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Discrete-Time Linear Systems Under Saturation
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_ Abstract—A complete stability analysis is performed onaplanar  stability analysis of planar systems of the form (1). In partic-
discrete-time system of the forme(k + 1) = sat(Ax(k)), where ylar, necessary and sufficient conditions for the system to be
A is a Schur stable matrix andsat is the saturation function. G Ag will be identified. In the process of establishing these con-

Necessary and sufficient conditions for the system to be globally ... . X . . . .
asymptotically stable are given. In the process of establishing these ditions, the behaviors of the trajectories are examined in detail.

conditions, the behaviors of the trajectories are examined in detail. ~ This work is motivated by our recent result [4] on the planar

Index Terms—Limit trajectories, neural networks, saturation, continuous-time system
stability.
y Z = sat(Az), r € R% 3)

|. INTRODUCTION However, the two systems (1) and (3) behave quite differently

YNAMICAL systems with saturation nonlinearities arise " though they _have a S'm”ar description. First of all, (3) op-
) L erates on the entire plane while (1) operates only on the unit
frequently in neural networks, analogue circuits and con- . . .
square. The trajectories of (3) do not intersect each other but the
trol systems (see, for example, [9], [5], [2], [6] and the refer- . .
) . . connected trajectory of (1) [by connectingk) andz(k + 1)]

ences therein). In this paper, we consider systems of the fQI- . . T : L

lowing form: can intersect itself. The limit trajectories of (3) must be periodic

but a limit trajectory of (1) need not be. Finally, it is known that
ok +1) = sat(Az(k)), e R" ) in the sFabmty analyslls for nopllnear systems, many more to.ols
are available for continuous-time systems than for discrete-time

where saR” — R" is the standard saturation function. With £YSt€ms. , o
slight abuse of notation, we use the same symbol to denote bot{Ve W'”_ s_tart our investigation of the pla_nar_system (1) by
the vector saturation function and the scalar saturation functiGiaracterizing some general properties of its limit trajectories.

ie., ifv € R", thensatv) = [sat(v1), sat(v), . .., sat(v,)]” Ari importantfeaturr—_: is thgtanontrivial_limittrajectqry canonly
and intersect two opposite pair of boundaries of the unit square and
it cannot have intersections with both of the neighboring bound-
-1, ifv < -1 aries. This result turns our attention to a simpler system which
sat(v;) = { vi, f-1<v;<1 (2) has only one saturated state
1, if v; > 1.

_ ) ) Et1) = a1121(k) + a1ox2(k) 4
Systems of the form (1) and their continuous-time counterparts w(k+1) = sat (agy 21 (k) 4 azoma(k)) | (4)

mainly arise in neural networks and in digital filters.

As with any dynamical system, stability of these systems fOr this simpler system, we will establish a relation between the
of primary concern and has been heavily studied in the literat feSent intersection of a trajectory with the lings= +1 and
for a long period of time (see, for example, [1], [7]-[11] and thE€ next one in terms of a set of points on the line= 1. The
references therein). As seen in the literature, the stability angglation is discontinuous but piecewise linear. The set of points
ysis of such systems are highly nontrivial even for the plangfe the places where the discontinuity occurs. Some attractive
case. For the continuous-time counterpart of (1), only until reroperties about these points and the relation between the next
cently have the necessary and sufficient conditions for glogfersection and the present one are revealed. These properties
asymptotic stability (GAS) been established for the planar ca3@lP Us to establish the condition for the system (4) to be GAS
[4]. For the planar discrete-time system of the form (1), to tt&hd to characterize an interval on the line= 1 from which the
best of our knowledge, no necessary and sufficient conditiotigiectories of (4) will converge to the origin. This in turn leads
have been known, although various sufficient conditions af@our final result on the necessary and sufficient conditions for

available [9], [11]. This paper attempts to carry out a complet@€ GAS of a planar system of the form (1). _
This paper is organized as follows. In Section I, we give the

. . , . necessary and sufficient conditions for the GAS of the planar
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possible limit trajectories of the system which help us to ex- 3) There existV > 1, d> > 0 andx; € (—1, 1) such that
clude the existence of limit trajectories under the condition of

the main theorem and focus our attention to the simpler system AN {wl} - [ I }

with one saturated state. Section IV investigates system (4) and 1 1+d;

gives a necessary and sufficient condition for the system to #@d

GAS. Section V proves the main result of this paper. Finally, a yL [951} €S vk < N.

brief concluding remark is made in Section VI. 1

4) There existV > 1, d; > 0 andzy € (-1, 1) such that
II. MAIN RESULTS

Consider the following system: AN { ! } =+ {1 + dl}
T T
x(k + 1) = sat(Ax(k)), r € R? 5) and 1
A¥ [37 } €S Vk<N.
whereA = [ ©*] and satR* — R? is the saturation func- 2
tion, i.e., ifv € R?, then satv) = [Sa:gb};] and sat.) is as Each of the above conditions implies that there is a simple
defined by (2). s periodic trajectory that starts at somgwith period N or 2V

Given an initial statez(0) = x,, denote the trajectory of The trajectory stays inside as that of the corresponding linear
the system (5) that passes throughat & = 0 ast(k, zo). System for the firstv — 1 steps, and when the linear trajec-
In this paper, we only consider the positive trajectories. Hendery goes out ofS at step.V, the saturation function makes
throughout the papek, > 0. P(N, z9) = sat(ANxq) return exactly atey or —z(. These

Definition 2.1: The system (5) is said to be stable at its equponditions can be verified. Sincéis stable, there exists an in-
librium z. = 0 if, for any ¢ > 0, there exists @ > 0 such tegerNo such thatd*z, € S for all & > No and allzo € IS.
that, ||¢(k, zo)|| < e, forallk > 0 and|zo|| < 6. Itis Hence, it suffices to check the four conditions only Mor< Nj.
said to be globally asymptotically stable (GAS)if = 0isa  Conditions 1) and 2) are very easy to check. As to 3) or 4),
stable equilibrium antimy, ... ¢(k, zo) = 0 for all z, € R2.  for each/V, at most twar} s can be solved from

Also, it is said to be locally asymptotically stable if it is stable
andlimy o, ¥ (k, zo) = 0 for all 2o in a neighborhood’; of AN [T = o

The system is GAS only if it is locally asymptotically stableg see this, denote the elements@¥ as(AN);;, i, j = 1, 2.
which is equivalent to thati has eigenvalues inside the unitrpnen from 3), we have

circle. In this caseA is said to be Schur stable, or simply stable.

In this paper, we assume thatis stable. Denote the closed unit (AM121 + (AN) 10 = 421 (6)

square as$8 and its boundary a&S. It is easy to see that no .

matter wherez(0) is, we always have:(1) € S. Hence, the If (A%)11 # %1, then there are tway’s that satisfy (6). If

global asymptotic stability is equivalentlion;, .. 9/(k, zo) = (AV)11 = +1, we must havgA");» # 0. OtherwiseA™

0 for all zo € S. The main result of this paper is presented a&ould have an eigenvalug1, which is impossible sincet is

follows: stable. In this case, (6) has only one solution. It remains to check
Theorem 2.1:The system (5) is globally asymptoticallyif d2 > 0 and

stable if and only if4 is stable and there exists g € 9S and

N > 0 such thatp(N, z¢) = +x¢ andyp(k, zo) = A¥zo € S A¥ {9611} €S Vk<N.
forall £ < N.
If (k, m9) = A¥zo € Sforallk < N, theny(N, zg) = In the process of proving Theorem 2.1, we will develop a

sat(AYN zq). Hence, this theorem can be interpreted as followshore efficient method to check the conditions.
Assume that is stable, then the system (5) is GAS if and only Example 2.1: Consider (5) with
if none of the following statements are true.

. 1.5840 —1.3990
> > =
1) There existV > 1 andd, d» > 0 such that A [3.9702 —2.9038} .
AN [1} -+ [1 + d1:| and A* [1} €S vk < N. The_ foIIov_ving results are prese_nted with accuracy up_t_o four
1 1+d; 1 decimal digits. There are two points 86 that satisfy condition
) 3), one with
2) There existV > 1 anddy, d» > 0 such that
(A%)12
= —"—— =0.7308
v |1 —~1—d; VM
1 =F 11d
and the other with
and
=1 (A2)12
Ak N. =——r=_ =0 .
{ 1} €S Vi< 1 (A%, 0.9208
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But there are four periodic trajectories as listed Since the function safiz) is continuous in, if a trajectory
¥(k, zo) returns arbitrarily close ta: € I'(zo), it will also
1) {0-7308} { - 0-2414} { - 0-3791} return arbitrarily close to satiz). We state this property in the
1.0000 —0.0023 —0.9516 following lemma.
0.7308 Lemma 3.1:1f yo € (o), theny(k, yo) € I'(zo) for all
[1.0000} k> 0. le_en anys > 0 (arbltrar_lly sma_ll) and any integer
N > 0 (arbitrarily large), there exists an integkl > 0 such
%) [0.9028} [0.0310} [—0.9028} that
1.0000 0.6804 —1.0000
[9(k + Ko, w0) — (K, yo)l,o <& VES N,
—0.0310 0.9028
{—0.6804} {1_0000} Because of Lemma 3.1, fgp € (o), ¥(k, o) is called a
limit trajectory of ¥)(k, xo). It is periodic if and only ifl*(z¢)
3) {0-7424} [—0-2230} {—0-4145} has finite number of elements.
1.0000 0.0438 —1.0000 The following notation is defined for simplicity. Denote
0.7424 7
2) [1.0000} [0.1850} [—1.0000} L {1,
1.0000| | 1.0000| | —1.0000 o= {LJ roz € (-1, 1)}-
[—0-1850} {1-0000} We see thal;,, and—L,, are the two horizontal sides 8f and
—1.0000 1.0000 | - L, and—L, are the two vertical sides &. Notice that they
) o ) ) ) do not include the four vertices of the unit square. Also, denote
In the thlrd perlodl_c trajectory, the first coordinate = 0.7424 v = [}], vy = [f}] as the two upper vertices of the square.
of the initial state is computed from Let yo be a limit point of some trajectory and for simplicity,
5 let yi = ¥(k, yo). DenoteY = {£y: & > 0} andAY =
g = 127 a11(A%12 _ 0.7424. {+Ayy: k > 0}. Clearly,Y must have an intersection with the

an(4?)n -1 boundary of the unit square. ¥ N L, is not empty, define

It should be noted that 4) is the only stable periodic trajectory. . x1
As we can see from the example, there are other kinds of peri- 71 = inf {xl { 1 } €Y n(LnUiv, ”2})}

odic trajectories than what are inferred by the conditions 1)—4)qq
e.g., trajectories 3) and 4). There may also be trajectories that
neither are periodic nor converge to the origin. We will prove in 2 = Sup {371 [
the subsequent sections that if none of the conditions 1)-4) is
true, then there exist no nonconvergent trajectory of any kindf ¥ N L., is not empty, define

”ﬂ €Y N (Ly U, UQ})}.

1
lIl. LIMIT TRAJECTORIES V3 = sup {3725 [xJ €Y N (Ly U, —02})}
To prove that (5) is GAS, we need to show that the onignd
limit point of any trajectory is the origin. It is known that vy = inf {352: [ 1 } €Y A (Ly U {v, _UQ})} '
being stable alone is not sufficient to guarantee the GAS of the T2 ) ’

system. Actually, it is well-known [9)] that the system may have The following proposition shows that a limit trajectory can

sta_uonary points other than the origin, there may be.pe.rlod ?‘lly intersect one opposite pair of the sides of the unit square,
trajectories and even trajectories that neither are periodic, no

. . ) . . 3t both of the neighboring pair. This result will reduce our

converge to a stationary point. In this section, we are going é?oblem to a much simpler one

characterize some general properties of the nonconvergent raﬁroposition 3.1: Lety, be a Iirﬁit point of some trajectory.

jectories. These properties will facilitate us to exclude the exis- )

tence of such nonconvergent trajectories under the condition oft) If %o € Ln., thent(k, yo) will not touch L,, or —L,, for

Theorem 2.1. all £ > 0. Moreover(k, yo) will stay inside the strip
Since every trajectory is bounded by the unit square, there I

exists a set of points such that the trajectory will go arbitrarily { LUJ o] < max {|n], |’Y2|}} .

close to them infinitely many times.

Definition 3.1: For a givenzy € R?, a pointz* € R? is 2) If yo € Ly, theny(k, yo) will not touch L;, or —L;, and

called a (positive) limit point of the trajectory(k, z) if there will stay inside the strip
exists a subsequencewfk, o), ¥ (k;, z0),i =1, 2, ..., such .
thatlim; ... 1(k;, zo) = z*. The set of all such limit points is { {xj ¢ 2] < max {|vs], |’Y4|}} .

called the limit set of the trajectory. We denote this limit set as
I'(zo). 3) The seft” cannot include botl; andwvs.
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Fig. 1. lllustration for the proof of Proposition 3.1.
Proof: The proof is built up on a simple geometric factthe same vertical line) and ify, € L., then there is a point in

Let X be a setifR? and letAX be the image of{ under the AY that is just to the right ofx (on the same horizontal line).
linear mapr — Axz. Then, the area o X equals to the area of  Denote the areas of the convex hullsiofand AY as A(Y)

X times|det(A4)]. and A(AY"), respectively. Also, let

1)We first assume that” contains a finite number of ele-
ments, i.e.z/(N, yo) = %o for someN. Suppose on the con- Uy = ['Vl} Uy = ['V?}
trary that the trajectory will toucl,, or —L,, at some step. The 1 1
main idea of the proof is to show that the area of the convex hull s = [ 1 } e — [ 1 }
of AY is no less than that df, which contradicts the fact that 73 V4
|det(A4)] < 1.

as shown in Fig. 1. In the figure, the points marked wi#i “
belong toAY’, the polygon with dash—dotted boundary is the
convex hull of AY and the polygon with verticesw,;, ¢ =
1, 2, 3, 4, and some points in the interior & is the convex
hull of Y. Since there is at least one pointiinthat is to the left
1 of u1, one to the right ofi2, one above:z and one below,,
Ay—1 = [ 1+ d} the convex hull of” is a subset of the convex hull @Y. (This
may not be true ifu; is the leftmost point i, or if us is the

Since Y contains points on bothl; and L,, =,
1 =1, 2, 3, 4, are all defined.

If 4 is in the interior of the unit square, thep = Ay _1; if
Yg € Lp, thenyk = Sat(Ayk,l) and

for somefz;| < 1andd > 0 [note thatyo = yn = rightmost). It follows thatd(AY") > A(Y'). This is a contradic-
sat(Ayn—1)]; if yx € Ly, then tion sinceA(AY') = | det(A)|A(Y) and|det(A)| < 1.
If, on the contraryY has a point outside of the strip
A _|1+d
Yk—1 T 2
oo | 7] <max{[ml, yel}
for some|zz| < 1 andd > 0. If y, = v (or v2), theny, = 2
sat(Ayy—1) and then, there will be a point i that is to the left ofu; (or on
the same vertical line with;), and a point to the right af, (or
1+4+d; —1—d; . . . .
Ayp—1= 1+ dy or| 4, dy on the same horizontal line with,). In this case, we also have

A(AY) > A(Y"), which is a contradiction.

for somedy, d» > 0. Hence,AY contains all the elements &f Now we extend the result to the case thathas infinite
which are in the interior o8, and for thosey; on the boundary many elements. Also suppose on the contrary that the trajectory
of S, if yx € Ly, thereis apointiMY thatis just aboveg, (on  will touch L, —L,, or go outside of the strip at some step. By
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Lemma 3.1, for ang > 0 and any integetV > 1, there exists ~ The termsGAS, limit pointand limit trajectory for (5) are

a Ko > 0 such that extended to (7) in a natural way.
Foragiven initial state(0) = z, denote the trajectory of the
[P (k + Ko, o) — 1(k, o)l <€ system (7) ag(k, o). Denote the line:, = 1 asL, the line
) . z9 = —1 as—L§ and the region between these two lines (in-
forall £ < N and in particular cluding+L¢) asS¢. We will show later that (7) has nontrivial
limit trajectory in S if and only if (5) has nontrivial limit tra-
[9(Ko, 20) = w0l < & jectory that intersects=L;,. In the sequel, when we say “limit
trajectory,” we mean a limit trajectory other than the trivial one

So, the trajectory)(k + Ko, zo), £ > 0, will also touch (or
almost touch).,,, — L., or go outside of the strip. Singg is a
limit point of ¢(k + Ko, xo), there exists d; > 0 such that

at the origin.
In this section, we study the GAS of the system (7) and will
also determine a subsetr§, which is free of limit points. Our

(K1 + Ko, ©0) — yol . < e investigation will be based on the study of the linear system

Define z(k+1) = Azx(k). (8)
) For a stable continuous-time linear planar system, if a trajec-
Z(e) = {P(k + Ko, 20): 0 < k < K} tory stays inS¢ for a whole cycle [ z(¢) increases or decreases
and by 2x], thenz(¢) will be in S¢ for all ¢ > 0. But, for the dis-
AZ(e) = {Av(k + Ko, 70): 0 < k< K }. crete-time linear planar system (8), a trajectory might go out

of S¢ after staying withinS¢ for several cycles. In the contin-
Using similar arguments as in the finite element case, we caous-time case, the trajectories never intersect but in the dis-

show that crete-time case, the connected trajectory [by conneci{itg
A(AZ(2)) andz(k + 1)] can intersect itself. These facts make the anal-
|det(A)| = ———~= > 1 - O(e). ysis much more complicated than the continuous-time system
A(Z(e) as discussed in [1], [3], [4] and [10].

Letting ¢ — 0, we obtain| det(A)| > 1, which is a contradic- A simple one or two point periodic trajectory can be formed

tion. if A[%] = =£[,%,] for somed > 0. An N or 2N point periodic
2) Similar to 1). trajectory will be formed ifAN["!] = +[ )], d > 0 and
3) If, on the contrary}” contains bothy, andw,, then the A*["}] € 8¢, forallk < N. _ _ -
convex hull ofY” is S. Also, AY contains a point Proposition 4.1: The system (7) is GAS if and only il is
stable and the following statement is not true for anyc R.:
Ay; = Bl} 7 o1 <—1 2p>1 There exist an integeé¥ > 0 and a real numbet > 0 such that
2
. AN T _ + 1
and a point { 1 1+d
and
Ay = | & >1 >1 k|21 e
Ye=lgy | T2 P22 AF|THles VE<N. 9)
hence, the convex hull oﬁ'Y.containsS. This also leads t0 | et v, = min{|z,|: 2, satisfies (9}, then no limit trajectory
A(AY) 2 A(Y), a contradiction. U can exist completely within the strip
V. SYSTEMS WITH ONE SATURATED STATE {[il} | < as} )
2

Now, we are clear from Proposition 3.1 that if there is any
limit trajectory, it can intersect only one opposite pair of the . )
sides of the unit square, eitheks, —Ly,), or (L,, —Ly,), not Remark: !f (9) is t_rue for some 1, th_en there will
both of them. So, we only need to investigate the possibility th3¢ & stationary point or Npenodlc trajectory  such as
alimit trajectory only intersects Ly, The other possibility that £0: %0 - -, A™ "o, sab(A%wo) = o, Az, .... There

it only intersectstL, is similar. For this reason, we considefMay also exist other kind of limit trajectories. Proposition 4.1
the following system: says that if there is no simple periodic trajectory as inferred by

(9), there will be no limit trajectory of any kind (except the one
ar121(k) + a1ox2(k) — saty (Az(k at the origin). N _ _
sat (agyxy (k) + agoza (k) | 7~ 72 (k) To prove Proposition 4.1, we need to establish the relation

(7) between the next intersection of a trajectory with; and the
Assume thatd = [71! *°is stable. lfay; = 00ra;> =0, itis present one.
easy to see that both systems (5) and (7) are GAS and none dfor z; € L, suppose tha(k, zo) will intersect+L at
the conditions 1)-4) following Theorem 2.1 can be true. Sowe=#%;,i =1, 2, ...,with0 < k; < k2 < .... Since the trajec-

assume in the following thaty;, a1, # 0. tory can be switched te-y»(k, xo) at anyk without changing

x(k+1)=
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its convergence property, we assume for simplicity that all the Here we will use a simple way to denote a line segment. Given
intersectiongyz (k;, zo) are inLs (If not so, just multiply itwith  two pointsp;, p» € R?, denote

—1). Denote
1, p2) = {Apr + (1= Np2: 0< A < 1}
wg = pa(k1, mo)  xd = tpa(ka, z0)

and similarly
We callzg, 23 andz3 the first, the second and the third intersec-
tions, respectively. We also call, andz} the present and the (p1, p2] =[p1, p2l\{p1}
next intersections. [p1, p2) =[p1, p2]\{p2}

Clearly,z§ is uniquely determined hy,. We also see that the
relationzo — xf is a map fromL to itself. To study the GAS
of the system (7), it suffices to characterize the relation betweernpefine
xo andz}. Through this relation, we can show that if (9) is not
true for anyzy, then for everyzy € Lj, the intersections:d, Qp = min {a < aq: AF {O‘} c S§¢ Vi > 0}
x3, ... will move closer and closer toward an interval, and all 1
the trajectories starting from this interval will not touch the line&nd
+L5 and will converge to the origin. Bo := max {/3 > . AF [ﬁ} € 8° v k> 0} .

Let zo € Lj. The next intersection of(k, xo) with Lj 1
occurs at step; if

(pl’ p2) = [pl, p2]\{p1, p2}-

Sinceay; # 0, the lineALS, := {Az: « € Lj } has intersec-
[0 1 ]Ak1$0| >1 tions Wit_h botr_lL; and—Lyj, so there exist points on both sides
of p. which will be mapped out o8¢ underA. Hencexq and

and Bo are finite numbers. Now, let

[0 1]4%z| <1 Vk <k

_ |0 _ | Po
The next intersection is = 2 (ky1, zo) = sab(A* z) [or po = [ 1 } d0 = [ 1 }
—sata(A*120)]. Since for differentzy € L, the number of . .
steps for the trajectories to returnd.;, i.e., the numbek, as then, for allzg € [po, qo], 12(k, o) = A% will converge to

defined above, is different, we see that the relation bet\menthe Origin. Because of the extremal nature in the definition of
andz} must be discontinuous. ap and By, we must haved*p, € £L¢ for somek, otherwise

We will first determine an interval o, from which a tra- o Would not be the minimum of the set. Therefore, define

jectory will not intersect:L§ again (naz$) and will converge
to the origin.

SinceA is stable, there exists a positive definite mafrigsuch
that

mo := min{k: = +L5}
and similarly
ATPA—P <0, no := min{k: A¥qy € £L5}.

i . If 1, th finiti
Define the Lyapunov function as mo > 1, then by definition

k .
V(x) = 27 Px [0 1]4%po| <1 Vk <mpo
and by continuity, there exists a neighborhooghgfsuch that
[0 1]A*z¢| < 1,VE < my for all zq in this neighborhood.
ecause of this, we can define

then for everyr € R?, V(A*z) < V(z) forall k > 1.
Given a real numbes > 0, denote the Lyapunov level set a

E(p) :={x € R%: 2T Px < pl. r
oy ::min{a<a0: AF a} € 8° ‘v’k<m0}.

Let p. be such tha€(p.) C S° and&(p.) just touchestLs. L1
In this case£(p..) has only one intersection withg . Let this

. . If ng > 1, then define
intersection be

1

Do = [ac} 1 = max {/3 > Bg: A /11 € S°, Vk < no}.

. . . . Also, because 0, aq andf, are finite. Let
If 2o = p., then the linear trajectoryt*z, will be inside zn # 0o P

E(p.) C S¢. Henceppz(k, zo) = sata(A¥zg) = Az, for all o Rt
k > 0 and will converge to the origin. Since Pr=14 D=1

ATPA—-P <0 It follows from the extremal nature in the definition af and

) ) ) 1 that there exists & < mg such thatd*p; € £L¢, so we
there exists an interval aroupdin L, of nonzero length, such gefine

that for everyz in this interval,io(k, zo) = A¥zg, k > 1,
will never touch+L§ and will converge to the origin. my = min{k: A¥p; € £L§}
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and similarly
ny = min{k: A¥q; € £L5}.

For simplicity, we denotg™ ™| asp.., and[ "] asge.. Implied
by the definitions are the following:

P1 € (Poos P0) @1 € (90, Goo);

and

mp <mg ni <ng.-

Inductively, if m;_; > 1, then define

Q; = 1nin{oc<o¢i_1:Ak [clx} eS¢ \v’k<mi_1}
andifn,_; > 1, define

B; = max {/3 > B _1: Ak |:/13:| e 8¢ Vi< nj_l} .
Let

| | B
and
m; = min{k: A¥p; € £L5} n; := min{k: A¥q; € £L5}.
Then

4 € (g1, @oo);
n; < Mj—1.

Di € (Poo, Pi-1)
my <Mmy;_—1

The induction procedure ends if botl; = 1 andn; = 1. We
denote the maximum index ofas! and the maximum index of
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4) |[0 11A¥p, 1| < 1forall k < m; and|[0 1]A™ip; 4| >
1;][0 1]A*g;11] < 1forallk < njand|[0 1]A™ g 41| >
1.
Proof: 1) This is a direct consequence of the definition
of po andqo.
2) From the definition ofn;, |[0 1]A*p;| < 1 forall k <
m; and|[0 1]A™p;| = 1. SinceA™: L§, is a straight line and
A™ip. is in the interior ofS¢, we have[0 1]A™i x| > 1 for all
2o € (pso, i) (Note thatp, is to the right ofp;).
On the other hand, since

Qg1 = Hlill{Oé < g A [CI

} € 8¢ VE < mi}

we have|[0 1]A*p; 41| < 1 for all k < m;. Also sinceA*p, is
in the interior ofS¢, we have|[0 1]A*zq| < 1 for all k < m;
and for allzg € (pit1, pe)-

Combining the above arguments we have, for
w0 € (piy1, pil, |[0 1]A™xo] > 1 and|[0 1]A%z| < 1
for all £ < m,. This means that the next intersection wtit.;
is 1/)2(7717;, 370) = SatQ(A"“a:o).

3) Similar to 2).

4) This is contained in the proof of 2). O

It is obvious thatat,(A™:z) is a continuous function of.
Lemma 4.1 2) implies that for altg € (p;+1, ps], the second
coordinate ofat2(A™ ), [0 1]sat2(A™ z0), is the constant 1
or —1, while the first coordinate remains linear o Similarly,
for all zo € [gy, gj+1), the second coordinate gfito(A™ xg)
is the constant 1 or1 and the first coordinate is linear on.
Same relation holds faty € (peo, pr] @ndzg € [gr1, Goo)-

We will provide an easy way to compuge andg; after re-
vealing more properties about this set of points. In fact, the fol-

all

4 asJ. As an immediate consequence of these definitions, wawing properties will lead directly to the proof of Proposition

have

ar<ar1 < - <ar<ag<a < Go< P <
<Byo1< By
and
l=my<mr_1 < - <mg <my

l=ny<nj_1 < - <n < ng.

We claim that this set of;, i = 0, 1, 2,
0,1,

,1,andg;, j =

, J, forms exactly the set of pomts Where discontinuity Denotep; = v2(my, pi) =

4.1. Forzo € L§, the next intersection @b, (k, zo) with £L7

can be onLj, or on—L§,. For simplicity, we will assume that
the nextintersection is abf,, otherwise we can replace the state
x(k) atthe intersection with-z(k), noting that we can multiply
the state at any step withl without changing the convergence
rate of a trajectory. Hence in the following, when we say that
xz € [pi, g;], we meanz € =[p;, g;]; and when we say that
x € £L§ is to the left (or right) ofp;, it could also be that is

to the right (or left) of—p;.

A™p; andg; = Pa(n;, q;) =

occurs on the relation between the next intersection of a trajet™’ ¢;. We see thap; is the second intersection gh(k, p;)

tory with +L§, and the present one.

Lemma 4.1:

1) If o € [po, qo, thenwyy(k, xo) = A*xo will be inside
Se for all £ > 0 and will converge to the origin.

2) If zo € (piy1, pi], then the next intersection of
”(/}Q(k', .’L'()) with :tL;’L is ”(/}Q(mi, .’L'()) = SatQ(Anli.To);
If 20 € (pwo,pr], then the next intersection is
¥2(l, o) = satz(Awo). Moreover, A™p;, € +L§
and Az ¢ S¢ for all zg € (poo, pi)-

3) If z9 € g5, ¢;41), then the next intersection of
Z/)Q(/{;, .’170) with :|:L7L is 1/)2(7’Lj, 370) = satQ(A"jazo);
If 20 € [g,¢-), then the next intersection is
P2(1, xg) = sata(Axg). Moreover,A™q; € =+Lj
andA™ixzq ¢ S¢ for all 2o € (¢j, goo)-

with £L7 (the first one ig;), andqj is the second intersection
of yo(k, qj) with L.
Lemma 4.2:

1) p5. 45 € [po, qol;
2) If p} € (gj—1, gj], thenm,_y = m; + nj_q; if q} c
i, Pi—1)s thenﬂj 1=n; +m;1;
3) Fori > 1, p! € (qo, go0) and forj > 1, qj
4) p; € (pi_1, qoo) aﬂqu (Poor Gj_1);
5) Fori, j > 1,p} andq cannot be both ifp;, ¢;], nor both
outS|de oflp;, g;], i.e., there must be one of them inside
[v:, g;] and the other one outside of the interval.
Proof: First, we give a simple property arising from the
Lyapunov functionV (z). SinceV (x) is a convex function and

€ (Poos P0);

p. takes the minimum value from all € L§, we have, if both
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51 and s, are to the left ofp, ands; is to the left ofs,, then Recall tha‘rq} = A" q; andp} = A™ip,, it follows that
Vis1) > V(s2); if both s; ands, are to the right op. ands;

is to the right ofs, thenV (s1) > V (s2). V(g) > V(p) > V(p) > Vig) > V(g)
1)Clearly,p$ cannot be to the left gfy, otherwise we would
haveV (p}) = V(A™ps) > V(po). Suppose on the contrarywhich is also a contradiction. O

thatpl € (g0, 7o), then by Lemma 4.1 3), we would have From 1), 3), and 5) of Lemma 4.2, we can see that the only
[[0 1]A™ A™opg| > 1. A contradiction to the definition gf,.  pair of p; and ¢; such thatp}, q} € [pi, g5] is po and go.

Similar argument holds fag,. This fact can be used to generate the paint9), 1, ..., I, and

2) From Lemma 4.1 4), the first timé*p; goes outoB¢isat ¢;, j =0, 1, ..., J. Although it is possible to determine these
k = m;_1. And by Lemma 4.1 3) and 4), fary € (g;—1, g;], points directly from the definition, it is hard to derive a compu-
the first time A%z, goes out ofS¢ is k = n;_;. Sincep; = tationally efficient method to generate the points from inside to

A™ip, € (gj—1, ¢l and A¥p; € S¢ for all k < m;, we have outside, i.e., frompo, go tops, ¢s. In the following, we provide
m;—1 = m; +n;j_1. Similarly, forg;, we haven;_; = n; + an iterative method based on the properties in Lemmas 4.1 and
mi_1. 4.2 to generate the points from outside to inside, i.e., fopny s
3) Similar to 1),p} cannot be to the left of;. Suppose on to po, go and use the unique property thgt ¢j € [po, go] as a
the contrary, thap} € [po, go], then A¥p, never goes out of sign to stop the iteration.
S¢. This is a contradiction sinca™ p; ¢ S¢. Also, suppose on
the contrary tha;bi1 € [pi—t; Pi—i—1), | > 0, then similar to the . .
argumentin 2), we would have;_; = m;+m;_;_1 and hence ﬁfgc;?thm for Generating i, 4j, mi, ny; and
. . S| icti I . PRV
T oo oo s el 10m Cecreases 9Kty 1 Set 5 = 1. Get e o mersc
&t € (poo p )' ’ = & 140, doo Y tions of ALS with  £L¢. They are p} and
7 ooy F0 )

. . —q? —p% and ¢%). Denote the line
4) Sinceyp; is to the left ofp;,_,, we have g, (or —py and gq;
) P Pit segment of ALj between L; and —Lj as

V(p:) > V(pi—1) > V(pe). Ly. Multiply the two end points of L,
i —1
By 3), p! is to the right ofp,, this implies ;rf.mc:igrlymt]he onﬁ . :::nle\f/\t/eofg;et pr a;(:d
Vipe) < V(p}) = V(A™p,) is p; and the one to its right is qs. If
1 1 —_ —_
and hence g{égf{them_[p“ gs], then I =J =0 and stop the
V(A™p.) < V(p.) < V(A™p,). (10) Step 2 i = 4 + 1. Check if AL;_; has
, i : , intersections  with +L;. If not, let
Slnnlc_:epi_l eggi,pc),the pointd™p;_yisonthelinebetween ;= _ " 4, 504 repeat this step. If
A™ip, and A™ip,. Also, since the functiof¥' (x) is convex, it there is, then cut off the part of AL+
follows from (10) that that is outside of S¢ and let the re-
V(A" p; 1) < max{V (A" p.), V(A™ip;)} = V(A™p,). maining part be L,;;. The cut-off place is
. . . one of +p; and +q¢j. Multiply the cut-off
Sincem;—y > m;, we haveV (A™ ' pi1) < V(A™pi-1) place from left with A~ The result is
and so far the innermost p; if it is to the
Vipi_y) =V(A™p_1) < V(A™ip;_y) left of  p., or the innermost q; if to the
<V(A™p;) = V(ph). (11) right of p.. In the mean time, we also

obtain m; = 4 and\or n; = #. Let the in-
By 3), pi_, andp; are both to the right of., hence the in-  nermost pair be  p;, ¢;, if pl, ¢} € [pi, gl
equality (11) implies thap} is to the right ofp} |, i.e.,p} € then we must have i = j; = 0 and stop the

(Pi_ 15 9o0)- algorithm since all the pi, ¢; have been
Similarly, we havey; € (peo, 7j_1)- computed. If  pl, gt € [pi, g;] is not true,
5) Suppose that boty, p; € [p:, ¢;], then by 2) and 3), we  then repeat this step.
have
Nj—1 =T5 + Mgl M1 = My + Nj_p2 We see from the above algorithm that the number of iterations

equalsmax{mqg, no}.

ltem 4) in Lemma 4.2 shows thb; 1, p}_,] C [p:, p}]
and[gj_,, ¢j—1] C [g}, ¢;]- Item 5) shows that either we have
mi—1 < Nj—1 Nj—1 < Myi—1 [pi» pi] C [a}, 5], orlg;, ¢;] C [pi, pi]- Item 3) shows that all
these intervals must includgg, go]. In summary, the facts in
Lemma 4.2 jointly show that the intervels;, p}] and[q;, g;],
1=20,1,..., 1,7 =0,1,....J are ordered by inclusion. We
can draw a figure for easy understanding of Lemma 4.2. If we
V(q}) >Vip) VipH) > V(g)). draw arcs fronp; to p; and arcs fromy; to ¢;, then these arcs

Wherekl, ko > 1.Sincem;_1 < m;_n1 aﬂdn]’,1 < k2, it
follows that

which is a contradiction.
On the other hand, suppose that bgihp} ¢ [p:, ¢;], then
we must have; to the left ofp; andp; to the right ofg;. Hence
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Fig. 2. lllustration for Lemma 4.2.

can be made not to intersect each other (see Fig. 2). Inthe figure,emma 4.4: Assume that the condition (9) is not true for any

we have z1 € R. Givenz(0) = z¢ € LS. Letz} andz3 be the second
and the third intersection of the trajectay(k, =o) with L,
[po, qo] C [p1, p}] C [p2, 3] C [&F, @1] C [ps, pi]. (if the intersections are on Lj,, then get symmetric projections

on L5). If zg € (poo, o, thenzd € (xo, go) and one of the

Let p? = who(mi_1, pi) = sata(A™i1p;), thenp? is the following must be true. . o .
third intersection ofya(k, p;) with +L¢. By Lemma 4.1 4), 1) 5 € (po, go) and there is no third intersectiar;

we know thatm,_; is the smallest integer such thatd¥p; is 2) x§ € (xo, pol;
outside 0fS*. Also letq? = 12 (n;_1, q;) = satz(A"1g;). 3) =5 € [0, goo) ANdF € (2o, 7).
Lemma 4.3: Suppose that (9) is not true for any € R, Similarly, if zo € [q0, ¢oo), thenz{ € (poo, w0) and one of the
thenp? € (p;, p}) andqj (q}, q;)- following must be true.
Proof: Supposey; € (g;, ¢j+1], then by Lemma 4.22), 4y zl e (po, qo) and there is no third intersectior;
the smallest for A*p; to go out ofS¢ isk = m,;—1 = m; +n;. 5) z) € [qo, %0);

Sop? = saty(A™itNp,) = satg(A"jp ). If on the contrary 6) x5 € (Poo, po] aNdx3 € (x}, xo).

thatpf € [p;, go0) (to the right ofp;), sinceq; = A™q; €  Niso, if 2 € (pi> p}) [or zo € (q}, ¢;)], thenz{, 23 and the
+L;, is to the left qufﬁ there must be a point € (g; ,npz) subsequent intersections will all be in the intergal, p?) [or
(qu q1+1] such thatd"sz is right abover, i.e.,saty (A" x) = (¢}, ¢;)]. Furthermore, for any, € Lj, thereis afinite’c]L such
x.ByLemma4.1 3), the next intersectiomef(k, =) with £L5 thatya(ky, zo) € (po, qo). After that, s (k, zo) will have no
is satz (A" ), so we must havet*s € 8¢ forall k < n; and  more intersection withLs, and will converge to the origin.
there exists:; suchthat (9) istrue. A contradiction. Onthe other  proof: Lemma 4.2 says that all the segmeiits, p!]
hand ifp} = sata(A™1p;) € (poo, pi] (tothe leftofp;), since and [¢}, ¢;] are ordered by inclusion. We will prove the
pi_y = A™rp;_, is to the right ofp;_, , there must be a point result ‘of this lemma from the innermost segment to the
x € [p;, pi—1) such thatd™:- 1z is right abover. Similarto the outermost with an inductive procedure. Without loss of
former case, we have a contradiction. Therefpfes (p;, pt), generality, assume thdp;, p!] is the innermost segment
and S|m|IarIy,q € (qj, q;)- O (except for[po, qo]), then we must have! € (g, 1] and
This Iemma says that if a trajectory starts frgmor g;, its  p7 = sato(A™0p7) = sata(A™0py).
third intersection witht L, will be closer to the central interval By Lemma 4.3p? € (p1, pi). There are three possibilities.
[po, go] than the first intersection or the second one. We will Case 1-$3 € [q0, p1) : (See Fig. 3.) Forg € [qo, pi),
show in the next lemma that this property can be actually ex} = sat(A™zo) by Lemma 4.1 3). Since} = sata(A™ go)
tended to allz € L. andp? = sat(A™pl) are to the left ofyy andp] respectively,
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Fig. 3. lllustration for the proof of Lemma 4.4: Case 1.
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Fig. 4. lllustration for the proof of Lemma 4.4: Case 2.

x} must be to the left of o and alsoz§ € [¢5, p?). So we have the same argument, we havg € (¢g, i), - ... Moreover, the
x1 € (g}, z0). This belongs to 4) or 5) of the lemma. If it issubsequent intersections will fall betwegnandg, in a finite
4), then there will be no more intersection; If it is 5), then witmumber of steps since there is mp satisfying (9).
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Fig. 5. lllustration for the proof of Lemma 4.4: Case 3.
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Fig. 6. lllustration for the proof of Lemma 4.4.

Forzo € (p1, pol, g = sata(A™x0) € [p}, p3). If zi € by the argument in the previous paragraph, we must have
(po, go), then we get 1) of the lemma. #} € [qo, p}), then [¢, zd) C (w0, ) and we get 3) of the lemma.
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Fig. 7. lllustration for the proof of Lemma 4.4: Case i.
—Ax Ax
= 5 =
P ] a % )
Fig. 8. lllustration for the proof of Lemma 4.4: Case ii.
Case 2-¢7 € (p1, po]: (SeeFig.4.)Fory € (p1, pol, Now, suppose thdp;, p}] is the outermost segment. By in-

x} = sata(A™w0) € (p?, pd]- Sincep? andp} aretotherightof duction, we have obtained the properties in the lemma for all
p1 andpo respectivelyzy mustalso betotherightet,i.e.,z € o € [ps, pt] and we would like to extend the properties to the
(wo, p§]- fzg € (z0, po), thenwe get2) and the subsequentinahole line L.
tersections,ifany, willmoverightwarduntilfallingbetwegrand Recall thatm; = n; = 1, sopt = Ap; and
qo;if 23 € (po, p§) C (po, 90),thenwegetl). p? = sato(A%pr) = sato(Ap}). The line ALS will actu-
Forzo € [qo, p1), xh = sat2(A™xo) € (p?, ¢8). If ¢ € ally intersect with+L§ at p} and —¢} (or —p} and g¢}).
[po, ¢8) C (po, qo) then we obtain 4). Il € (p?, po], then Assume thap} is on L¢. Then the ray{Az: = € [g7, go0)}
the argument in the foregoing paragraph applies and we hasebelow the line —L5. Get a symmetric projection of
x3 € (x3, p§] C (x§, x0), which belongs to 6). this ray as{—Az: = € [qs, ¢e)}. Then the two rays
Case 37 € (po, q0): (See Fig. 5.) Forg € (p1, pol, {—Az: x € [q7, ¢o0)} @and{Azx: x € (poo, pr]} are parallel
we havez{ € (p?, pt] C (po, g0), which belongs to 1). For and are both above the ling (see Figs. 7 and 8). Here, we
zo € [qo, p1), we haver} € (p?, ¢t] C (po, qo), which be- have two cases.
longs to 4). Case i: The rays have a positive slope (see Fig. 7). Since
So far, we have shown that one of 1)-6) holds foraalle  p} € [qs, go0), We havep? € [¢}, goo) and by Lemma 4.3,
[p1, pt]. And in each of the above three cases, we see that fgr € (pr, pt). So,p? € (¢, p}).
all zg € (p1, p1), z$, z3 and the subsequent intersections are Forxo € (p}, ¢o0), Since bothy}, = —saty(Aqgys) andp? =
allin (py, pt) and will fall betweerpy andqq in a finite number —sat»(Apt) are to the left ofy; andp!, respectively, and since
of steps. there exists na € Lj such that—saty(Az) = x, we must
Next, we assume that these properties hold for diave,zy = —sata(Axg) to the left ofzg andzy € (p%, o).
zo € [pi,p}] and the next segment which includesf =} € (po, qo), then we obtain 4). I} € [qo, xo), then we
[pi, pi] is [gj, ¢;] (see Fig. 6). We also have three casesbtain 5). Ifz§ € (¢}, po) C (¢}, ¢s), then by the established
¢ € [pi, ), ¢ € (¢f, pi] andq; € (ps, p}). By treating properties orig}, ¢s], we must havery € (3, ¢s) to the left
the segmentp;, p;] as [po, o] in the proof for [pi, pi], of p} and hence to the left of,. Thereforex3 € (x§, o) and
we can use the same argument to show that one of 1)+ get 6).
holds for allzo € (g}, pi] U [p;, , ¢;)- Moreover, for all  Forzg € (peo, p1), ©§ = sata(Az) is to the right ofp}, so
zo € (qf, pi] U [p, , ¢;), the intersections will move toward the properties fox, € (p}, poo) applies. Also note thatj is to
[pi, p}] and fall betweerp;, p}]in a finite number of steps.  the right ofp?. Hencer3 € (zo, z{) and we obtain 3).
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Fig. 9. lllustration for the proof of Lemma 4.5.

Case ii: The rays have a negative slope (see Fig. 8). Inthis  Proof: Whena,. < 0, an ellipsoidS(p) takes the shape in
casep? € (pr, ¢3). Fig. 9. Each ellipsoid(p) has an intersection with the ray that
Forzo € (poo, pr), Sincep: = Apy is to the right ofp; and  Starts from the origin and passes thropghThis intersection is

there exist na: € L§ such thakaty(Az) = =, we must have the highest point in the ellipsoid. Sinee < 0, it can be seen
2} = saty(Azx) to the right ofzo, in particularzy € (zo, pt). that

If =3 € (z0, po], then we obtain 2). Ity € (po, go), then we Ty Ty
have 1). Ifz} € (g0, pt), then by using the established property 4 <[ 1 D <V <i [1 +d

}) Vo > ., d>0.
in the interval(p;, pl), we haver? € (pr, ) C (w0, ) and

we obtain 3). Since
Forzo € (p3, goo), Ty = —sata( Ax) is to the right ofp?. By v <AN [xlb <V <[$1D
applying the property farg in (poo, pr) and(ps, pt), we have 1 1

2 1 i
€ (zg, xo), which belongs to f). b : Nz x
*o & o, _ ) itis impossible to havel™ [*' | = £[,7,] for anyz: > a.. O
Similar to the argument for the intervéby, p1), it can be | emma 4.6: Let
shown that the intersections will fall betweg, p}) in afinite

number of steps for alt, ¢ (py, pt). s = min {|zq]: 2, satisfies (9) .
In summary, the intersections of a trajectery( %, o) with Case 1)a, < 0. Let
the linestLs, will move from the outer intervals to the inner -
intervals until falling into(po, go) in a finite number of steps. P, = [—as}
After that, it will not touch the linest L, and will converge to 1
the origin. - thenpl = p; € (Poo; o). Suppose thap, €
Next, we suppose that the condition (9) is true for same [pi+1, pi). Then, for everyry € (ps, p}], the tra-
R. We would like to determine an interval ih;, such that a jectoryo(k, xo) will converge to the origin;
trajectory starting from this interval will converge to the origin. Case 2)a,. > 0. Let
Recall thatp,. is defined to be the unique intersection of the
Lyapunov ellipsoic (p..) with the lineLs, (see Fig. 9). Alsog.. Ds = {Of}
is the first coordinate of., i.e.,p. =[]
Lemma 4.5: Assume thatv. < 0. If there exist an integer thenpl = p, € (qo, 9o0). Suppose thap, €
N > 0and ad > 0 such thatd™ [ ] = +[ 7} ], then we must (¢, gj+1]. Then, for everyzo € [g}, ps), the tra-

havez; < a. < 0. jectoryo(k, xo) will converge to the origin.
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In both cases, no limit trajectory can be formed completelfthis is true, theney, the first coordinate ofq, can be solved
inside the strip from

{m:w%}_ (1 olam™ M - (14)

In summary, we have the following

Proof: We only prove Case 1. Singe. < 0, by Lemma . o e "
4.5, there is nar, > «. satisfying (9), so we havea, < Algorithm for Determmmg AII‘thevl Satisfying Condition
(9): Assumeq, < 0. Initially seti = 0.

a. < 0 andp; must be betweep;; andp; for somez, noting = - -
thatp, cannot be injpo, go] by Lemma 4.1 1). Following the Stepl)i=1i+1.If (13)_ is satlsfleq, then computg from
iterative procedure in the proof of Lemma 4.4, we can show (14). Repeat this step uniil= 1 — 1.
that for allzo € [p;, p!], the trajectory will converge to the Step 2) Solve
origin. Now we consider a point between andp;. Forzg in 1
this interval, the next intersection of the trajectory with the lines [1 0]A [ 1 } =*n
+L§ is z§ = sat2(A™izg). Sincesata(A™ ps) = ps (OF —ps)
andp! = saty(A™p;) is to the right ofp;, we must have:} € for zy, if #1 € (—o0, ay), thenz, satisfies (9) with
(w0, p}), and the subsequent intersections will move rightward N =1
and fall betweem; andp? in a finite number of steps. Therefore,
the trajectoryy» (k, o) will converge to the origin. V. PROOF OF THEMAIN RESULTS

Now, considerzo € (p;; goo) C (Pe, 7o0)- Ltk be the  Now, we turn back to the system (5),
minimal integer such thatt*' z, goes out ofS¢, then by the
shape of the Lyapunov ellipsoid, the poiaf'z, must be to x(k+1) = sat(Az(k)). (15)
the left of z (or to the right of—zg if Az is below the line
— L), otherwise we would hav& (A*z¢) > V(zo), which
is impossible. Hences} = sat(A* z) must be to the left of
Zo, and the subsequent intersections either fall betweemnd
p; at a finite step, or go to the left gf,. This shows that no i
limit trajectory can be formed completely to the rightygfand 1) There exists av > 1 such that
symmetrically, to the Ie_ft o_#ps. Henqe, no limit trajectory can sat(ANv)) = £v; and AFv, € S VEk<N.
be formed completely inside the strip

For easy reference, we restate Theorem 2.1 as follows.

Theorem 5.1:The system (15) is globally asymptotically
stable if and only ifA is stable and none of the following
statements are true.

2) There exists atv > 1 such that

Z1
{LJJ ] < 0‘} : sat(ANv2)) = £u, and Afu, €S V< N.
n 3) There exists am; € (—1, 1) and anN > 1 such that
Proof of Proposition 4.1:1t follows immediately from T -
Lemmas 4.4 and 4.6. O sat <AA [ fD == [ 11}
The numbery, and the poinp, = [ifS] can be easily com- and
puted by applying Lemma 4.1. Actually, all the satisfying (9)
can be determined. Let, = [ ], thenz; satisfies (9) for some AF {xﬂ €S Vk<N.

N if and only if 2, satisfies
) 4) There exists am; € (—1, 1) and anN > 1 such that
ANzo ¢ 8¢ AFzg eS8 Vi< N

(o)) ==L

and
SatQ(ANJ}o) = X9- (12)

Ak[ﬂes V<N
2

Assume that. < 0, then by Lemma 4.5, we only need to check
if there is such amg in the interva](poo’ pO)- C|ear|y, nozg in Proof: We will exclude the pOSSIbIlIty of the existence of
[po. o] satisfies (12) by Lemma 4.1 1). So we need to chedigit trajectories (except for the trivial one at the origin) under
over the intervalgp; 41, p;) with 7 increased from 0 td — 1 the condition that none of statements 1)-4) in the theorem is
and the intervalp.., pr). true. In the following, when we say a limit trajectory, we mean
Consider a point in the interval[p; 41, p;). By Lemma 4.1 @ nontrivial one other than the origin. Clearly, every limit trajec-
2), the smallest integeV for ANz, ¢ S°¢is N = m,. By tory mustinclude atleast one point on the boundary of the unit
Lemma 4.2 3)A™ip; = pt € (o, o) iS t0 the right ofp;. Square, i.e., apointin the se{L, UL, U{v, v2}). By Propo-
So there exists:y € [pi1, p;) satisfying (12) if and only if sition 3.1, we know that a limit trajectory cannot have points
A™ip; . isto the left ofp; 4, i.e., in both+7L;, and+L,. So we have two possibilities here, limit
trajectories including points ifi:(L;, U {v1, vz }), and those in-
sat2(A™ pit1) € Woo,r Pit1]- (13) cluding points int (L, U {v1, v2}). Because of the similarity,
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we only exclude the first possibility under the condition thaBo, we havep.(k, v2) = (k, vo) for all k < kq. Here, we
none of 1)-3) is true, the second possibility can be excludbdve two cases.

under the condition that none of 1), 2) and 4) is true.

Case 1-e. < 0: Inthis casep;, is to the left ofvs. Since

For a given initial statero, we denote the trajectory of thevi = sat(A*wv,) = sato(A*vy) goes to the right of,, by

system (15) ag(k, o) and the trajectory of (7) agz(k, zo).
Clearly, ifz; € (-1, 1) satisfies 3), then this; also satis-
fies (9). On the other hand, suppose that there is sontbat

Lemma 4.5, must be to the left of. It follows thatvs €
(ps, pi], where(p,, pt]is the interval in Lemma 4.6 2). Hence,
12(k, v2) will converge to the origin. Moreover, the subsequent

satisfies (9). Lep, be as defined in Lemma 4.6 for the systenmtersections of)»(k, v2) with £L;, are between, andv3.
(7) [if there is nox; that satisfies (9), then we can assume thaBince(k, v2) does not touch:L,,, we must have)(k, ve) =

e[%]

a(k, v2) and hence)(k, vy) will also converge to the origin.
Case 2—e. > 0: In this casep, is to the right ofv;. By
the assumption that(k, v») does not include, the intersec-

and the following argument also goes through]. Note that, tions of+.(k, v2) with +=L;, will stay to the left ofv; (or to the

there is some; € R, |z1] < 1, that satisfies (9), i.e.,

N |Z1| _ 1
S e v
and
‘[0 1]A’“[“’11”51 Vk< N

we must also have

‘[1 0]A4* {”“"11

right of —v;). Sincea,. > 0, by Lemma 4.5, the intersections
will move rightward until falling on[g; , ps), where[g}, ps) is

the interval in Lemma 4.6 3). Similar to Case 1, we have that
¥a(k, va) converges to the origin and(k, ve) = 1p2(k, ve).

So far, we have excluded the possibility that a limit trajec-
tory includes any point in the set(L;, U {v, v2}). The possi-
bility that a limit trajectory includes any point in the sef L, U
{v1, v2}) can be excluded in a similar way. Thus, there exists
no limit trajectory of any kind and the system (15) must be glob-
ally asymptotically stable. O

Here we provide a simple method to check the conditions 3)

which indicates that, satisfies 3). Otherwise, as in the proofid 4) of Theorem 5.1 based on the algorithm to determine all

of Proposition 3.1, the area of the convex hull of the set
{£xo, £Axg, ..., £AY 14}

would be less than the area of the convex hull of the set
{£Azo, £A%0, ..., £AV z0}.

This would be a contradiction to the fact thaiet(A)| < 1.
Hence, if nox; satisfies 3), them, must be outside o0§.

By Proposition 4.1, no limit trajectory of (7) can lie completely

inside the strip

(1)t <),

It follows that no limit trajectory of (15) can lie completely be
tween—L, andL,,. Therefore, no limit trajectory of (15) can in-

clude only boundary points it Z;, . On the other hand, if a limit
trajectory include only boundary pointsy; (or +v5, note that,
by Proposition 3.1, no limit trajectory can include bdth; and

+w5), then 1) or 2) must be true, which contradicts our assump-
tion. In short, if there is a limit trajectory that include points in 1]

+£(LpU{v1, va}), it mustinclude at least one point etv.;, and
one ontwv; (or +wv2). Here, we assume that it includes

Let us consider the trajectoriggk, v2) andys(k, v2). Sup-
pose that)(k, v2) has an intersection with-Z,, but does not
includev; and any point intL,,, we conclude thad(k, vo) =

s (k, va) will converge to the origin. The argument goes as fol-

lows.

Let %y be the smallest such that)(k, v) intersectstL,.
Denotevi = 1(ko, v2). Since 2) is not trueky, must also be the
smallestk such that

[0 1]A%v| > 1.

thez; satisfying (9) and hencg, in the previous section. From
the proof of Theorem 5.1, we see that 3) is true if and only if
ps € S. To check 4), we can exchangeandz, i.e., use a state
transformatiory = [ {]=. The system (15) is then equivalent
to

y(k 4+ 1) = sat (Ay(k)) (16)

whereA = [? }]A[{ ;]. The condition 4) for the system (15) is
equivalent to the condition 3) for the system (16).

VI. CONCLUSIONS

We gave a complete stability analysis of a planar dis-
crete-time linear system under saturation. The analysis involves
intricate investigation on the intersections of the trajectories

with the linesz; = £1 andzs = £1. Our main result provides
a necessary and sufficient condition for such a system to be
globally asymptotically stable.
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