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ABSTRACT
A new technique, the System Equivalent Reduction
Expansion Process (SEREP), is presented.

Originally formulated as a global mapping technique
used to estimate rotational degrees of freedom for
experimental modal data, SEREP has been found to
provide improved accuracy in applications such as
cross orthogonality checks between analytical and
experimental modal vectors, linear and nonlinear
forced response studies, and analytical model
improvement. The theory upon which SEREP is based,
as well as applications showing the advantages of
this new technique are presented.

INTRODUCTION

Reduction or
employed to

condensation techniques are generally
reduce the size of large analytical
models to minimize computer time/cost or to deal
with a reduced model for forced response studies.
Analytical model reduction techniques may also be
employed to generate a set of analytical degrees of
freedom (dof) that correspond to a set of measured
dof. Most reduction techniques will effect the
dynamic character contained in the original full
analytical model. Generally, the estimated
frequencies in the reduced model are higher than
those of the original model. However, a reduction
technique has been developed that produces reduced
models (containing arbitrarily selected dof) which
preserves the dynamic character of the original
full system model for selected modes of interest.
This technique is called the System Equivalent
Reduction/Expansion Technique (SEREP).

SEREP was originally formulated as a global mapping
technique that was used to develop rotational
dof for modal test data (1). Since then howvever,
SEREP has been successfully employed in a variety
of applications such as checking correlation and
orthogonality between analytical and experimental
modal vectors (2), linear and nonlinear forced
response studies (3, and analytical model
improvement (4).
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SEREP  provides features that other reduction

techniques do not such as

- the arbitrary selection of modes that are to be
preserved in the reduced system model

- the quality of the reduced model is not dependent
upon the location of the selected active dof

- the frequencies and mode shapes of the reduced
system are exactly equal to the frequencies and
mode shapes (for the selected modes) of the full
system model

- the reduction/expansion process is reversible;
expanding the reduced system’s mode shapes back
to the full system’s space, develops mode shapes
that are exactly the same as the original mode
shapes of the full system model

Application of SEREP is presented on a simple
stucture to demonstrate the accuracy of the reduced

model as well as the ability to arbitrarily select
modes and arbitrarily select dof in the reduced
model.

THEORY

The equations of motion for an undamped ‘n’

dimensional system are

M X = 0 (1)
~n =n -n -n -
wvhere M and K

are the (n x n) system mass and
stiffness matrices, respectively; X

and X are the

(n x 1) acceleration and displacemenf vectors,
respectively. Note: Hereinafter, matrices are
denoted by a tilda (7) wunderscore and vectors

denoted by a bar (_) underscore.

The eigensolution of the ’'n’ dimensional system is
based on these 'm’ modal vectors is given hy

X = U P (2)
2n “n =
vhere U 1is the (n ¥ m) modal matrix whose columns
are made up of the ’m’ modal vectorn; P is the
(m x 1) displacement vector in the modal coordinate
system. Note, the columns of U_ are linearly

‘'

independent and therefore, the rank of U” i me
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It is desired that a reduced model, size (a x a),
be formulated from the full system model. The full
system model is partitioned so as to seperate those
full system dof which will be tracked in the
reduced system model, from those tull system dof
that will not be tracked in the reduced system

model. Equation (2) is rewritten
Za Ua
Xn = = - P (3)
X4 ud
where the '’a’ subscript denotes the tracked, or

active dof (Adof) of the full system model; and the
*d’ subcript denotes the untracked, or deleted dof
of the full system model. Considering only these
Adof in Equation (3) yields

¥a = Y B (4)

which is a description of the system response at
the ra’ active dof in terms of the '‘m’ modal
variables. The U matrix, of dimension (a x m), is
generally not sqﬁare. Solving Equation (4) for the
modal vector, P, requires that a generalized
inverse of ya be formed.

It is shown in Appendix A that for the condition
ra’ is greater than or equal to 'm’, the
generalized inverse is of rank 'm’. In most

practical applications, the number of Adof, ’'a’, is
greater than or equal to the number modes, 'm’,
used in the formulation of the generalized inverse.

When this 1is true, the generalized inverse can be
written as
g _ T -1 T
Yo = (Y B0 Y )

where Uag is the generalized inverse of Ua'
Vith the generalized inverse in hand, Equation (4)
is solved for the modal displacement vector as

- g

P gty (®)
It is also shown in Appendix A that when ’'a’ is
less than ‘m’, the rank of the generalized inverse
is 'a’. The generalized inverse is then given by

g _ T T,-1

Yao = ya ( ga ya ) 7
As stated in Appendix A, this produces an average
solution for the ’‘m’ modal displacement components
of P in Equation (6) and is not of practical use.

Our discussion, therefore will deal only with the
case of 'a’ greater than or equal to '‘m’.

Substituting Equation (6) into Equation (2) gives
an expression for the full system’s displacement

vector in terms of the reduced system’s
displacement vector.
_ g
§n B gn ya §a (8)

The global mapping transformation matrix, velating
the Adof to the Ndof is then defined as

IMAC 7

_ g
Tu gn ga 9
o
Ua Uag
T, = S (10)
Yd Ea,
Note that the subscript ‘u’ denotes that this
transformation matrix is based on the analytical
modal vector set U . Substituting Equation (9)

into Equation (8) yigTds

% U, u.°
X = S I B L S S G
%4 Ya Ya
The T matrix is used to form the reduced mass and
stiffness matrices as
Moo= TT M T (12)
~a ~u -nZu
K = TD K T (13)
~.a ~u ~n .u

wvhere M and K are the equivalently reduced mass
and stiffness = matrices, respectively. The
equations of motion for the ‘a’ dimensional,
reduced system are then

M X o+ K X =0

~a -a ~a -—-a (14)

The eigenvalues for this Adof system equal the
eigenvalues of the Ndof system which correspond to
the modes employed in the formuation of Tu' Further

’

%= 0y (15)
wvhile

ya = U, (16)
where U ' is the (a x m) modal matrix formed from

the eigensolution of the Adof system (see Appendix
A). Finally, one can obtain the modal vector
matrix of the Ndof system by

’

Y = L L an
Unlike other reduction techniques, SEREP 1is a

reversible process.

Comparison of SEREP and Guyan Reduction

Guyan reduction (6), commonly refered to as static
condensation, is a technique widely used for the
reduction of large analytical models. (See
reference (7) for a more complete comparison of
various expansion/reduction techniques.)

In Guyan reduction, the relationship between the
active and deleted dof can be written as

N I
= . za = Ts ga
Kd Es

(18)
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where

-1
ts = - gdd %da (19)

and T is reteried to as the transtormation maly ix,

It should be noted that the transformation matrix,
I, is based solely on the stiffuness matrix.
Tﬁerefore, the inertial forces of the full system
are not preserved when the full system is mapped
down to a reduced space while using the Guyan
reduction process. Note further though that the
SEREP  mapping matrix, T , is based on the
analytical modal vector set vhich inherently
contains information concerning the 1inertial
forces.

projection matrix, T , is used to form
the reduced mass and stiffness matrices K and M
as well as to expand the reduced variable to the
full set of Ndof using

- 2
- Ts 2<-a (20)

This Guyan

X
-n

The eigensolution for this Guyan reduced system
will provide a set of estimates for the first ‘a’
eigenvalues of the Ndof system. Also, the modal

matrix formed from the eigensolution of the Adof
system, U ', is only an approximation of the modal
matrix, U_, that is formed from the first 'a’
eigenvectots of the full system. Further, the

estimation of the Ndof system’s
matrix depends on the
that comprise the

quality of the
eigenvalues, and modal
selection of the active dof
reduced system.

SEREP produces a reduced model whose
modes shapes are exactly the same
model for.the modes preserved in
the process. Also, the accuracy of the SEREP
reduced models is not dependent upon the dof that
are chosen for the reduced system model.

Note that
frequencies and
as the original

APPLICATIONS

Several simple models are investigated in order to
demonstrate the unique features of SEREP which are

- the exactness of the reduction technique

- the arbitrary selection of modes included in the
reduced model
of dof included in the

- the arbitrary selection

reduced model

The six models used to study the SEREP process are
described in the following paragraphs.

Reference Frame Model

A simple planar frame model model was used tor all

cases studied. The finite element model was
comprised of 24 nodes and 24 planar beam elements
with 3 dof per node. This 72 dof model is

considered the reference to which all the reduced
models studied in the following examples will be
compared. Figure 1 shows the frame model as well
as some of its typical mode shapes.
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Exact System Reduction

To examine the point that the reduced model
reproduces the full model in an exact sense, the
hasle  FRAME structwre  was deduced  to ool bey
model and a compavison of actual full system’s

natural frequencies and reduced system’s natural
frequencies was made. —_

SEREP is used to reduce the full system model down
to 12 dof for the first 12 modes (i.e., a = 12

and m = 12). The active dof selected were 2X, 4X,
6X, 8Y, 10Y, 12y, 14X, 16X, 18X, 20Y, 21Y, and 23Y
as shown in Figure 2. Using this collection of
dof, a reduced model eigensolution was performed.

The natural frequencies of the full 72 dof model
and the reduced 12 dof model (Model 1) are shown in
Table 1. From this table, it can be seen that the
frequencies of the reduced system are the same as
the frequencies of the full system for the modes

under consideration. In addition, expanding the
reduced model back to the full set of 72 dof
results in mode shapes that are equal to those
of the original analytical model, as expected.

The case when the number of active dof is equal to
the number of modes preserved (a - m) is deflined as
the exact condition for SEREP. 'The reduced model
obtained for this case is a truly an equivalent
system.

Comparison of Frequencies
for Exact Model Reduction

Reference

Mode Model Model 1
1 32.758 32.758

2 109.49 109.49

3 116.40 116.40

4 129.67 129.67

5 310.02 310.02

6 355.58 355.58

7 458.65 458.65

8 580.00 580.00

9 610.90 610.90
10 701.00 701.00
11 765.78 765.78
12 802.65 802.65
Model 1 - Modes 1,2,3,4,5,6,

7,8,9,10,11,12

ADOF 2X, 4X, 6X, 8Y, 10Y, 12,
14Y, 16X, 18X, 20Y, 21Y, 23Y

TABLE 1
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Effects of Mode Selection

To examine the point that an arbitrary selection of
modes can  be preserved in the reduced model
formulation, the basic FRAME structure was reduced
using different collections of modes. A comparison
of the actual full system’s natural frequencies and
the reduced system’s natural frequencies was-made.

The reduced system is comprised of the same 12 dof
(i.e., a = 12) as used in the previous example.

Three reduced models were examined. In these
models, different sets of five modes (m = 5) are
used in SEREP to produce the reduced 12 dof models.

Model 2 - Modes 1 to 5 from the basic FRAME model.

Model 3 - Modes 2, 4, 6, 8, 10 from the basic FRAME
model.

Model 4 - Using modes 3, 4, 7, 9, 12 from the basic
FRAME model.

Note, in these three cases, the number of dof in
the reduced system models 1is greater than the
number of modes that are used to develop the

mapping matrix (i.e., a > m). The rank of the mass
and stiffness matrices for the reduced system

models equals 'm’, the number of modes that are
used to map the full system down to the reduced
state. The order of the mass and stiffness

matrices of the reduced system are of order ‘a’
(see Appendix A). Therefore, the mass and
stiffness matrices are rank deficient.

performed on the reduced 12 x 12
matrices for Models 2, 3 and 4 can only produce 5
eigenvalues since these system matrices are rank
deficient and of rank 5. It can be seen from Table
2 that SEREP yields reduced matrices which preserve
the arbitrarily selected modes used in the
formulation of the Tu matrix.

Eigensolutions
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Comparison of Frequencies
for Arbitrary Selectivn of Moden

Reference

Mode Model Model 2 Model 3 Hodel 4

1 32.758 32.758 - -
2 109.49 109.49 109.49 -
3 116.40 116.40 - 116.40
4 129.67 129.67 129.67 129.67
5 310.02 310.02 - -
6 355.58 - 355.58 -
7 458.65 - - 458,65
8 580.00 - 580.00 -
9 610.90 - - 610.90
10 701.00 - 701.00 -
11 765.78 - - -
12 802.65 - - 802.65

Model 2 - Modes 1,2,3,4,5

Model 3 - Modes 2,4,6,8,10

Model 4 - Modes 3,4,7,9,12

ADOF used in each of the above models:
2X,4X,6X,8Y,10Y,12Y,14Y,16X,18X,20Y,21Y,23Y.

TABLE 2

Effects of Point Selection

While it is true that the quality of results
obtained using most reduction processes depends on
the selection of reduced system dof, the same can
not be said for SEREP.

To illustrate this point, two reduced system models
are developed from the frame model using SEREP.
The two models are comprised of an arbitrary
selection of active dof as well as an arbitrary
selection of modes.

Model 5 - Modes 1, 3, 5 with
active dofs 14X, 15X, 16X, 17X, 18X, 24Y
as shown in Figure 3

Model 6 - Modes 2, 4, 5, 6 with
active dofs 8Y, 9y, 11y, 20Y, 21Y, 23Y
as shown in Figure 4

For other reduction techniques, the above selection
of dof for a reduced system model would be
considered poor. Table 3 lists the results of the
frequencies of the reduced system model. It can be

seen that even with an arbitrary selection of dof
and for the specified modes to be tracked, SEREP
produced reduced models which preserved all of the
desired system dynamics at the selected dof in the

reduced models.
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Comparison of Frequencies
for Arbitrary Selection of DOF
and Arbitrary Selection of Modes

Reference

Mode Model Model 5 Model 6

32.758 32.758
109.49 -
116.40 116.40 -
129.67 - 129.67
310.02 310.02 310.02
355.58 - 355.58
458.65

580.00

610.90

10 701.00

11 765.78

12 802.65

109.49

VRN N

Model 5 - Modes : 1,3,5
ADOF : 14X,15X,16X,17X,18X,24Y

Model 6 - Modes : 2,4,5,6
ADOF : 8Y,9Y,11Y,20Y,21Y,23Y

TABLE 3
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REDUCED 6 DEGREE OF FREEDOM
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FIGURE 4

General Applications for SEREP

From the examples presented above, it can be seen
that SEREP will produce a reduced model which
preserves the desired system dynamics for an
arbitrary selection of points and for an arbitrary
selection of modes. These unique features inherent
in the SEREP mapping process provide a tremendous
capability for a wide assortment of structural
dynamic modelling applications as well as general
modal analysis applications such as

- Expansion of experimental modal data to include
rotational dof as well as unmeasured translatory
dof information needed for system modelling and
structural dynamic modification studies (1)

- Correlation of analytical and experimental modal
data and pseudo-orthogonality checks (2) can be
performed at either the reduced state
coresponding to the tested dof or at the full
state corresponding to the full system model

- Reduction of large analytical models to a much
smaller model wused for the study of both linear
and nonlinear response (3); in particular,
nonlinear response can be performed on reduced
models  which provides a dramatic saving on
computation time

- Improvement of analytical models using the
measured modal data (4) can be made at either the
test set of dof using the reduced mass and
stiffness matrices or at the full set of dof
using the expanded experimental modal vectors
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SUMMARY

The System Equivalent Reduction Expansion Process
(SEREP) is an exact method for mapping lavge
analytical models down to much smaller cquivatenn
reduced models. Originally developed for the
purpose of generating rotational dof for
experimental modal data, SEREP 1is being used in
applications such as linear and nonlinear system
response, orthogonality checks between analytical
and test derived modal vectors, and analytical
model improvement.

Unlike other reduction processes which develop
reduced systems whose eigensolutions approximate
the eigensolution of the full system model, SEREP
develops reduced models whose frequencies and mode
shapes are exactly the same as the full system
model for the selected modes of interest.

Unlike other reduction tecniques, whose quality of
results depends greatly on which of the full
system’s dof are selected to remain in the reduced
model, the quality of results obtained from SEREP
is insensitive to the selection of the full system

dof that are to remain in the reduced system
model.

Finally, SEREP can be used to track as many or as
few of the full system modes as desired. This is

not true of other reduction processes.
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APPENDIX A

This appendix is designed to supplement the
equations and discussion of the accompanying paper.
Flements ol linear  alpebia e ok ted
inverse, singular value decomposition, tank of
reduced system matrices and the equivalence of the
reduced eigensystem are presented.

cnch an

Generalized Inverse

The inverse specification of a set of equations

= U P (A.1)

X
—a ~a

where the number of unknowns is not equal to the
number of equations requires a generalized inverse
of the matrix equations. There are two possible

solution types for this situation:

A) when the number of equations 'a’ are
greater than or equal to the number of
solution variables ‘m’ (an over -
specification or equivalence of the system)

and

B) when the number of equations are less than
the number of solution variables (an under-
specification of the system).

Type A: a > m
The system of Equations (A.1) can
normal form by projecting the system equations
since the number of equations is greater than or
equal to the number of unknowns as

U T
—=m -a -a

be put into

(A.2)

Applying this equation to Equation (A.l) produces

T 3

Xm - 93 ga Em (A-3)
vhere P implies an approximate solution ol P. ‘The
square coefficient matrix of P_ will, in general,

be fully ranked such that it possesses an inverse.
The standard inverse ol this matrix may pose some
difficulty which will require the singular valued
decomposition solution (to be discussed later).
Symbolically, Equation (A.3) is used to solve for
gm as

T -1
SANSEE

P =

P, (8.4)

m

Substituting Equation (A.2) into (A.4) produces the
general form of the solution as

T -1 T
Bm = I ga ya ) ga I Xa (A-3)
with the coefficient matrix in the square brackets
being the generalized inverse of Uw given in

Equation (5) as

T -1 T

u g -

Ya (% Y Y

Equation (A.5) vrvepresents the ‘best’ solution of
the ‘m’ variables given the system of ‘a’
equations. It is important to note that Equation
(A.5) can alternately be obtained by using a least

System Equivalent Reduction Expansion Process (SEREP) 7



if the minimization of the ervor
(exact) and Ea gm (approximate)

squares solution
squared between X
is performed.

Type B: a < m

of this condition is quite different
have less equations than solution
The best that this solution can be is an
average solution of the equations in the system.
If system matrices are formed for this condition,
it can be shown that the system matrices are rank
"a’' and are therefore not rank deficient. But the
system modal variables ’m’ have been 'meld’ into
'a’ equations thus producing an average of the
system variables.

The solution
since ve
unknowns.

Developing the solution for this condition requires
that a set of ‘a’ variables be projected to the ’'m’
system variables as

P = U P (A.6)

—m ~a —a

wvhere Ea is the approximate solution set.

The opposite of this statement implies that the 'm’
system variables will be averaged into the ’a’
system of equations.

Substituting into Equation (A.1) produces

X, = (U U ) P (A.7)

a ~a .a -a

which, in turn, can be used to solve for the P

variables. The coefficient matrix in Equation
(A.7) can be shown to be of proper rank to possess
a standard inverse such that
T ,-1
o= (Y, LT K ».8)

Using Equation (A.8) in (A.6) produces the general
form of the average solution where a<m as

P. = [UuT (u uT)l

] X
=m ~a ~a .a

—a

(A.9)

where the coefficient matrix in the square brackets

being the generalized inverse of ya given in
Equation (7) as
g _ T T ,-1
9 B ga ( ga ga )

Equation (A.9) represents an average solution of an
under-specified set of equations containing 'm’
system variables.

Singular Valued Decomposition

Probably the most powerful technique in linear
algebra and numerical methods is the Singular
Valued Decomposition (SVD) of a matrix. As stated

above, the coefficient matrices can be inverted
safely using the SVD process. The procedure is
also wused to determine the rank of a matrix since
the number of singular values (that 1is, those
values . that are above a threshold value of the
machine zero) represents the rank of the matrix.
The complete development of the SVD process is
given in reference (5) which can be simply stated

IMAC7

in the following section.
A of order (n x m) can be decomposed

Any matrix
orthonormal matrices and singular values

into its
as

A = L S RT (A.10)
vhere

L is an orthonormal matrix of order (n ¥ n),

R is an orthonormal matrix of order (m % m),

S is the matrix of order (n x m) containing

the singular values as
S 0

s = ~Iso- (A.11)

- 0 0
The § matrix has a special form where the upper
left partition contains g  which is a diagonal
matrix of order (r x r) containing the singular
values of matrix A. The order of matrix g, is the

rank of the matrix A.

Reduced System Matrices

The reduced system matrices M
(12) and (13) have been formed by tLansformlng the
full system variable X  into the reduced system
variable Xa using Equat1gn (11). At the same time
the system equations are placed into normal form by

and K in Equations

projecting the equation set using the T transpose
operator. The resulting reduced mass matrix is
_ gT T ' g
!a B ya ( 9n yn yn ) ga (4.12)
Moo= uB8T ys
-a ~a ~a

since the original modal vectors were normalized to
unit modal mass. In a similar fashion, the
stiffness matrix is

- gT N 2 g
ga - ga 9\ ya (A-13)
N2, ,
where "w ' is the modal stiffness matrix of the
original system.
Determining the rank of these matrices, assuming

that a > m, requires the knowledge of the rank of
U_ which is used to form U Using SVD, U_ can be
decomposed into -a
T

U = L5 E (h.14)

vhere
\Um

S = RN (A.15)

- 0
and is of vrank ‘'m’. S is of this towm and rank

because the U matrix was partitioned from the U
matrix which contains ‘m’ linearly independeﬁv
vectors by column.

The yag matrix is then formed using Equation (5) as

System Equivalent Reduction Expansion Process (SEREP) 8



Uag - R %8 L (4.16)
where

N\ ~ -1

o T 1)

and noting the orthonormal conditions of L and R.
Equations (A.16) and (A.17) define the SVD of the
Uag matrix which implies that its rank is also 'm’.

(A.16) and (A.17) into the

Substituting Equation

reduced system matrices of Equation (A.12) and
(A.13) produces
T T
M = L S S L A.18
M, L1 S¢  Sg ] ( )
vhere < .2
T m 0
8 s8 - =N - (A.19)
- - 0

| )

From Equation (A.18) and (A.19), it has been shown
that the rank of M_ is rank ‘m’ which is less than
the order of the  matrix; therefore, the reduced
system mass matrix is rank deficient.

In a similar fashion, using the definitions of gag
in the reduced system stiffness matrix in Equation
(A.13) produces

R s8] T (a.20

K = L [ BT R
a ~

T~ 2
»
-\

-where the terms within the square brackets can be
reduced using SVD to

BT RT 2 R % - L, s, LT (A.21)
b - AN -~ = 2101 A
where
. Ny 0
Im 2
Sl = N (A-22)
- 0 0
Thus, the reduced stiffness matrix is also rank

deficient at rank .‘m’.

‘The SEREP condition occurs when ‘a’ is equal to

m’. It is for this condition that the reduced
system is truly equivalent and the rank is equal to
the order of the reduced matrices. As noted
previously, the case when ‘a’ is less than ‘m’, the
system matrices can be shown to be of proper rank
but this condition is not normally useful since the
solution is only an average. It will be shown in
the next section that, even though the reduced
system matrices, M_ and K , are rank deficient (’a’
greater than 'm’), the raduced eigen-solution will
produce the proper eigen-system.
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Reduced Eigen-Solution

The eigensolution of the reduced system matrices is
obtained from Equation (14) as

Ky = AM ] X =0 (A.23)
Substituting Equation (A.18), (A.20) and (A.17)
into the above equation produces

(c.rm_1 RT‘N% R am-l - om—z) 0 T
1 - S LR, = 0 a2y
0 0- X0}~
which can be further reduced to
d? - NI) O u 8
T - - Z -
[ Uag 0] N 1% =0 (a.29)
- - 0 (0-x0ll o | 7
and finally down to
gT ~ 2

E LTl - A T GE = 0 a2
or 2

| o - X I] P = 0 (A.27)

using Equation (6).

It is shown in Equations (A.24) and (A.25) that the
reduced system eigensolution contains two groups of
eigenvalues. The first group defined in the upper
partition 1is the group of eigenvalues of the
original system that was used in the reduced system
definition of modal frequencies. The second group
results from the fact that the system matrices are
rank deficient and correspond to'a zero modal mass
and zero modal stiffness and therefore are
indeterminant. These values are considered null
values of the eigensystem.

The final Equation (A.27) indicates that the
reduced system eigensolution produces the same
eigenvalues and vectors of the original system once
the null values have been removed.
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