conditions are given, obtain n linear equations in n unknowns (the b j ' s from Step (c)) by substitution. If possible, solve
these equations to determine a final form for SHkL.
Although this algorithm is valid for all values of n, there are limits to the size of n for which the algorithm is feasible. Using just a pencil and
paper, we can always solve second-order equations. The quadratic formula for the roots of a x2 + b x + c = 0  is

x =
-b± b2-4 a c

2 a

The solutions of a2 + C1 a + C2 = 0 are then

  1
2

-C1 + C12 - 4 C2 and 1
2

-C1 - C12 - 4 C2

Although cubic and quartic formulas exist,  they are too lengthy to introduce here. For this reason, the only higher-order relations (n ¥ 3) that
you could be expected to solve by hand are ones for which there is an easy factorization of the characteristic polynomial.

Example  8.3.7.  Suppose  that  T  is  defined  by  THkL = 7 THk - 1L - 10 THk - 2L,  with  ,  T H0L = 4  and  T H1L = 17.  We  can  solve  this
recurrence relation with Algorithm 8.3.1:
(a)   Note that we had written the recurrence relation in "nonstandard" form. To avoid errors in this easy step, you might consider a rearrange-
ment of the equation to, in this case, THkL - 7 THk - 1L + 10 THk - 2L = 0.  Therefore, the characteristic equation is a2 - 7 a + 10 = 0. 

(b)  The characteristic roots are 1
2
J7 + 49 - 40 N = 5 and 1

2
J7 - 49 - 40 N = 2. These roots can be just as easily obtained by factoring the

characteristic polynomial into Ha - 5L Ha - 2L.
(c)   The general solution of the recurrence relation is THkL = b1 2k + b2 5k ,

(d)  : TH0L = 4
TH1L = 17 > : b1 20 + b2 50 = 4

b1 21 + b2 51 = 4
> : b1 + b2 = 4

2 b1 + 5 b2 = 17 >
The simulations equations have the solution b1 = 1 and b2 = 3, Therefore, THkL = 2k + 3 ÿ 5k.
Here is one rule that might come in handy: If the coefficients of the characteristic polynomial are all integers, with the constant term equal to
m, then the only possible rational characteristic roots are divisors of m (both positive and negative).
With the aid of a computer (or possibly only a calculator), we can increase n. Approximations of the characteristic roots can be obtained by
any of several well-known methods, some of which are part of standard software packages. There is no general rule that specifies the values
of n  for which numerical approximations will  be feasible.  The accuracy that you get will  depend on the relation that you try to solve. (See
Exercise 17 of this section.)

Example 8.3.8. Solve S HkL - 7 S Hk - 2L + 6 S Hk - 3L = 0, where SH0L = 8, S H1L = 6, and S H2L = 22.

(a)  The characteristic equation is a3 - 7 a + 6 = 0.

(b)   The only rational roots that we can attempt are ± 1, ±2, ±3, and ± 6. By checking these, we obtain the three roots 1, 2, and —3.

(c)   The general solution is SHkL = b1 1k + b2 2k + b3H-3Lk. The first term can simply be written b1 .

   

Chapter 8 - Recursion and Recurrence Relations

Applied Discrete Structures by Alan Doerr & Kenneth Levasseur is licensed under a Creative Commons Attribution-Noncommercial-ShareAlike  3.0 United States License.



(d)   : SH0L = 8
SH1L = 6

SH20 = 22
> : b1 + b2 + b3 = 8

b1 + 2 b2 - 3 b3 = 6
b1 + 4 b2 + 9 b3 = 22

>
You can solve this system by elimination to obtain b1 = 5, b2 = 2, and b3 = 1.   Therefore,

S HkL = 5 + 2 ÿ 2k + H-3Lk = 5 + 2k+1 + H-3Lk
Example 8.3.9. Solve D HkL - 8 D Hk - IL + 16 D Hk - 2L = 0, where D H2L = 16 and D H3L = 80.

(a)  Characteristic equation; a2 - 8 a + 16 = 0.

(b)   a2 - 8 a + 16 = Ha - 4L2. Therefore, there is a double characteristic root, 4.

(c)   General solution: D HkL = Hb10 + b11 kL 4k.

(d)  : DH2L = 16
DH3L = 80 > : Hb10 + b11 2L 42 = 16Hb10 + b11 3L 43 = 80

> : 16 b10 + 32 b11 = 16
64 b10 + 192 b11 = 80 > : b10 = 1

2

b11 = 1
4

>
Therefore D HkL = H1 ê2 + H1 ê4L kL 4k = H2 + kL 4k-1.

SOLUTION OF NONHOMOGENEOUS FINITE ORDER LINEAR RELATIONS
Our algorithm for nonhomogeneous relations will not be as complete as for the homogeneous case. This is due to the fact that different right-
hand sides (f(k)'s) call for different procedures in obtaining a particular solution in Steps (b) and (c).

Algorithm 8.3.2: Algorithm for Solving Nonhomogeneous Finite Order Linear Relations. 

To solve the recurrence relation S HkL + C1 SHk - 1L + … + Cn SHk — nL = f HkL:
(a)   Write the associated homogeneous relation and find its general solution (Steps (a) through (c) of Algorithm 8.3.1). Call this the homoge-
neous solution, SHhLHkL.
(b)     Start  to  obtain  what  is  called  a  particular  solution,   SHpLHkL  of  the  recurrence  relation  by  taking  an  educated  guess  at  the  form  of  a
particular solu tion.  For a large class of  right-hand sides,  this  is  not  really a guess,  since the particular solution is  often the same type of
function as f HkL (see Table 8.3.2).

 

Right Hand Side, f HkL Form of a particular Solution, SHpLHkL
constant, q constant, d

linear function q0 + q1 k linear function d0 + d1 k
mth degree polynomial,

q0 + q1 k +º⋯ + qm km
mth degree polynomial,

d0 + d1 k +º⋯ + dm km

exponential function q ak exponential function d ak

Table 8.3.2
Particular Solutions for Given Right-hand Sides

(c)   Substitute your guess from Step (b) into the recurrence relation. If you made a good guess, you should be able to determine the unknown
coefficients of your guess. If you made a wrong guess, it should be apparent from the result of this substitution, so go back to Step (b).
(d)   The general solution of the recurrence relation is the sum of the homogeneous and particular solutions. If no conditions are given, then
you are finished. If n initial conditions are given, they will translate to n linear equations in n unknowns and solve the system, if possible, to
get a complete solution.

Example 8.3.10. Solve  S HkL + 5 S Hk - 1L = 9,  with S H0L = 6.

(a)     The  associated  homogeneous  relation,   S HkL + 5 S Hk — 1L = 0  has  the  characteristic  equation  a + 5 = 0;  therefore,  a = -5.  The
homogeneous solution is SHhLHkL = b H-5Lk.
(b)   Since the right-hand side is a constant, we guess that the particular solution will be a constant, d.

(c)  If we substitute SHpLHkL = d into the recurrence relation, we get d + 5 d = 9, or 6 d = 9. Therefore, SHpLHkL = 1.5
(d)  The general solution of the recurrence relation is 

SHkL = SHhLHkL + SHpLHkL = b H-5Lk + 1.5
The initial condition will give us one equation to solve in order to determine b.

S H0L = 6 bH-5L0 + 1.5 = 6 b + 1.5 = 6

Therefore, b = 4.5 and S HkL = 4.5 H-5Lk + 1.5.
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Example 8.3.11. Consider T HkL - 7 T Hk - 1L + 10 T Hk - 2L = 6 + 8 k with T H0L = 1 and T H1L = 2.

(a)   From Example 8.3.7, we know that THhLHkL = b1 2k + b2 5k.  Caution:  Don't apply the initial conditions to THhL until you add THpL!
(b)   Since the right-hand side is a linear polynomial, THpL is linear; that is, THpLHkL = d0 + d1 k.
(c)   Substitution  into the recurrence relation yields:

    Hd0 + d1 kL - 7 Hd0 + d1Hk - 1LL + 10 Hd0 + d1Hk - 2LL = 6 + 8 k

H4 d0 - 13 d1L + H4 d1L k = 6 + 8 k

Two polynomials are equal only if their coefficients are equal. Therefore,

 : 4 d0 - 13 d1 = 6
4 d1 = 8 > : d0 = 8

d1 = 2 >
(d)   Use the general solution THkL = b1 2k + b2 5k + 8 + 2 k  and the initial conditions to get a final solution:

  : TH0L = 1
TH1L = 2 > : b1 + b2 + 8 = 1

2 b1 + 5 b2 + 10 = 2 >
: b1 + b2 = -7

2 b1 + 5 b2 = -8 >
: b1 = -9

b2 = 2 >

Therefore,  THkL = -9 ÿ 2k + 2 ÿ 5k + 8 + 2 k
A quick  note  on  interest  rates:   When  a  quantity,  such  as  a  savings  account  balance,  is  increased  by  some  fixed  percent,  it  is  most

easily computed with a multipier.  In the case of an 8% increase, the multier is 1.08 because any original amount A, has 0.08 A added to it, so
that the new balance is

 A + 0.08 A = H1 + 0.08L A = 1.08 A .  

Another example is that if the interest rate is 3.5%, the multiplier would be 1.035.   This presumes that the interest is applied a the end of year
for 3.5% annual interest, often called simple interest.  If the interest is applied monthly, and we assume a simplifed case where each month
has the same length, the multiplier after every month would be  J1 + 0.35

12
N º 1.0292.  After a year passes, this multiplier would be applied 12

times, which is the same as multiplying by  1.029212 º 1.3556.   That increase from 1.035 to 1.3556 is the effect of compound interest.
Example 8.3.12. Suppose you open a savings account that pays an annual interest rate of 8%. In addition, suppose you decide to deposit

one dollar when you open the account,  and you intend to double your deposit  each year.   Let B HkL  be your balance after k  years.  B  can be
described by the relation B HkL = 1.08 B Hk - 1L + 2k, with S H0L = 1. If, instead of doubling the deposit each year, you deposited a constant
amount, q, the 2k term would be replaced with q, A sequence of regular deposits such as this is called an annuity.

Returning to the original situation, we can obtain a closed form expression for BHhL:
(a)   BHhLHkL = b1H1.08Lk
(b)   BHpLHkL should be of the form d 2k.

(c)   d 2k = 1.08 d 2k-1 + 2k

H2 dL 2k-1 = 1.08 d 2k-1 + 2 ÿ 2k-1
2 d = 1.08 d + 2
.92 d = 2
d = 2.174 Hto the nearest thousandthL

Therefore   BHpLHkL = 2.174 ÿ 2k

(d)  BH0L = 1 b1 + 2.174 = 1
b1 = -1.174

       BHkL = -1.174 ÿ 1.08k + 2.174 ÿ 2k.

Example 8.3.13. Find the general solution to S HkL - 3 S Hk - 1L - 4 S Hk - 2L = 4k.

(a)   The characteristic roots of the associated homogeneous relation are -1 and 4. Therefore, SHhLHkL = b1H-1Lk + b2 4k.

(b)   A function of the form d 4k  will not be a particular solution of the nonhomogeneous relation since it solves the associated homogeneous
relation. When the right-hand side involves an exponential function with a base that equals a characteristic root,   you should multiply your
guess at a particular solution by k. Our guess at SHpLHkL  would then be d k 4k . See below for a more complete description of this procedure.
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(c)   Substitute d k 4k into the recurrence relation for S HkL:
    d k 4k - 3 d Hk - 1L 4k-1 - 4 d Hk - 2L 4k-2 = 4k

16 d k 4k-2 - 12 d Hk - 1L 4k-2 - 4 d Hk - 2L 4k-2 = 4k

Each term on the left-hand side has a factor of 4k-2 

      I6 d k - 12 d Hk - 1L - 4 dHk - 2L = 42
20 d = 16 d = 0.8

Therefore, SHpLHkL = 0.8 k 44

(d)   The general solution to the recurrence relation is

SHkL = b1H-1Lk + b2 4k + 0.8 k 4k

BASE OF RIGHT-HAND SIDE EQUAL TO CHARACTERISTIC ROOT
If  the right-hand side of a nonhomogeneous relation involves an exponential  with base a,  and a  is  also a characteristic root of multiplicity p,
then multiply your guess at a particular solution as prescribed in Table 8,3.2 by kp , where k is the index of the sequence.

Example 8.3.14.

(a)  If S HkL - 9 S Hk - 1L + 20 SHk - 2L = 2 ÿ 5k, the characteristic roots are 4 and 5. SHpLHkL will take  the form d k 5k.

(b)  If S HnL - 6 S Hn - 1L + 9 S Hn - 2L = 3n+1  the only characteristic root is 3, but it is a double root (multiplicity 2).  Therefore, the form
of the particular solution is d n2 3n.
(c)   If  QH jL - QH j - 1L - 12 QH j - 2L = H-3L j + 6 ÿ 4 j,  the  characteristic  roots  are  -3  and  4.  The  form  of  the  particular  solution  will  be
d1 j H-3L j + d2 j ÿ 4 j.

(d)  If S HkL - 9 S Hk - 1L + 8 SHk - 2L = 9 k + 1 = H9 k + 1L 1k   ,  the characteristic roots are 1 and 8.  If the right-hand side is a polyno-
mial, as it is in this case, then the exponential factor 1k can be introduced. The particular solution will take the form kHd0 + d1 kL.
We conclude this  section with a  comment  on the situation in  which the characteristic  equation gives  rise  to  complex roots.  If  we restrict  the
coefficients of our finite order linear relations to real numbers, or even to integers, we can still encounter characteristic equations whose roots
are  complex.  Here,  we  will  simply  take  the  time  to  point  out  that  our  algorithms  are  still  valid  with  complex  characteristic  roots,  but  the
customary  method  for  expressing  the  solutions  of  these  relations  is  different.  Since  an  understanding  of  these  representations  requires  some
background  in  complex  numbers,  we  will  simply  suggest  that  an  interested  reader  can  refer  to  a  more  advanced  treatment  of  recurrence
relations (see also difference equations).

EXERCISES FOR SECTION 8.3
A Exercises
Solve the following sets of recurrence relations and initial conditions:

1.   S HkL - 10 S Hk - 1L + 9 S Hk - 2L = 0,   S H0L = 3,  S H1L = 11

2.  S HkL - 9 S Hk - 1L + 18 S Hk - 2L = 0   S H0L = 0,  S H1L = 3

3.   S HkL - 0.25 S Hk - 1L = 0 ,  S H0L = 6

4.   S HkL - 20 S Hk - 1L + 100 S Hk - 2L = 0,   S H0L = 2,  S H1L = 50

5.   S HkL - 2 S Hk - 1L + S Hk - 2L = 2   S H0L = 25, S H1L = 16

6.   S HkL - S Hk - 1L - 6 S Hk - 2L = -30   S H0L = 7, S H1L = 10

7.   S HkL - 5 S Hk - 1L = 5k,    S H0L = 3
8.   S HkL - 5 S Hk - 1L + 6 S Hk - 2L = 2,    S H0L = -1, S H1L = 0

9.   S HkL - 4 S Hk - 1L + 4 S Hk - 2L = 3 k + 2k.   S H0L = 1, S H1L = 1
10.  S HkL = r SHk - 1L + a ,    S H0L = 0, r, a ¥ 0, r ¹≠ 1

11.  S HkL - 4 S Hk - 1L - 11 S Hk - 2L + 30 S Hk - 3L = 0, 

      S H0L = 0,   S H1L = -35, S H2L = -85

12.   Find a closed form expression for P HkL in Exercise 3 of Section 8.2.

13.   (a) Find a closed form expression for the terms of the Fibonacci sequence (see Example 8.1.4). 
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       (b) The sequence C  was defined by Cr   = the number of strings of zeros and ones with length r  having no consecutive zeros (Example
8.2.1(c)). Its recurrence, relation is the same as that of the Fibonacci sequence. Determine a closed form expression for Cr,  r ¥ 1,

14.   If SHnL =
j=1

n
gH jL,  n ¥ 1, then S can be described with the recurrence relation S HnL = S Hn - 1L + g HnL. For each of the following sequences

that are defined using a summation, find a closed form expression:

(a)  SHnL =
j=1

n
j,    n ¥ 1

(b)   Q HnL =
j=1

n
j2,   n ¥ 1

(c)   P HnL =
j=1

n I 1
2
M j,  n ¥ 0

(d)   T HnL =
j=1

n
j3,   n ¥ 1

B Exercises
15.   Let D HnL be the number of ways that the set 81, 2, . . . , n<, n ¥ 1, can be partitioned into two nonempty subsets.

(a)   Find a recurrence relation for D. (Hint: It will be a first-order linear relation.)

(b)   Solve the recurrence relation.

16.   If you were to deposit a certain amount of money at the end of each year for a number of years, this sequence of payment would be called
an annuity (see Example 8.3.12,).
(a)   Find a closed form expression for the balance or value of an annuity that consists of payments of q dollars at a rate of interest of i. Note
that for a normal annuity, the first payment is made after one year.
(b)   With an interest rate of 12.5%, how much would you need to deposit into an annuity to have a value of one million dollars after 18 years?

(c)    The payment of a loan is a form of annuity in which the initial value is some negative amount (the amount of the loan) and the annuity
ends when the value is raised to zero. How much could you borrow if you can afford to pay $5,000 per year for 25 years at 14% interest?

C Exercises
17.   Suppose that C is a small positive number. Consider the recurrence relation B HkL - 2 B Hk - 1L + I1 - C 2M B Hk — 2L = C2, with initial
conditions B H0L = 1 and BH1L = 1. If C is small enough, we might consider approximating the relation by replacing 1 - C2 with 1 and C2 with
0. Solve the original relation and its approximation. Let Ba  a be the solution of the approximation. Compare closed form expressions for B HkL
and  BaHkL.  Their  forms  are  very  different  because  the  characteristic  roots  of  the  original  relation  were  close  together  and  the  approximation
resulted in one double characteristic root.  If characteristic roots of a relation are relatively far apart, this problem will not occur.  For example,
compare the general solutions of 

S HkL + 1.001 SHk - 1L - 2.004002 SHk - 2L = 0.0001 and

SaHkL + SaHk - 1L - 2 SaHk - 2L = 0.
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