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A Complete Stability Analysis of Planar
Discrete-Time Linear Systems Under Saturation

Tingshu Hu and Zongli Lin, Senior Member, IEEE

Abstract—A complete stability analysis is performed on a planar
discrete-time system of the form ( +1) = sat( ( )), where

is a Schur stable matrix and sat is the saturation function.
Necessary and sufficient conditions for the system to be globally
asymptotically stable are given. In the process of establishing these
conditions, the behaviors of the trajectories are examined in detail.

Index Terms—Limit trajectories, neural networks, saturation,
stability.

I. INTRODUCTION

DYNAMICAL systems with saturation nonlinearities arise
frequently in neural networks, analogue circuits and con-

trol systems (see, for example, [9], [5], [2], [6] and the refer-
ences therein). In this paper, we consider systems of the fol-
lowing form:

(1)

where sat is the standard saturation function. With a
slight abuse of notation, we use the same symbol to denote both
the vector saturation function and the scalar saturation function,
i.e., if , then sat , sat
and

if
if
if

(2)

Systems of the form (1) and their continuous-time counterparts
mainly arise in neural networks and in digital filters.

As with any dynamical system, stability of these systems is
of primary concern and has been heavily studied in the literature
for a long period of time (see, for example, [1], [7]–[11] and the
references therein). As seen in the literature, the stability anal-
ysis of such systems are highly nontrivial even for the planar
case. For the continuous-time counterpart of (1), only until re-
cently have the necessary and sufficient conditions for global
asymptotic stability (GAS) been established for the planar case
[4]. For the planar discrete-time system of the form (1), to the
best of our knowledge, no necessary and sufficient conditions
have been known, although various sufficient conditions are
available [9], [11]. This paper attempts to carry out a complete
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stability analysis of planar systems of the form (1). In partic-
ular, necessary and sufficient conditions for the system to be
GAS will be identified. In the process of establishing these con-
ditions, the behaviors of the trajectories are examined in detail.

This work is motivated by our recent result [4] on the planar
continuous-time system

(3)

However, the two systems (1) and (3) behave quite differently
even though they have a similar description. First of all, (3) op-
erates on the entire plane while (1) operates only on the unit
square. The trajectories of (3) do not intersect each other but the
connected trajectory of (1) [by connecting and ]
can intersect itself. The limit trajectories of (3) must be periodic
but a limit trajectory of (1) need not be. Finally, it is known that
in the stability analysis for nonlinear systems, many more tools
are available for continuous-time systems than for discrete-time
systems.

We will start our investigation of the planar system (1) by
characterizing some general properties of its limit trajectories.
An important feature is that a nontrivial limit trajectory can only
intersect two opposite pair of boundaries of the unit square and
it cannot have intersections with both of the neighboring bound-
aries. This result turns our attention to a simpler system which
has only one saturated state

(4)

For this simpler system, we will establish a relation between the
present intersection of a trajectory with the lines and
the next one in terms of a set of points on the line . The
relation is discontinuous but piecewise linear. The set of points
are the places where the discontinuity occurs. Some attractive
properties about these points and the relation between the next
intersection and the present one are revealed. These properties
help us to establish the condition for the system (4) to be GAS
and to characterize an interval on the line from which the
trajectories of (4) will converge to the origin. This in turn leads
to our final result on the necessary and sufficient conditions for
the GAS of a planar system of the form (1).

This paper is organized as follows. In Section II, we give the
necessary and sufficient conditions for the GAS of the planar
system in the form of (1). An example is also given to help inter-
pret these conditions. These conditions are established in Sec-
tions III–V. In the process of establishing these conditions, the
intricate properties of the system trajectories are also revealed.
In particular, Section III reveals some general properties of the
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possible limit trajectories of the system which help us to ex-
clude the existence of limit trajectories under the condition of
the main theorem and focus our attention to the simpler system
with one saturated state. Section IV investigates system (4) and
gives a necessary and sufficient condition for the system to be
GAS. Section V proves the main result of this paper. Finally, a
brief concluding remark is made in Section VI.

II. M AIN RESULTS

Consider the following system:

(5)

where and sat: is the saturation func-

tion, i.e., if , then sat and sat is as
defined by (2).

Given an initial state , denote the trajectory of
the system (5) that passes throughat as .
In this paper, we only consider the positive trajectories. Hence,
throughout the paper, .

Definition 2.1: The system (5) is said to be stable at its equi-
librium if, for any , there exists a such
that, , for all and . It is
said to be globally asymptotically stable (GAS) if is a
stable equilibrium and for all .
Also, it is said to be locally asymptotically stable if it is stable
and for all in a neighborhood of

.
The system is GAS only if it is locally asymptotically stable,

which is equivalent to that has eigenvalues inside the unit
circle. In this case, is said to be Schur stable, or simply stable.
In this paper, we assume thatis stable. Denote the closed unit
square as and its boundary as . It is easy to see that no
matter where is, we always have . Hence, the
global asymptotic stability is equivalent to

for all . The main result of this paper is presented as
follows:

Theorem 2.1:The system (5) is globally asymptotically
stable if and only if is stable and there exists no and

such that and
for all .

If for all , then
. Hence, this theorem can be interpreted as follows.

Assume that is stable, then the system (5) is GAS if and only
if none of the following statements are true.

1) There exist and , such that

and

2) There exist and , such that

and

3) There exist , and such that

and

4) There exist , and such that

and

Each of the above conditions implies that there is a simple
periodic trajectory that starts at somewith period or .
The trajectory stays insideas that of the corresponding linear
system for the first steps, and when the linear trajec-
tory goes out of at step , the saturation function makes

return exactly at or . These
conditions can be verified. Since is stable, there exists an in-
teger such that for all and all .
Hence, it suffices to check the four conditions only for .

Conditions 1) and 2) are very easy to check. As to 3) or 4),
for each , at most two can be solved from

To see this, denote the elements of as , .
Then from 3), we have

(6)

If , then there are two ’s that satisfy (6). If
, we must have . Otherwise

would have an eigenvalue , which is impossible since is
stable. In this case, (6) has only one solution. It remains to check
if and

In the process of proving Theorem 2.1, we will develop a
more efficient method to check the conditions.

Example 2.1:Consider (5) with

The following results are presented with accuracy up to four
decimal digits. There are two points on that satisfy condition
3), one with

and the other with
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But there are four periodic trajectories as listed

In the third periodic trajectory, the first coordinate
of the initial state is computed from

It should be noted that 4) is the only stable periodic trajectory.
As we can see from the example, there are other kinds of peri-

odic trajectories than what are inferred by the conditions 1)–4),
e.g., trajectories 3) and 4). There may also be trajectories that
neither are periodic nor converge to the origin. We will prove in
the subsequent sections that if none of the conditions 1)–4) is
true, then there exist no nonconvergent trajectory of any kind.

III. L IMIT TRAJECTORIES

To prove that (5) is GAS, we need to show that the only
limit point of any trajectory is the origin. It is known that
being stable alone is not sufficient to guarantee the GAS of the
system. Actually, it is well-known [9] that the system may have
stationary points other than the origin; there may be periodic
trajectories and even trajectories that neither are periodic, nor
converge to a stationary point. In this section, we are going to
characterize some general properties of the nonconvergent tra-
jectories. These properties will facilitate us to exclude the exis-
tence of such nonconvergent trajectories under the condition of
Theorem 2.1.

Since every trajectory is bounded by the unit square, there
exists a set of points such that the trajectory will go arbitrarily
close to them infinitely many times.

Definition 3.1: For a given , a point is
called a (positive) limit point of the trajectory if there
exists a subsequence of , , , such
that . The set of all such limit points is
called the limit set of the trajectory. We denote this limit set as

.

Since the function sat is continuous in , if a trajectory
returns arbitrarily close to , it will also

return arbitrarily close to sat . We state this property in the
following lemma.

Lemma 3.1: If , then for all
. Given any (arbitrarily small) and any integer
(arbitrarily large), there exists an integer such

that

Because of Lemma 3.1, for , is called a
limit trajectory of . It is periodic if and only if
has finite number of elements.

The following notation is defined for simplicity. Denote

We see that and are the two horizontal sides of, and
and are the two vertical sides of. Notice that they

do not include the four vertices of the unit square. Also, denote
, as the two upper vertices of the square.

Let be a limit point of some trajectory and for simplicity,
let . Denote and

. Clearly, must have an intersection with the
boundary of the unit square. If is not empty, define

and

If is not empty, define

and

The following proposition shows that a limit trajectory can
only intersect one opposite pair of the sides of the unit square,
not both of the neighboring pair. This result will reduce our
problem to a much simpler one.

Proposition 3.1: Let be a limit point of some trajectory.

1) If , then will not touch or for
all . Moreover, will stay inside the strip

2) If , then will not touch or and
will stay inside the strip

3) The set cannot include both and .
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Fig. 1. Illustration for the proof of Proposition 3.1.

Proof: The proof is built up on a simple geometric fact.
Let be a set in and let be the image of under the
linear map . Then, the area of equals to the area of

times .
1)We first assume that contains a finite number of ele-

ments, i.e., for some . Suppose on the con-
trary that the trajectory will touch or at some step. The
main idea of the proof is to show that the area of the convex hull
of is no less than that of , which contradicts the fact that

.
Since contains points on both and , ,

, are all defined.
If is in the interior of the unit square, then ; if

, then and

for some and [note that
]; if , then

for some and . If (or ), then
and

or

for some , . Hence, contains all the elements of
which are in the interior of , and for those on the boundary
of , if , there is a point in that is just above (on

the same vertical line) and if , then there is a point in
that is just to the right of (on the same horizontal line).

Denote the areas of the convex hulls ofand as
and , respectively. Also, let

as shown in Fig. 1. In the figure, the points marked with “”
belong to , the polygon with dash–dotted boundary is the
convex hull of and the polygon with vertices ,

, and some points in the interior of is the convex
hull of . Since there is at least one point inthat is to the left
of , one to the right of , one above and one below ,
the convex hull of is a subset of the convex hull of . (This
may not be true if is the leftmost point in , or if is the
rightmost). It follows that . This is a contradic-
tion since and .

If, on the contrary, has a point outside of the strip

then, there will be a point in that is to the left of (or on
the same vertical line with ), and a point to the right of (or
on the same horizontal line with ). In this case, we also have

, which is a contradiction.
Now we extend the result to the case thathas infinite

many elements. Also suppose on the contrary that the trajectory
will touch , or go outside of the strip at some step. By
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Lemma 3.1, for any and any integer , there exists
a such that

for all and in particular

So, the trajectory , , will also touch (or
almost touch) , , or go outside of the strip. Since is a
limit point of , there exists a such that

Define

and

Using similar arguments as in the finite element case, we can
show that

Letting , we obtain , which is a contradic-
tion.

2) Similar to 1).
3) If, on the contrary, contains both and , then the

convex hull of is . Also, contains a point

and a point

hence, the convex hull of contains . This also leads to
, a contradiction.

IV. SYSTEMS WITH ONE SATURATED STATE

Now, we are clear from Proposition 3.1 that if there is any
limit trajectory, it can intersect only one opposite pair of the
sides of the unit square, either , or , not
both of them. So, we only need to investigate the possibility that
a limit trajectory only intersects . The other possibility that
it only intersects is similar. For this reason, we consider
the following system:

(7)
Assume that is stable. If or , it is
easy to see that both systems (5) and (7) are GAS and none of
the conditions 1)–4) following Theorem 2.1 can be true. So we
assume in the following that .

The termsGAS, limit pointand limit trajectory for (5) are
extended to (7) in a natural way.

For a given initial state , denote the trajectory of the
system (7) as . Denote the line as , the line

as and the region between these two lines (in-
cluding ) as . We will show later that (7) has nontrivial
limit trajectory in if and only if (5) has nontrivial limit tra-
jectory that intersects . In the sequel, when we say “limit
trajectory,” we mean a limit trajectory other than the trivial one
at the origin.

In this section, we study the GAS of the system (7) and will
also determine a subset in which is free of limit points. Our
investigation will be based on the study of the linear system

(8)

For a stable continuous-time linear planar system, if a trajec-
tory stays in for a whole cycle [ increases or decreases
by ], then will be in for all . But, for the dis-
crete-time linear planar system (8), a trajectory might go out
of after staying within for several cycles. In the contin-
uous-time case, the trajectories never intersect but in the dis-
crete-time case, the connected trajectory [by connecting
and ] can intersect itself. These facts make the anal-
ysis much more complicated than the continuous-time system
as discussed in [1], [3], [4] and [10].

A simple one or two point periodic trajectory can be formed
if for some . An or point periodic
trajectory will be formed if and

, for all .
Proposition 4.1: The system (7) is GAS if and only if is

stable and the following statement is not true for any :
There exist an integer and a real number such that

and

(9)

Let satisfies (9), then no limit trajectory
can exist completely within the strip

.
Remark: If (9) is true for some , then there will

be a stationary point or periodic trajectory such as
, sat , . There

may also exist other kind of limit trajectories. Proposition 4.1
says that if there is no simple periodic trajectory as inferred by
(9), there will be no limit trajectory of any kind (except the one
at the origin).

To prove Proposition 4.1, we need to establish the relation
between the next intersection of a trajectory with and the
present one.

For , suppose that will intersect at
, , with . Since the trajec-

tory can be switched to at any without changing
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its convergence property, we assume for simplicity that all the
intersections are in (If not so, just multiply it with

). Denote

We call , and the first, the second and the third intersec-
tions, respectively. We also call and the present and the
next intersections.

Clearly, is uniquely determined by . We also see that the
relation is a map from to itself. To study the GAS
of the system (7), it suffices to characterize the relation between

and . Through this relation, we can show that if (9) is not
true for any , then for every , the intersections ,

will move closer and closer toward an interval, and all
the trajectories starting from this interval will not touch the lines

and will converge to the origin.
Let . The next intersection of with

occurs at step if

and

The next intersection is sat [or
]. Since for different , the number of

steps for the trajectories to return to , i.e., the number as
defined above, is different, we see that the relation between
and must be discontinuous.

We will first determine an interval on from which a tra-
jectory will not intersect again (no ) and will converge
to the origin.

Since is stable, there exists a positive definite matrixsuch
that

Define the Lyapunov function as

then for every , for all .
Given a real number , denote the Lyapunov level set as

Let be such that and just touches .
In this case, has only one intersection with . Let this
intersection be

If , then the linear trajectory will be inside
. Hence, for all

and will converge to the origin. Since

there exists an interval around in , of nonzero length, such
that for every in this interval, ,
will never touch and will converge to the origin.

Here we will use a simple way to denote a line segment. Given
two points , denote

and similarly

Define

and

Since , the line has intersec-
tions with both and , so there exist points on both sides
of which will be mapped out of under . Hence and

are finite numbers. Now, let

then, for all , will converge to
the origin. Because of the extremal nature in the definition of

and , we must have for some , otherwise
would not be the minimum of the set. Therefore, define

and similarly

If , then by definition

and by continuity, there exists a neighborhood ofsuch that
, for all in this neighborhood.

Because of this, we can define

If , then define

Also, because , and are finite. Let

It follows from the extremal nature in the definition of and
that there exists a such that , so we

define
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and similarly

For simplicity, we denote as and as . Implied
by the definitions are the following:

and

Inductively, if , then define

and if , define

Let

and

Then

The induction procedure ends if both and . We
denote the maximum index ofas and the maximum index of

as . As an immediate consequence of these definitions, we
have

and

We claim that this set of , and
, forms exactly the set of points where discontinuity

occurs on the relation between the next intersection of a trajec-
tory with and the present one.

Lemma 4.1:

1) If , then will be inside
for all and will converge to the origin.

2) If , then the next intersection of
with is ;

If , then the next intersection is
. Moreover,

and for all .
3) If , then the next intersection of

with is ;
If , then the next intersection is

. Moreover,
and for all .

4) for all and
; for all and
.

Proof: 1) This is a direct consequence of the definition
of and .

2) From the definition of , for all
and . Since is a straight line and

is in the interior of , we have for all
(Note that is to the right of ).

On the other hand, since

we have for all . Also since is
in the interior of , we have for all
and for all .

Combining the above arguments we have, for all
, and

for all . This means that the next intersection with
is .

3) Similar to 2).
4) This is contained in the proof of 2).
It is obvious that is a continuous function of.

Lemma 4.1 2) implies that for all , the second
coordinate of , , is the constant 1
or , while the first coordinate remains linear on. Similarly,
for all , the second coordinate of
is the constant 1 or and the first coordinate is linear on .
Same relation holds for and .

We will provide an easy way to compute and after re-
vealing more properties about this set of points. In fact, the fol-
lowing properties will lead directly to the proof of Proposition
4.1. For , the next intersection of with
can be on or on . For simplicity, we will assume that
the next intersection is on , otherwise we can replace the state

at the intersection with , noting that we can multiply
the state at any step with without changing the convergence
rate of a trajectory. Hence in the following, when we say that

, we mean ; and when we say that
is to the left (or right) of , it could also be that is

to the right (or left) of .
Denote and

. We see that is the second intersection of
with (the first one is ), and is the second intersection
of with .

Lemma 4.2:

1) ;
2) If , then ; if

, then ;
3) For , and for , ;
4) , and ;
5) For , and cannot be both in , nor both

outside of , i.e., there must be one of them inside
and the other one outside of the interval.

Proof: First, we give a simple property arising from the
Lyapunov function . Since is a convex function and

takes the minimum value from all , we have, if both
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and are to the left of and is to the left of , then
; if both and are to the right of and

is to the right of , then .
1)Clearly, cannot be to the left of , otherwise we would

have . Suppose on the contrary
that , then by Lemma 4.1 3), we would have

. A contradiction to the definition of .
Similar argument holds for .

2) From Lemma 4.1 4), the first time goes out of is at
. And by Lemma 4.1 3) and 4), for ,

the first time goes out of is . Since
and for all , we have
. Similarly, for , we have

.
3) Similar to 1), cannot be to the left of . Suppose on

the contrary, that , then never goes out of
. This is a contradiction since . Also, suppose on

the contrary that , then similar to the
argument in 2), we would have and hence

. This is a contradiction since decreases as
is increased. So, we must have and similarly,

.
4) Since is to the left of , we have

By 3), is to the right of , this implies

and hence

(10)

Since , the point is on the line between
and . Also, since the function is convex, it

follows from (10) that

Since , we have
and

(11)

By 3), and are both to the right of , hence the in-
equality (11) implies that is to the right of , i.e.,

.
Similarly, we have .
5) Suppose that both , then by 2) and 3), we

have

where . Since and , it
follows that

which is a contradiction.
On the other hand, suppose that both , then

we must have to the left of and to the right of . Hence

Recall that and , it follows that

which is also a contradiction.
From 1), 3), and 5) of Lemma 4.2, we can see that the only

pair of and such that is and .
This fact can be used to generate the points , and

. Although it is possible to determine these
points directly from the definition, it is hard to derive a compu-
tationally efficient method to generate the points from inside to
outside, i.e., from to . In the following, we provide
an iterative method based on the properties in Lemmas 4.1 and
4.2 to generate the points from outside to inside, i.e., from
to and use the unique property that as a
sign to stop the iteration.

Algorithm for Generating and

Step 1 Set . Get the two intersec-
tions of with . They are and

(or and ). Denote the line
segment of between and as

. Multiply the two end points of
from left with , then we get and

. Clearly, the one to the left of
is and the one to its right is . If

, then and stop the
algorithm.

Step 2 . Check if has
intersections with . If not, let

and repeat this step. If
there is, then cut off the part of
that is outside of and let the re-
maining part be . The cut-off place is
one of and . Multiply the cut-off
place from left with . The result is
so far the innermost if it is to the
left of , or the innermost if to the
right of . In the mean time, we also
obtain and\or . Let the in-
nermost pair be , if ,
then we must have and stop the
algorithm since all the have been
computed. If is not true,
then repeat this step.

We see from the above algorithm that the number of iterations
equals .

Item 4) in Lemma 4.2 shows that
and . Item 5) shows that either we have

, or . Item 3) shows that all
these intervals must include . In summary, the facts in
Lemma 4.2 jointly show that the intervals and ,

are ordered by inclusion. We
can draw a figure for easy understanding of Lemma 4.2. If we
draw arcs from to and arcs from to , then these arcs
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Fig. 2. Illustration for Lemma 4.2.

can be made not to intersect each other (see Fig. 2). In the figure,
we have

Let , then is the
third intersection of with . By Lemma 4.1 4),
we know that is the smallest integer such that is
outside of . Also let .

Lemma 4.3:Suppose that (9) is not true for any ,
then and .

Proof: Suppose , then by Lemma 4.2 2),
the smallest for to go out of is .
So . If on the contrary
that (to the right of ), since

is to the left of , there must be a point
such that is right above , i.e.,

. By Lemma 4.1 3), the next intersection of with
is , so we must have for all and
there exists such that (9) is true. A contradiction. On the other
hand, if (to the left of ), since

is to the right of , there must be a point
such that is right above . Similar to the

former case, we have a contradiction. Therefore, ,
and similarly, .

This lemma says that if a trajectory starts fromor , its
third intersection with will be closer to the central interval

than the first intersection or the second one. We will
show in the next lemma that this property can be actually ex-
tended to all .

Lemma 4.4:Assume that the condition (9) is not true for any
. Given . Let and be the second

and the third intersection of the trajectory with ,
(if the intersections are on , then get symmetric projections
on ). If , then and one of the
following must be true.

1) and there is no third intersection;
2) ;
3) and .

Similarly, if , then and one of the
following must be true.

4) and there is no third intersection;
5) ;
6) and .

Also, if [or ], then and the
subsequent intersections will all be in the interval [or

]. Furthermore, for any , there is a finite such
that . After that, will have no
more intersection with and will converge to the origin.

Proof: Lemma 4.2 says that all the segments
and are ordered by inclusion. We will prove the
result of this lemma from the innermost segment to the
outermost with an inductive procedure. Without loss of
generality, assume that is the innermost segment
(except for ), then we must have and

.
By Lemma 4.3, . There are three possibilities.

Case 1— : (See Fig. 3.) For ,
by Lemma 4.1 3). Since

and are to the left of and respectively,
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Fig. 3. Illustration for the proof of Lemma 4.4: Case 1.

Fig. 4. Illustration for the proof of Lemma 4.4: Case 2.

must be to the left of and also, . So we have
. This belongs to 4) or 5) of the lemma. If it is

4), then there will be no more intersection; If it is 5), then with

the same argument, we have , . Moreover, the
subsequent intersections will fall betweenand in a finite
number of steps since there is nosatisfying (9).
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Fig. 5. Illustration for the proof of Lemma 4.4: Case 3.

Fig. 6. Illustration for the proof of Lemma 4.4.

For , . If
, then we get 1) of the lemma. If , then

by the argument in the previous paragraph, we must have
and we get 3) of the lemma.
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Fig. 7. Illustration for the proof of Lemma 4.4: Case i.

Fig. 8. Illustration for the proof of Lemma 4.4: Case ii.

Case 2— : (See Fig. 4.) For ,
.Since and areto therightof

and respectively, mustalsobe to the rightof , i.e.,
. If , then we get 2) and the subsequent in-

tersections,ifany,willmoverightwarduntilfallingbetweenand
; if , thenweget1).
For , . If

then we obtain 4). If , then
the argument in the foregoing paragraph applies and we have

, which belongs to 6).
Case 3— : (See Fig. 5.) For ,

we have , which belongs to 1). For
, we have , which be-

longs to 4).
So far, we have shown that one of 1)–6) holds for all

. And in each of the above three cases, we see that for
all , and the subsequent intersections are
all in and will fall between and in a finite number
of steps.

Next, we assume that these properties hold for all
and the next segment which includes

is (see Fig. 6). We also have three cases:
, and . By treating

the segment as in the proof for ,
we can use the same argument to show that one of 1)–6)
holds for all . Moreover, for all

, the intersections will move toward
and fall between in a finite number of steps.

Now, suppose that is the outermost segment. By in-
duction, we have obtained the properties in the lemma for all

and we would like to extend the properties to the
whole line .

Recall that , so and
. The line will actu-

ally intersect with at and (or and ).
Assume that is on . Then the ray
is below the line . Get a symmetric projection of
this ray as . Then the two rays

and are parallel
and are both above the line (see Figs. 7 and 8). Here, we
have two cases.

Case i: The rays have a positive slope (see Fig. 7). Since
, we have and by Lemma 4.3,

. So, .
For , since both and

are to the left of and , respectively, and since
there exists no such that , we must
have, to the left of and .
If , then we obtain 4). If , then we
obtain 5). If , then by the established
properties on , we must have to the left
of and hence to the left of . Therefore, and
we get 6).

For , is to the right of , so
the properties for applies. Also note that is to
the right of . Hence and we obtain 3).
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Fig. 9. Illustration for the proof of Lemma 4.5.

Case ii: The rays have a negative slope (see Fig. 8). In this
case, .

For , since is to the right of and
there exist no such that , we must have

to the right of , in particular, .
If , then we obtain 2). If , then we
have 1). If , then by using the established property
in the interval , we have and
we obtain 3).

For , is to the right of . By
applying the property for in and , we have

, which belongs to f).

Similar to the argument for the interval , it can be
shown that the intersections will fall between in a finite
number of steps for all .

In summary, the intersections of a trajectory with
the lines will move from the outer intervals to the inner
intervals until falling into in a finite number of steps.
After that, it will not touch the lines and will converge to
the origin.

Next, we suppose that the condition (9) is true for some
. We would like to determine an interval in such that a

trajectory starting from this interval will converge to the origin.
Recall that is defined to be the unique intersection of the

Lyapunov ellipsoid with the line (see Fig. 9). Also,
is the first coordinate of , i.e., .

Lemma 4.5:Assume that . If there exist an integer
and a such that , then we must

have .

Proof: When , an ellipsoid takes the shape in
Fig. 9. Each ellipsoid has an intersection with the ray that
starts from the origin and passes through. This intersection is
the highest point in the ellipsoid. Since , it can be seen
that

Since

it is impossible to have for any .
Lemma 4.6:Let

satisfies (9)

Case 1) . Let

then . Suppose that
. Then, for every , the tra-

jectory will converge to the origin;
Case 2) . Let

then . Suppose that
. Then, for every , the tra-

jectory will converge to the origin.
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In both cases, no limit trajectory can be formed completely
inside the strip

Proof: We only prove Case 1. Since , by Lemma
4.5, there is no satisfying (9), so we have

and must be between and for some , noting
that cannot be in by Lemma 4.1 1). Following the
iterative procedure in the proof of Lemma 4.4, we can show
that for all , the trajectory will converge to the
origin. Now we consider a point between and . For in
this interval, the next intersection of the trajectory with the lines

is . Since (or )
and is to the right of , we must have

, and the subsequent intersections will move rightward
and fall between and in a finite number of steps. Therefore,
the trajectory will converge to the origin.

Now, consider . Let be the
minimal integer such that goes out of , then by the
shape of the Lyapunov ellipsoid, the point must be to
the left of (or to the right of if is below the line

), otherwise we would have , which
is impossible. Hence, must be to the left of

, and the subsequent intersections either fall betweenand
at a finite step, or go to the left of . This shows that no

limit trajectory can be formed completely to the right ofand
symmetrically, to the left of . Hence, no limit trajectory can
be formed completely inside the strip

Proof of Proposition 4.1:It follows immediately from
Lemmas 4.4 and 4.6.

The number and the point can be easily com-
puted by applying Lemma 4.1. Actually, all the satisfying (9)
can be determined. Let , then satisfies (9) for some

if and only if satisfies

and

(12)

Assume that , then by Lemma 4.5, we only need to check
if there is such an in the interval . Clearly, no in

satisfies (12) by Lemma 4.1 1). So we need to check
over the intervals with increased from 0 to
and the interval .

Consider a point in the interval . By Lemma 4.1
2), the smallest integer for is . By
Lemma 4.2 3), is to the right of .
So there exists satisfying (12) if and only if

is to the left of , i.e.,

(13)

If this is true, then , the first coordinate of , can be solved
from

(14)

In summary, we have the following
Algorithm for Determining All the Satisfying Condition

(9): Assume . Initially set .

Step 1) . If (13) is satisfied, then compute from
(14). Repeat this step until .

Step 2) Solve

for , if , then satisfies (9) with
.

V. PROOF OF THEMAIN RESULTS

Now, we turn back to the system (5),

(15)

For easy reference, we restate Theorem 2.1 as follows.
Theorem 5.1:The system (15) is globally asymptotically

stable if and only if is stable and none of the following
statements are true.

1) There exists an such that

and

2) There exists an such that

and

3) There exists an and an such that

and

4) There exists an and an such that

and

Proof: We will exclude the possibility of the existence of
limit trajectories (except for the trivial one at the origin) under
the condition that none of statements 1)–4) in the theorem is
true. In the following, when we say a limit trajectory, we mean
a nontrivial one other than the origin. Clearly, every limit trajec-
tory must include at least one point on the boundary of the unit
square, i.e., a point in the set . By Propo-
sition 3.1, we know that a limit trajectory cannot have points
in both and . So we have two possibilities here, limit
trajectories including points in , and those in-
cluding points in . Because of the similarity,
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we only exclude the first possibility under the condition that
none of 1)–3) is true, the second possibility can be excluded
under the condition that none of 1), 2) and 4) is true.

For a given initial state , we denote the trajectory of the
system (15) as and the trajectory of (7) as .

Clearly, if satisfies 3), then this also satis-
fies (9). On the other hand, suppose that there is somethat
satisfies (9). Let be as defined in Lemma 4.6 for the system
(7) [if there is no that satisfies (9), then we can assume that

and the following argument also goes through]. Note that, if
there is some , , that satisfies (9), i.e.,

and

we must also have

which indicates that satisfies 3). Otherwise, as in the proof
of Proposition 3.1, the area of the convex hull of the set

would be less than the area of the convex hull of the set

This would be a contradiction to the fact that .
Hence, if no satisfies 3), then must be outside of .

By Proposition 4.1, no limit trajectory of (7) can lie completely
inside the strip

It follows that no limit trajectory of (15) can lie completely be-
tween and . Therefore, no limit trajectory of (15) can in-
clude only boundary points in . On the other hand, if a limit
trajectory include only boundary points (or , note that,
by Proposition 3.1, no limit trajectory can include both and

), then 1) or 2) must be true, which contradicts our assump-
tion. In short, if there is a limit trajectory that include points in

, it must include at least one point on and
one on (or ). Here, we assume that it includes.

Let us consider the trajectories and . Sup-
pose that has an intersection with but does not
include and any point in , we conclude that

will converge to the origin. The argument goes as fol-
lows.

Let be the smallest such that intersects .
Denote . Since 2) is not true, must also be the
smallest such that

So, we have for all . Here, we
have two cases.

Case 1— : In this case, is to the left of . Since
goes to the right of , by

Lemma 4.5, must be to the left of . It follows that
, where is the interval in Lemma 4.6 2). Hence,

will converge to the origin. Moreover, the subsequent
intersections of with are between and .
Since does not touch , we must have

and hence will also converge to the origin.
Case 2— : In this case is to the right of . By

the assumption that does not include , the intersec-
tions of with will stay to the left of (or to the
right of ). Since , by Lemma 4.5, the intersections
will move rightward until falling on , where is
the interval in Lemma 4.6 3). Similar to Case 1, we have that

converges to the origin and .
So far, we have excluded the possibility that a limit trajec-

tory includes any point in the set . The possi-
bility that a limit trajectory includes any point in the set

can be excluded in a similar way. Thus, there exists
no limit trajectory of any kind and the system (15) must be glob-
ally asymptotically stable.

Here we provide a simple method to check the conditions 3)
and 4) of Theorem 5.1 based on the algorithm to determine all
the satisfying (9) and hence in the previous section. From
the proof of Theorem 5.1, we see that 3) is true if and only if

. To check 4), we can exchangeand , i.e., use a state
transformation . The system (15) is then equivalent
to

(16)

where . The condition 4) for the system (15) is
equivalent to the condition 3) for the system (16).

VI. CONCLUSIONS

We gave a complete stability analysis of a planar dis-
crete-time linear system under saturation. The analysis involves
intricate investigation on the intersections of the trajectories
with the lines and . Our main result provides
a necessary and sufficient condition for such a system to be
globally asymptotically stable.
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