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Order Statistics Theory of Unfolding of Multimeric Proteins
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ABSTRACT Dynamic force spectroscopy has become indispensable for the exploration of the mechanical properties of
proteins. In force-ramp experiments, performed by utilizing a time-dependent pulling force, the peak forces for unfolding
transitions in a multimeric protein (D)N are used to map the free energy landscape for unfolding for a protein domain D. We show
that theoretical modeling of unfolding transitions based on combining the observed first (f1), second (f2), ., Nth (fN) unfolding
forces for a protein tandem of fixed length N, and pooling the force data for tandems of different length, n1 < n2 <. < N, leads
to an inaccurate estimation of the distribution of unfolding forces for the protein D, jD(f). This problem can be overcome by using
Order statistics theory, which, in conjunction with analytically tractable models, can be used to resolve the molecular character-
istics that determine the unfolding micromechanics. We present a simple method of estimation of the parent distribution, jD(f),
based on analyzing the force data for a tandem (D)n of arbitrary length n. Order statistics theory is exemplified through a detailed
analysis and modeling of the unfolding forces obtained from pulling simulations of the monomer and oligomers of the all-b-sheet
WW domain.
INTRODUCTION
Mechanical functions of intra- and extracellular multimeric
proteins play an essential role in diverse biological pro-
cesses from cytoskeleton support and cell motility (1) to
cell adhesion and the formation of the extracellular matrix
(2,3), to muscle contraction and relaxation (4), and to blood
clotting (5). For example, actin cross-linking filamins play
an important role in cellular locomotion (1,6), in which
the mechanical stability of filamin domains provides the
flexibility necessary for actin cross-links (7). The extracel-
lular matrix (ECM) determines the tensile strength and the
elasticity of tissues. Fibronectin type III (FnIII) domains
of the Fn tandems of the ECM offer multiple binding sites
for the components of the ECM assembly, including the
integrin receptors, triggered by mechanical stretching (8).
Titin, a giant modular protein, which consists of immuno-
globulin (Ig) and fibronectin (Fn) domains (1,9), plays
a crucial role in muscle contraction and relaxation (10).
Fibrinogen (Fb) polymerizes and aggregates into fibrin olig-
omers, which assemble into the branched network of fibrin
fibers called a blood clot (5,11). To form a temporary plug to
seal an injury, fibrin fibers sustain the large shear stress due
to arterial blood flow.

Many mechanically active proteins perform their biolog-
ical functions by adopting a modular structure (D)N or D1 –
D2 – . – DN formed by connected head-to-tail identical
protein domains D or nonidentical domains D1, D2, .,
DN. These structures are referred to as homogeneous
tandems of identical protein domains D or heterogeneous
tandems of nonidentical domains D1, D2, ., DN. An
example of the homogeneous protein tandems (oligomers)
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(WW)4 and (WW)6, formed by C-terminal-to-N-terminal
connected all-b-sheet WW domains, is presented in Fig. 1.
Titin consists of a few hundreds of Ig and Fn domains,
with the number of these domains varying among the
different titin molecules (1). Fibronectin tandems are
formed by ~20 Fn domains of types FnI, FnII, and FnIII
(8). In addition, engineered polyprotein constructs are
used by experimentalists to characterize the mechanical
properties of proteins. For example, fibrinogen oligomers
(Fb)N of varying length N ¼ 3–16 have been used as
single-chain models to explore the physical characteristics
of fibrin oligomers (12).

Single-molecule techniques, which utilize atomic-force
microscopy and optical tweezer-based force spectroscopy,
are widely used to access conformational transitions in
proteins (12–15). In a force-ramp assay on a multimeric
protein (D)N composed of identical domains (D), the time-
dependent mechanical force f(t) ¼ rft, where rf ¼ kn0 is
the force-loading rate that depends on the cantilever spring
constant k and the pulling speed n0, is used to induce the
mechanical unfolding reactions (16). These are analyzed
by building the histogram of unfolding forces (peak forces)
(12), f1, f2,., fN, extracted from the force-extension curves,
to infer the probability density function (pdf) of unfolding
forces for a protein domain D, jD(f). In principle, one can
obtain N force values for a tandem (D)N in just one measure-
ment, but in practice, because the cantilever tip can pick up
a tandem of any length n (1 % n % N), the number of peak
forces varies from one measurement to another. The force
data from many measurements and for several values of n
are then combined into a single set and analyzed.

Combining all the force data for a homogeneous tandem
(D)n of fixed length n, i.e., forming a single set
doi: 10.1016/j.bpj.2010.07.012
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FIGURE 1 (a) Schematic representation of the all-b-sheet WW domain

(PDB code: 1PIN) in the folded state. (b and c) Schematic representation

of the native structures for the tandems of four WW domains (b) and six

WW domains (c), formed by the C-terminal-to-N-terminal connected WW

domains (shown in solid representation) through flexible linkers (shown in

shading). In pulling simulations for the WW monomer (single domain), the

time-dependent mechanical force f(t) (solid arrows) is applied to the

C-terminus of the molecule in the direction of the end-to-end vector, while

the N-terminus is constrained. In pulling simulations for (WW)4 and

(WW)6, the force is applied to the C-terminus of the lastWW domain, while

the N-terminus of the first domain is fixed. (d) The forced unfolding

transitions from the native state F to the globally unfolded state U in the

single WW domain and in the WW domains forming the tandems (WW)4
and (WW)6 occur in a single step via formation of the transition state for

unfolding Tz. This is followed by the simultaneous disruption of almost all

the native contacts stabilizing the folded state.
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FIGURE 2 (a and b) Comparison of the histograms of the combined

unfolding forces, f comb
ðWWÞn ¼ f1; f2;.; fngf , for the WW oligomers (WW)4

(a) and (WW)6 (b) with the histogram of unfolding forces for the single

WW domain (monomer). Each histogram is constructed using p ¼ 260

data points (peak forces) and the Freedman-Diaconis rule for the optimal

bin size, hopt ¼ 2IQRp�1/3 (IQR is the interquartile range) (33,34). (c and

d) Comparison of the average force, f ðWWÞn ;l (c), and the most probable

force, f �ðWWÞn ;l (d), as a function of the unfolding order l ¼ 1, 2, ., 4 for

(WW)4 and l¼ 1, 2,., 6 for (WW)6 (data points), with the same quantities,

f WW and f*WW, for the WW monomer (horizontal reference lines).

(Ascending dashed and dash-dotted lines) Values of f 1:n�lþ1 and f*1:n�lþ1

obtained using Order statistics theory.
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is based on the hypothesis that the forced unfolding transi-
tions observed in a tandem (D)N characterize the mechanical
properties of a single protein D. In statistical terms, this
translates into the assumption that the unfolding forces ob-
tained for the tandem and for the single domain are sampled
from the same distribution, i.e., jDðf Þ ¼ jðDÞN ðf Þ. We tested
this assumption theoretically by carrying out pulling simu-
lations for the WW monomer and oligomers (WW)n, formed
by connected identical all-b-sheet WW domains, subject to
force-ramp f(t). The computer models and the simulation
details are presented in the next section. We find that the
histograms of unfolding forces for the single WW domain
differ from the force histograms obtained for the combined
data, f comb

ðWWÞn ¼ f1; f2;.; fn ;gf for the tetramer (WW)4 (n¼ 4)
and for the hexamer (WW)6 (n ¼ 6) in the location of the
most probable force f* and in the width of the distribution,
which quantifies fluctuations around the average force f
(Fig. 2, a and b). Indeed, the difference between f* for
WW and (WW)4 and for WW and (WW)6 of ~10–15 pN is
significant, and is larger than the experimental error. The
Biophysical Journal 99(6) 1959–1968
width of the histogram is ~14 pN for WW versus 20 pN
for (WW)4 and (WW)6. We also compared the average and
most probable unfolding forces for the WW monomer,
f WW and f*WW, with the same quantities, f ðWWÞn;l and
f �ðWWÞn;l, calculated for the first through the fourth unfolding
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FIGURE 3 (a and b) Force-extension curves obtained for theWWmono-

mer (curves with a single force peak) and oligomers (WW)4 (a) and (WW)6
(b). The most typical force-extension profiles are overlayed to demonstrate

the stochastic nature of the biomechanical unfolding reactions in

multimeric proteins. The force peaks, fðWWÞn ;l (l ¼ 1, 2, ., n), for consec-

utive unfolding transitions in the tandems (WW)4 and (WW)6 are numbered

as 1, 2,., 4 (a) and 1, 2,., 6 (b), respectively. Each unfolding transition is

accompanied by a substantial tension drop in the protein chain, which

results in characteristic sawtooth force-extension profiles.
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transition (l ¼ 1, 2, ., 4) for (WW)4 (Fig. 3 a), and for the
first through the sixth unfolding transition (l ¼ 1, 2, ., 6)
for (WW)6 (Fig. 3 b). We see that the data points for
f ðWWÞn;l and for f �ðWWÞn;l are below the reference line for
f WW and for f*WW, respectively, for all the values of the un-
folding order l, except for the last transition, i.e., l ¼ 4 for
(WW)4 and l ¼ 6 for (WW)6 (Fig. 2, c and d).

These results demonstrate that the physical characteristics
of protein domains (D) combined in a tandem (D)n differ
from those for the same but single domain D. Hence, the
inference of the parent pdf of unfolding forces for the
(monomer) D, jD(f), and the mapping of the free energy
landscape for unfolding require using a more elaborate theo-
retical framework. Why are the distributions of unfolding
forces for the WW monomer and for the oligomers (WW)4
and (WW)6 different (Fig. 2, a and b)? Why is every next
unfolding transition in (WW)4 and (WW)6 characterized by
larger values of f ðWWÞN ;l and f �ðWWÞN ;l compared to every
previous transition (Fig. 2, c and d)?

Here, we use Order statistics (17,18) to describe the
mechanical unfolding reactions in proteins subject to a
time-dependent pulling force (force-ramp). We show that
Order statistics offers an intuitive simple explanation for
the observed results (Fig. 2), and answers the long-standing
question whether the mechanical property of a tandem (D)N
is the sum of mechanical properties of single domains D.
Order statistics theory allows for accurate interpretation
and modeling of the unfolding force data observed in
multimeric proteins (protein tandems) and engineered poly-
proteins. We also present an algorithm for the estimation of
the parent distribution of unfolding forces for a protein
domain D, jD(f), based on the first-order statistic of unfold-
ing forces collected for a tandem (D)n.

THEORETICAL METHODS

Computer models of the WW monomer
and oligomers

We used Ca-based self-organized polymer models (19) for the single WW

domain (monomer), and for the tandems (oligomers) (WW)4 and (WW)6
formed by the connected identical all-b-sheet WW domains (Fig. 1). The

protein tandems (WW)4 and (WW)6 serve as a conceptual representation

of wild-type multidomain proteins. The WW domain (34 residues, Protein

DataBank (PDB) code: 1PIN (20)), which has been extensively studied

experimentally (21,22) and computationally (23,24), is involved in the

regulation of several cellular processes. The WW domain has been a para-

digm for describing folding and unfolding of the b-sheet proteins (21). The

mechanical unraveling of WW can be described by the single-step kinetics

of unfolding, F/U, from the folded state F to the unfolded stateU, which

makes this protein a suitable test system. The tandems (WW)4 and (WW)6
were constructed by connecting the N- and C-termini of the adjacent WW

domain using linkers of four neutral residues (Fig. 1, b and c). Short flexible

linkers do not change the micromechanics of unfolding in multimeric

proteins. Each residue was represented by its Ca-atom with the Ca–Ca

covalent bond distance of a ¼ 3.8 Å, which corresponds to the length of

a peptide bond. Structural analysis ofWW, (WW)4, and (WW)6 has revealed

that the number of native contacts stabilizing their folded state are, respec-

tively, 65, 260, and 390 (RC ¼ 8.0 Å-cutoff distance).

The molecular potential energy function for a protein conformation,

specified in terms of the residue coordinates {ri}, i ¼ 1, 2, .M, is given

by (16,19,25)
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where the distance between any two interacting residues i and iþ 1 is ri, iþ1,

whereas r0i;iþ1 is its value in the native (PDB) structure. The first term in Eq. 1

is the finite extensible nonlinear elastic (FENE) potential, which describes

the backbone chain connectivity. Here, R0 ¼ 2 Å is the tolerance in the

change of a covalent bond, and k¼ 1.4 N/m is the force constant. The second

term in Eq. 1 is the Lennard-Jones potential (VATT
NB ), which accounts for the

native interactions that stabilize the folded state.We assumed that if the non-

covalently linked residues i and j (ji – jj> 2) arewithin the cutoff distanceRC

in the native state, i.e., rij < RC, then Dij ¼ 1, and zero otherwise. We used

a uniform value of 3h ¼ 1.5 kcal/mol, which specifies the strength of the

nonbonded interactions, and all nonnative interactions (fourth term in

Eq. 1)were treated as repulsive (VNB
REP). Additional constraintwas imposed

on the bondangle formedby residues i, iþ 1, and iþ2 by including the repul-

sive potential with parameters 3l¼ 1 kcal/mol and s¼ 3.8 Å, which quantify,

respectively, the strength and the range of repulsion. To ensure self-

avoidance of the protein chain, we set s ¼ 3.8 Å.

Simulations of mechanical unfolding

The unfolding dynamics was obtained by integrating the Langevin

equations for each particle position ri in the overdamped limit,
Biophysical Journal 99(6) 1959–1968
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hdri=dt ¼ �vV=vri þ giðtÞ:
Here, V ¼ VMOL – fX is the total potential energy, g(t) is the Gaussian

distributed random force, h is the friction coefficient. To mimic the

force-ramp measurement, in each simulation run the N-terminal Ca-atom
of the molecule was constrained and a time-dependent force f(t) ¼ f(t)n

with the magnitude f(t) ¼ rft was applied to the C-terminal Ca-atom of

molecule in the direction n of the end-to-end vector X (Fig. 1). The Lange-

vin equations were propagated with the time step Dt ¼ 0:08tH ¼ 20 ps;

where tN ¼ z3htL=kBT:

Here, tL ¼ (ma2/3h)
1/2 ¼ 3 ps, z ¼ 50 is the dimensionless friction

constant for a residue in water (h ¼ zm/tL), and m z 3 � 10�22 g is the

residue mass (26). Pulling simulations were carried out at room temperature

(T ¼ 300 K) using the bulk water viscosity, which corresponds to the

friction coefficient h ¼ 7.0 � 105 pN ps/nm. We used experimentally

relevant values of k ¼ 35 pN/nm (cantilever spring constant) and

n0 ¼ 2.5 mm/s (pulling speed), which translate to a force-loading rate

rf ¼ kn0 ¼ 87.5 nN/s. Three sets of 260 unfolding trajectories were

generated for WW, (WW)4, and (WW)6 molecules, and the unfolding forces

(peak forces) were extracted from the force-extension curves (Fig. 3).

Structural analysis of the unfolding trajectories revealed that the single

WW domain and theWW domains in the tandems (WW)4 and (WW)6 unfold

in a single step, F / U (Fig. 1 d), which is also evident from sharp force

peaks observed in the force-extension profiles for WW, and for (WW)4 and

(WW)6 (Fig. 3). The single-step unfolding transition in the WW domain is

accompanied by the simultaneous rupture of a substantial fraction of the

native contacts under the maximum force load (peak force). The fraction

of native contacts in the folded (unfolded) state F (U) is z0.85 (z0.15),

which agrees well with the results of folding simulations (23). The onset

of unfolding transition occurs at the critical molecular elongation of

X�zð0:60� 0:68ÞDLzð7:5� 8:5Þnm; where DL ¼ 33a z 12.5 nm is

the maximal extension of theWWmonomer. The molecular spring constant

ksp, which quantifies the elastic deformation of the native structure, was

extracted from the force-extension curves (Fig. 3). We found that

ksp z 17.5 pN/nm for the single WW domain, and that ksp ¼ 13.5 pN/nm,

9.4 pN/nm, 8.0 pN/nm, and 9.0 pN/nm for the first (l ¼ 1), second (l ¼ 2),

third (l ¼ 3), and fourth unfolding transition (l ¼ 4), respectively, for the

tandem (WW)4. We found similar variation in ksp with the unfolding order

l for the tandem (WW)6 (data not presented). The subsequent statistical

analysis revealed that there are no domain-domain interactions in (WW)4
and (WW)6, and that the unfolding forces are independent and identically

distributed (i.i.d.).

ORDER STATISTICS THEORY

Force-clamp assay: statistics of unfolding times

Let us first consider the forced unfolding transitions
observed in a force-clamp experiment on a homogeneous
tandem (D)N carried out using a constant pulling force f.
Order statistics based description of the results of force-
clamp measurements is given in our previous articles
(27,28). In this type of measurement, the tandem end-to-
end distance X shows characteristic stepwise increases,
X1(t1), X2(t2), ., XN(tN), observed at times t1, t2, ., tN,
which mark the unfolding transitions in the protein domains
forming the tandem (13,14). Assume that the unfolding
times, t1, t2, ., tN, are independent and identically distrib-
uted (i.i.d.) random variables. The i.i.d. assumption holds,
e.g., when the tandem is formed by identical protein
domains that unfold independently, i.e., when there are no
domain-domain interactions (27,28). Any domain D can
unfold at any given time, t1, t2,., tN, with equal probability.
Biophysical Journal 99(6) 1959–1968
Then, by the very method of instrumentation used in the
force-clamp measurements, i.e., the force applied remains
constant and the mechanical fluctuations are minimal, the
recorded unfolding times are time-ordered, i.e.,

t1:N < t2:N < . < tN:N;

where tl:N ¼ tl (l ¼ 1, 2, ., N). In statistical terms, the un-
folding times comprise a set of ordered time variates or
order statistic tl:N (27,28), where the lth order statistic is
defined as the lth observation among N observations in
a tandem of length N, such that l – 1 (N – l) values are below
(above) it. For example, for a tandem (D)4 the first, second,
third, and fourth unfolding times t1, t2, t3, and t4 are, respec-
tively, order statistics t1:4, t2:4, t3:4, and t4:4. The challenge is
to extract information about the unobserved parent time
data, which describe the mechanical unfolding of protein
domains D forming the tandem (D)N, from the observed
ordered time data tl:N.

The lth order statistic is described by the cumulative
distribution function (cdf) Fl:N(t) defined to be the proba-
bility that the lth unfolding time tl:N does not exceed t, i.e.,
Fl:NðtÞ ¼ Probðtl%tÞ; and the pdf, fl:NðtÞ ¼ dFl:NðtÞ=dt:
Under the i.i.d.-assumption, the cdf and pdf of the lth unfold-
ing times, observed in a force-clamp assay, are given by
(17,18)

Fl:NðtÞ ¼ PN
j¼ l

�
N
j

�
JðtÞjð1�JðtÞÞN�j

;

fl:NðtÞ ¼ N

�
N � 1

l� 1

�
JðtÞl�1ð1�JðtÞÞN�l

jðtÞ;
(2)

where ð n
j
Þ ¼ n!=j!ðn� jÞ!:

In Eq. 2, the combinatorial prefactors take into account
the number of possible combinations because there are
multiple unfolding scenarios in a protein tandem. The func-
tion J(t) is the parent cdf of unfolding forces for the single
protein domain (monomer) D, defined as the probability that
the unfolding transition inD has occurred before or at time t,
and the parent pdf is j(t)¼ dJ(t)/dt. Hence, the expressions
in Eq. 2 provide the necessary connection between the
observed ordered time data for a tandem (D)N, described
by the cdf Fr:N(t) and the pdf fr:N(t), and the unobserved
parent distribution functions J(t) and j(t).
Force-ramp assay: statistics of unfolding forces

In a force-ramp experiment, an applied force f(t) ¼ rft
increases linearly in time t with a force-loading rate rf.
The forced unraveling of a multimeric protein (D)n is
reflected in a sawtooth profile of the mechanical tension,
experienced by the tandem chain, as a function of the
tandem extension X (force-extension curve), in which
consecutive force maxima (peak forces), f1(X1), f2(X2), .,
fN(Xn), mark the unfolding transitions that occur in protein
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domains (Fig. 3) (12). As in the force-ramp assay, the
cantilever tip can pick up a tandem (D)n of any length n
(1 % n % N), and when the unfolding forces are i.i.d.,
any domain could have unfolded at any given time resulting
in any given peak force f1, f2, ., fN with equal probability.
The i.i.d.-assumption holds when the dynamics of propaga-
tion of the mechanical tension in the tandem chain remains
decoupled from the unfolding kinetics (28). At the experi-
mental pulling speeds of n0 ¼ 0.5–10 mm/s, the consecutive
unfolding transitions can be viewed as independent events,
but a significant increase in n0 might result in correlated
transitions.

In the force-ramp assay, each unfolding transition is
accompanied by a substantial tension drop in the tandem
chain, which is reflected in the tension decrease from the
maximum value (peak force) to some lower value (base
line). As a result, the mechanical tension must be restored
first before the next unfolding transition occurs (Fig. 3). In
essence, once an unfolding transition in the tandem of
length n has occurred, the pulling experiment is restarted.
For example, after the first unfolding transition, the next
(second) unfolding event is the first transition, but in the
shorter tandem of length n – 1, the third unfolding event
is the first transition in the tandem of length n – 2, etc.
Hence, the first (f1), second (f2), etc., and nth (fn) peak force
is the first unfolding force in the tandem of length n (f1:n),
the first unfolding force in the tandem of length n – 1
(f1:n–1), etc., and, finally, the first unfolding force in the
tandem of unit length (f1:1), respectively. For example, for
a tandem (D)4 the first, second, third, and fourth unfolding
forces f1, f2, f3, and f4 are, respectively, the first-order statis-
tics f1:4, f1:3, f1:2, and f1:1.

The peak forces fl observed for a tandem (D)n form the
first-order statistic of unfolding forces in a sample of
decreasing size n – l þ 1 ¼ n, n – 1, ., 1 (number of still
folded protein domains), i.e., fl ¼ f1:n–lþ1 (l ¼ 1, 2, ., n).
Switching to force variables (f ¼ rft) and setting l ¼ 1 in
Eq. 2, we obtain the cdf and the pdf of the first-order statistic
of unfolding forces,

F1:n�lþ 1ðf Þ ¼ 1� ð1�Jðf ÞÞn�lþ 1
;

f1:n�lþ 1ðf Þ ¼ ðn� l þ 1Þð1�Jðf ÞÞn�1
jðf Þ: (3)

The expressions in Eq. 3 provide the connection between the
observed first-order statistic of unfolding forces, i.e., the cdf
F1:n–lþ1(f) and the pdf f1:n–lþ1(f), and the unobserved parent
distributions,J(f) andj(f). Also, the first expression in Eq. 3
shows that the probability that the first unfolding transition
has not occurred at some finite force value % f (or time %
t ¼ f/rf) in a tandem of length n, (1 – J(f))n, is exactly (1 –
J(f))-times smaller than the probability for a tandem of
length n – 1, (1 – J(f))n�1. Therefore, the first unfolding
event (l ¼ 1) occurs faster, and hence at a lower force, in
a tandem of longer length, which is intuitively clear as there
are more domains in a longer tandem that could unfold. This
implies that the average first unfolding force f 1:n�lþ1 should
increase with l, which explains the results of Fig. 2 c.

Order statistics-based modeling of unfolding
forces

To exemplify Order statistics theory, we calculated the pdf of
the first-order statistic of unfolding forces, f1:n�lþ1(f)
(Eq. 3), and the average first unfolding force, f 1:n�lþ1, for
a generic tandem (D)n. We assumed the exponential kinetics
of unfolding ðF/UÞ and the Bell model for the force depen-
dence of the unfolding rate constant k(f) ¼ k0 exp [fxz/kBT]
(29,30), where k0 is the force-free rate and xz is the distance
from the folded state F to the transition state Tz (Fig. 1 d).
Under these assumptions, the parent cdf and the pdf of un-
folding forces (for a single protein D) are given by (30)

Jðf Þ ¼ 1� exp
h
� kBTk0

rf xz

�
efx

z=kBT � 1
��

;

jðf Þ ¼ k0
rf

exp

	
fxz

kBT
� kBTk0

rf xz

�
efx

z=kBT � 1
��

:

(4)

The results of the calculation of f1:n�lþ1(f) and f 1:n�lþ1
(l ¼ 1, 2, ., n) for generic tandems (D)4 and (D)6 are
presented in Fig. 4 (parameters of the model are summarized
in the caption). We see that the curves of f1:n�lþ1(f) for (D)4
shift toward larger forces as n� lþ 1 decreases, or l increases
(Fig. 4 a). We obtained similar results for (D)6 (data not
shown).Hence, on average, every next transition is character-
ized by a larger force compared to every previous transition,
which is also evident from the plots of f 1:n�lþ1 (Fig. 4 b). The
average unfolding forces, f 1:n�lþ1 ¼ f l, for (D)4 and (D)6
underestimate the average unfolding force for the single
domain D for all values of l, except for the last transition,
for which, by construction, l ¼ n and f1:1(f) ¼ j(f) (Eq. 3),
and hence, f 1:1 ¼ f (Fig. 4 b).

We also compared the pdf of unfolding forces, obtained
by combining the first-order statistic pdfs jcomb

ðDÞn ðf Þ ¼ð1=nÞPn
l¼1f1:n�lþ1ðf Þ for tandems (D)4 and (D)6, with the

(parent) pdf of unfolding forces for the single domain D,
jD(f). We remind the reader that building the histogram of
unfolding forces based on the combined set of force data
for a tandem (D)n—a procedure used to analyze the exper-
imental data—is statistically equivalent to constructing the

estimate of the pdf, jcomb
ðDÞn ðf Þ. We see that jcomb

ðDÞn ðf Þ for

tandems (D)4 and (D)6 is markedly different from jD(f)
for the single domain D (Fig. 4 c), which implies the
inequality of the distributions jDðf Þsjcomb

ðDÞn ðf Þ: These
results validate the use of Order statistics to describe the
mechanical unfolding of multimeric proteins. Order statis-
tics captures all the statistical properties of unfolding forces
observed for the WW monomer and oligomers. The curves

of jcomb
ðDÞn ðf Þ are shifted to lower force values and are charac-

terized by a larger width compared with jD(f) (Fig. 4 c).
This is in agreement with the statistical properties of

jcomb
ðWWÞnðf Þ (Fig. 2, a and b). The average forces, f 1:n�lþ1,
Biophysical Journal 99(6) 1959–1968
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generic tandems (D)4 and (D)6 (data points) are compared with the average
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pdf curves for the combined unfolding forces ðf comb
ðDÞN ¼ f1; f2;.; fN Þgf ,

jcomb
ðDÞN ðf Þ, for tandems (D)4 and (D)6 are compared with the parent pdf for

the monomer D, jD(f). Model calculations are performed using the force-

ramp protocol (n0 ¼ 2.5 mm/s and k ¼ 10 pN/nm), and the Bell model

with parameters k0 ¼ 1.0 s�1, xz ¼ 0.3 nm, and kBT ¼ 4.14 pN nm.
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for (D)4 and (D)6 follow a similar dependence on l (Fig. 3 b)
as the average first, second, etc., force, f ðWWÞn;l, for (WW)4
and (WW)6 (Fig. 2, c and d). We observed a similar agree-
ment between the most probable unfolding forces,
f*1:n�lþ1, for (D)4 and (D)6 and f �ðWWÞn;l for (WW)4 and
(WW)6 (data not shown).
RESULTS

Analysis of unfolding forces for tandems (WW)4
and (WW)6

Calculations of the Order statistics measures for a generic
tandem (D)n show that using the Bell model results in distri-
Biophysical Journal 99(6) 1959–1968
butions that are skewed to the left (Fig. 4, a and c). Yet, the
force histograms for the WW monomer and oligomers seem
to be more Gaussian-like (Fig. 2, a and b). The force-
extension profiles for WW, (WW)4, and (WW)6 show that
the mechanical tension increases almost linearly with the
molecular extension X (Fig. 3, a and b), which allows us
to use a harmonic approximation to model the force data.
For this reason, we used the model of a Brownian particle
evolving on a harmonic potential (31,32) to describe the
time evolution of X (Appendix 1). In this analytically
tractable model, the distribution of X and, hence, of the
unfolding force f ¼ kspX are Gaussian (ksp is the molecular
spring constant). In addition, the WW domain is a small
protein, and the entropic effects due to the chain elongation
can be safely neglected. In the framework of this model, the
(parent) cdf of unfolding forces for a single domain is
given by

Jðf Þ ¼ 1

2
Erfc

"
F� � Fðf Þffiffiffiffiffiffiffiffiffiffiffiffi

2wðf Þp
#
; (5)

where ErfcðxÞ is the complementary error function, and
F* ¼ kspX* is the mechanical tension proportional to the
chain extension X*, which corresponds to the protein in
the unfolded state U (Fig. 1 d). In Eq. 5,

Fðf Þ ¼ f � ~f
�
1� exp

h
�f =~f

i�
is the average mechanical tension of the chain,

wðf Þ ¼ kBTksp

�
1� exp

h
�2f =~f

i�
is the width, and ~f ¼ rf t is the characteristic force
(Appendix 1). The parent pdf of unfolding forces for the
single domain is j(f) ¼ dJ(f)/df. The Order statistics cdfs
and pdfs for the tandems (WW)4 and (WW)6, F1:n�lþ1(f)
and f1:n�lþ1(f) (l ¼ 1, 2, ., n), are then obtained by
substituting J(f) and pdf j(f) for the single domain WW
in the expressions in Eq. 3.

We described the distributions of the first through the
fourth unfolding force, jðWWÞ4;lðf Þ (l ¼ 1, 2, 3, and 4),
obtained from the force-extension curves for the tandem
(WW)4 (Fig. 3 a), using Order statistics theory and the
Brownian oscillator model. The model has five parameters:
kBT, D, ksp, X*, and rf. However, in our calculations, we
fixed the value of kBT ¼ 4.14 pN nm (room temperature),
D ¼ 5.5 � 10�4 cm2/s (diffusion constant for a residue in
water at room temperature), and rf ¼ 87.5 nN/s (force-
ramp used in simulations), and we varied the two remaining
parameters, X* and ksp. The results of the comparison of
jðWWÞ4;lðf Þ with the theoretically derived Order statistics
measures, f1:n�lþ1(f), are presented in Fig. 5 a, where we
also display the (parent) pdf for the WW monomer,
jWW(f). We used nonparametric density estimates (33,34)
of the pdfs jðWWÞ4;lðf Þ and jWW(f), which provide a more
accurate description of the probability density mass,
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pdf for the WW monomer, jWW(f) (data points), and the pdfs for the first

through the fourth unfolding forces for (WW)4, j(WW)4
,l, l ¼ 1, 2, 3, and

4 (data points), are compared, respectively, with the theoretical pdf

curves of unfolding forces for theWWmonomer, jWW(f), and with the theo-

retical curves of the first-order statistic pdfs of unfolding forces for (WW)4,

f1:n�lþ1(f), i.e., f1:4;ðWWÞ4 ðf Þ, f1:3;ðWWÞ4 ðf Þ, f1:2;ðWWÞ4 ðf Þ, and f1:1;ðWWÞ4 ðf Þ.
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the Order statistics based inference (solid curve). The histogram-based

estimates of the pdf of the first and fourth unfolding forces, f1:4;ðWWÞ4 ðf Þ
(open bars) and f1:1;ðWWÞ4 ðf Þ (open bars), are shown for comparison.

TABLE 1 Parameters for the Brownian oscillator model, X*/DL

and ksp, for the WW domain

Parameters jWW(f) j1;ðWWÞ4 ðf Þ j2;ðWWÞ4 ðf Þ j3;ðWWÞ4 ðf Þ j4;ðWWÞ4 ðf Þ
X*/DL 0.71 0.57 0.61 0.58 0.64

ksp, pN/nm 15.5 14.1 14.0 15.1 16.3

These are obtained from the fit of the theoretical pdf curves of unfolding

forces for the WW monomer, jWW(f) (parent density), and the first-order

statistics pdf curves, f1:n�lþ1(f) (l ¼ 1, 2, ., 4) for the tandem (WW)4,

to the nonparametric density estimates of the pdfs of unfolding forces for

the WW domain, jWW(f) (parent force data), and to the pdfs of unfolding

forces for the first through the fourth unfolding transitions for (WW)4,

jðWWÞ4 ;lðf Þ (Fig. 5 a), obtained from pulling simulations (see Fig. 3 a).
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especially for the small data samples of 260 points (peak-
forces) used in this work. We see that the Order statistics
pdfs f1:n�lþ1(f) follow closely jðWWÞ4;lðf Þ for all values of
l ¼ 1, 2, 3 and 4 (Fig. 4 a). In agreement with jðWWÞ4;lðf Þ,
the Order statistics measures f1:n�lþ1(f) are characterized
by larger values of f*1:n�lþ1 (maxima) for larger l. We ob-
tained a similar agreement for the tandem (WW)6 (data not
shown). Numerical values of X*/DL and ksp, determined
from the fit of f1:n�lþ1(f) to jðWWÞ4;lðf Þ, are in the range
of X*/DL¼ 0.57–0.71 and ksp ¼ 14.0–16.3 pN/nm (Table 1)
and, hence, are in good agreement with the values of
X*/DL ¼ 0.6 – 0.68 and ksp ¼ 8.0–17.5 pN/nm, obtained
from the structural analysis of the simulation output. We
also calculated the average and the most probable forces,
f 1:n�lþ1 and f*1:n�lþ1, as a function of l for (WW)4 and
(WW)6, which describe well f ðWWÞ4;l and f �ðWWÞ4;l obtained
from pulling simulations (Fig. 2, c and d).
DISCUSSION

Main results

Dynamic force spectroscopy has evolved over the last two
decades into the standard experimental tool for the explora-
tion of the biomechanical unfolding reactions at the single-
molecule level. In these experiments, a constant force f
(force-clamp) or a time-dependent force f(t) ¼ rft (force-
ramp) is applied to a protein tandem (oligomer) (D)N to
induce unfolding in protein domains. In our recent articles
(27,28), we showed that, because in the force-clamp
measurement the applied pulling force (hazard) remains
constant, the recorded unfolding times form sets of ordered
time variates, t1 ¼ t1:N, t2 ¼ t2:N, ., tN ¼ tN:N, or the Order
statistics of unfolding times, tl ¼ tl:N, of increasing order
l ¼ 1, 2, ., N. We also developed an Order statistics based
approach to model the unfolding time data (27,28). In this
work, we focused on the unfolding forces analyzed in
force-ramp experiments, where each unfolding transition
is accompanied by a substantial decrease in the mechanical
tension reflected in the sawtoothlike force-extension
profiles (Fig. 3). We showed that the peak forces for the first,
second,., Nth unfolding transition, f1, f2,., fN, observed in
the force-extension curves, are, indeed, the first-order
statistics for decreasing tandem length N, N – 1, ., 1,
i.e., f1 ¼ f1:N; f2 ¼ f1:N�1;.; fN ¼ f1:1; or f1 ¼ f1:N�lþ1ðl ¼
1; 2;.;NÞ:

Excellent agreement between the distributions of unfold-
ing forces, the average and the most probable unfolding
forces, obtained from pulling simulations for theWWmono-
mer and oligomers (WW)4 and (WW)6, and the correspond-
ing first-order statistics measures validates the use of Order
statistics to describe the biomechanical unfolding reactions
in multimeric proteins. This theory captures all the statis-
tical properties of unfolding forces observed for multimeric
proteins, and explains why the statistics of forces for
a protein tandem differs substantially from the force statis-
tics for a single protein domain. Specifically, in accord
with the results of pulling simulations for (WW)4 and
(WW)6, the theory predicts correctly that the distributions
of unfolding forces, jl(f) ¼ f1:N�lþ1(f), should shift to
larger force values (Fig. 4 a), and that the average and the
Biophysical Journal 99(6) 1959–1968
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most probable forces, f l ¼ f 1:N�lþ1 and f*l ¼ f*1:N�lþ1,
should increase with increasing unfolding order l ¼ 1, 2,
., N (Fig. 2, c and d). In agreement with the results of simu-
lations (Fig. 2, a and b), Order statistics theory predicts that
combining all the unfolding forces for a tandem (D)N and
binning these data into the force histogram results in an
imprecise estimate of the distribution of unfolding forces
for the protein domain D, jD(f) (Fig. 4 C). Hence, Order
statistics theory verifies that the combined unfolding forces
for a homogeneous tandem (D)N and the unfolding forces
for a single domain D are not sampled from the same distri-
bution. Clearly, combining the force data for tandems of
different length, does not resolve this problem.

Traditional description of the force-driven unfolding
involves pulling together the unfolding time data,

tcomb
ðDÞN ¼ t1; t2;.; tNgf (force-clamp), or the force data,

f comb
ðDÞN ¼ f1; f2;.; fNgf (force-ramp), observed for a tandem

(D)N. These are used to model the parent pdf of unfolding
times, jD(t), or the pdf of unfolding forces, jD(f), for
a protein domain D. In our previous work (27), we showed
that the statistical inference of the parent pdf based on
analyzing the combined data sample is fully justified in
the case of force-clamp measurements of unfolding times.
This is because the (l þ 1)st Order statistic in a tandem
of length n is related to the lth Order statistic in a tandem
of length n – 1 via a recurrence relation, which for the
pdf of unfolding times reads:

nfl:n�1ðtÞ ¼ ðn� 1Þfl:nðtÞ þ lflþ 1;nðtÞ: (6)

Using Eq. 6 recursively, we obtain the parent pdf, jD(t),
which, by construction, is the pdf of the first unfolding times
in the tandem of the unit length, f1:1(t) (17,18),

jDðtÞhf1:1ðtÞ ¼ 1

n

Xn
l¼ 1

fl:nðtÞ: (7)

Hence, in the context of force-clamp measurements, Eq. 7
allows one to estimate the parent pdf, jD(t), by summing
over the Order statistics pdfs, fl:n(t), of all orders 1% l% n
(when the unfolding times are i.i.d.). In practice, this is
equivalent to combining all the ordered time data tl:n and
binning the data into a single histogram, which is how
traditional analyses of unfolding times are carried out
(see Fig. 9 in (27)). However, as we showed in this work,
in a force-ramp measurement one observes the first-order
statistics of unfolding forces, f1:n�lþ1, and, hence,

jDðf Þs
1

n

Xn

l¼ 1
f1:n�lþ 1ðf Þ:

With help from Order statistics we now understand why the
pdf of unfolding forces for the WW monomer, jWW(f),
differs from the pdf of combined forces for the oligomers
(WW)N, i.e., j

comb
ðWWÞN ðf ÞsjWWðf Þ (Fig. 1, a and b), which

also explains why the procedure of combining the force
Biophysical Journal 99(6) 1959–1968
data cannot be used. We also understand why the average
and the most probable forces, f 1:n�lþ1 ¼ f l and f*1:n�lþ1 ¼
f*l, gradually increase with the unfolding order l.
Estimation of the parent density c(f)

The results of application of Order statistics theory to the
WW monomer and oligomer (WW)4 show that the first-order
statistics pdf for the last transition (l ¼ 4), f1:n�lþ1(f) ¼
f1:1(f), agrees well with the parent density jWW(f) in terms
of the average force, i.e., f 1:1z120:9 pN versus
f WWz120:6 pN (Fig. 5 a). This is because, by construction,
jWW(f) ¼ f1:1(f), and f WW ¼ f 1:1. Yet, f1:1(f) differs from
jWW(f) in the width, quantified by the standard deviation
s, i.e., s1:1(f) z 8.5 pN versus sWW(f) z 6.8 pN (Fig. 5 a).
The width of f1:1(f) is increased because the last unfolding
transition in the tandem occurs at higher mechanical tension
F(f) (see Eq. 5), compared to the first transition (l ¼ 1),
described by f1:n�lþ1(f) ¼ f1:4(f). This results in smaller
fluctuations in the extension, dX � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

kBT=ksp
p

; and, hence,
in larger force fluctuations, df � ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

kBT ksp
p

; for the last
transition (l ¼ 4) compared to the first transition (l ¼ 1).
Because of this, the first-order statistics pdf for the first tran-
sition (l ¼ 1), f1:4(f), is closer to the parent density, jWW(f),
in terms of the width (s1:4(f) z 6.9 pN), but deviates from
jWW(f) in the average value ðf 1:4z114:1 pNÞ, because
f WWsf 1:4 (Fig. 5 a). Hence, in general, the force distribu-
tions for the first few (last few) transitions in a tandem are
closer to the parent density in terms of the width (average
force).

These statistical properties of unfolding forces can be
used to resolve the parent density. In the Brownian oscillator
model, when f[~f , the parent pdf is given by the Gaussian
density,

jDðf Þ ¼ ð2pwÞ�1=2
exp
�� ðf � F�Þ2=2w�;

where w ¼ kBT ksp and F� ¼ kspX
�: Hence, by setting w ¼

s1:n
2(f) and F� ¼ f 1:1 in the above expression for jD(f),

where s1:n(f) and f 1:1 are, respectively, the standard devia-
tion for the first unfolding force (f1:n ¼ f1) and the average
nth unfolding force (f1:1¼ fn) for a tandem (D)n, one can esti-
mate jD(f). We utilized this approach to calculate the parent
pdf for the WW domain, jWW, using s1:4(f) ¼ 6.9 pN and
f 1:1 ¼ 120:9 pN obtained for the tandem (WW)4. The
results obtained show that the Order statistics based esti-
mate, computed theoretically, compares well with the
nonparametric-density estimate and with the histogram-
based estimates of jWW(f) (Fig. 5 b). The model-free infer-
ence of the parent cdf, JD(t), from the first-order statistics
measures for the tandem (D)n, F1:n�lþ1(f), can be based
on Eq. 3 for the cdf, which can be written as

Jðf Þ ¼ 1� ð1� F1:n�lþ 1ðf ÞÞ1=ðn�lþ 1Þ
:
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This equation can be used for each cdf
F1:n�lþ1ðf Þðl ¼ 1; 2;.; nÞ; and for each tandem length n.
CONCLUSIONS

We developed a new, to our knowledge, theoretical
framework, inspired by Order statistics, to describe the
biomechanical unfolding reactions observed in dynamic
force-ramp experiments on wild-type multimeric proteins
and engineered polyproteins. We also showed that the
Brownian oscillator model can be used to model the forced
unfolding transitions in small proteins such as the WW
domain. There is a long-standing question whether the
mechanical property of a multimeric protein can be viewed
as the sum of the mechanical properties of individual protein
domains. Essentially, this is a restatement of the central limit
theorem applied to multimeric proteins. Our results show
that, for the i.i.d. unfolding times, observed for a homoge-
neous tandem of noninteracting identical protein domains
under the influence of the constant force f, the answer is
in the affirmative, because jDðtÞ ¼ ð1=NÞPN

l¼1fl:NðtÞ
(Eq. 7) and, hence, the average unfolding time is
tD ¼ ð1=NÞPN

l¼1tl:N from Bura et al. (27). However, the
mechanical property of a multimeric protein is not the
sum of the mechanical properties of constituting domains
when it is subject to the time-dependent force f(t), because
the distributions of unfolding forces for the consecutive
first, second, ., Nth unfolding transitions, f1:N�lþ1(f),
do not sum up to the parent density jD(f), i.e.,
f Dsð1=NÞPN

l¼1f 1:N�lþ1: Hence, the statistical properties
of the important molecular metrics quantifying the mechan-
ical response of multimeric proteins and polyprotein chains
depend, in part, on the nature of mechanical perturbation.
The Order statistics based inference enables one to obtain
accurate estimates of the parent density using the force
data for protein tandems of arbitrary length.
APPENDIX 1: BROWNIAN OSCILLATOR MODEL

We describe the force-induced elongation of a protein chain X(t) using the

one-dimensional Brownian motion of a particle in a harmonic potential

U(X) ¼ kspX
2/2 (31,32), where ksp is the molecular spring constant. The

particle is subject to the time-dependent pulling force f(t) ¼ rft and the

Gaussian random force g(t) with zero mean, hg(t)i ¼ 0, and two-point

correlation function, hgðtÞgð0Þi ¼ 2DdðtÞ (D is the diffusion constant).

Within the framework of the Brownian oscillator model, the conditional

probability (Green function) for extending the molecule from X0 to X

over time t is given by

GðX;X0; tÞ ¼
�

1

2pwðtÞ
�1=2

exp

"
� ðX � XðtÞÞ2

2wðtÞ

#
(8)

where

XðtÞ ¼ X0exp½�t=t� þ �
rf=ksp

�ðt � tð1� exp½�t=t�ÞÞ
is the average extension, t ¼ h/ksp is the characteristic timescale, and

wðtÞ ¼ �
kBT=ksp

�ð1� exp½�2t=t�Þ

is the width. We assume that the unfolding transition occurs when X(t) rea-

ches the critical extension X*, at time t. The cumulative distribution func-

tion (cdf) or the unfolding probability is given by

JðtÞ ¼
Z N

X�
dX

Z N

0

dX0GðX;X0; tÞPeqðX0Þ; (9)

where Peq(X) is the initial distribution of X in the folded state. Assuming

that X is sharply peaked around the equilibrium extension X ¼ 0, i.e.,

Peq(X) ¼ d(X), which is the case for the WW domain, performing the

integration over X and X0, and switching from the unfolding times t to the

unfolding forces f ¼ rft, we obtain the parent cdf for the single domain,

J(f) (Eq. 5).
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