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Cooperativity is a hallmark of proteins, many of which show a modular architecture comprising dis-
crete structural domains. Detecting and describing dynamic couplings between structural regions is
difficult in view of the many-body nature of protein-protein interactions. By utilizing the GPU-based
computational acceleration, we carried out simulations of the protein forced unfolding for the dimer
WW − WW of the all-β-sheet WW domains used as a model multidomain protein. We found that
while the physically non-interacting identical protein domains (WW ) show nearly symmetric me-
chanical properties at low tension, reflected, e.g., in the similarity of their distributions of unfolding
times, these properties become distinctly different when tension is increased. Moreover, the uncorre-
lated unfolding transitions at a low pulling force become increasingly more correlated (dependent) at
higher forces. Hence, the applied force not only breaks “the mechanical symmetry” but also couples
the physically non-interacting protein domains forming a multi-domain protein. We call this effect
“the topological coupling.” We developed a new theory, inspired by order statistics, to character-
ize protein-protein interactions in multi-domain proteins. The method utilizes the squared-Gaussian
model, but it can also be used in conjunction with other parametric models for the distribution of
unfolding times. The formalism can be taken to the single-molecule experimental lab to probe me-
chanical cooperativity and domain communication in multi-domain proteins. © 2013 AIP Publishing
LLC. [http://dx.doi.org/10.1063/1.4816104]

I. INTRODUCTION

Mechanical forces play an important role in life pro-
cesses, and many biological molecules are subjected to forces.
There are numerous examples from biology, where mechan-
ical forces play an essential role in a physiological context.
Tensile forces acting on cells or bacteria originate from the
dragging forces imposed by the fluid flow.1 A function of a bi-
ological motor might result in the generation of large pulling
force. For example, active force from myosin generates sub-
stantial mechanical stress on structures of the sarcomere.2, 3

Mechanical forces can also be generated within the biolog-
ical system. For example, leukocytes that patrol the blood
flow in search of pathogens, need to generate internal force
to squeeze into in and pass through connective tissues.4 In
addition to biochemical stimuli, cellular processes involving
the cytoskeleton can be modulated in response to external
force.3

Structural arrangements of proteins have evolved in re-
sponse to the selection pressure from biological forces. The
three-dimensional structures often exhibit a modular archi-
tecture composed of discrete structural regions. These in-
clude semi-static structures such as actin filaments and mi-
crotubules, and flexible structures such as muscle protein
titin and fibrin clot.5–7 Titin, a giant 1μm protein formed

a)Author to whom correspondence should be addressed. Electronic mail:
Valeri_Barsegov@uml.edu. Telephone: 978-934-3661. Fax: 978-934-
3013.

by linked immunoglobulin and fibronectin domains defines
the structure and elasticity of muscle sarcomere.2, 6 Proteins
that form or interact with the extracellular matrix (ECM)
have modular or multidomain architecture.8, 9 These include
fibronectin fibrils, which form meshworks around the cell,
and integrins, which link the cell external and intracellular
environment.10 Fibrin polymerization in blood results in for-
mation of branched network called a fibrin clot, which must
sustain large shear stress due to blood flow.7, 11 Protein shells
of plant and animal viruses (capsids) are often made of multi-
ple copies of a single structural unit (capsomer). For example,
the capsid of Cowpea Chlorotic Mottle Virus is an icosahedral
shell comprised of 180 copies of a single (190 amino acid)
protein.12

Physical properties of proteins have adapted to biological
forces. In ECM assembly, fibronectin subunits change confor-
mations from compact to extended. The extent of assembly
is controlled by cell contractility through actin filaments.13

Hence, tissue tension regulates matrix assembly. Virus cap-
sids should be stable enough to protect encapsulated ma-
terial (DNA or RNA), yet, unstable to release the material
when invading their host cells.14 Hence, mechanical proper-
ties of virus capsids are important factors in viruses’ survival
in the extracellular environment and cell infectivity. Cell ad-
hesion and migration rely on reversible changes in mechan-
ical properties of cells. Spatial distribution of internal ten-
sion in cell remodeling, derived from dynamic regulation of
contractile actin-myosin networks, correlates cell shape, and

0021-9606/2013/139(12)/121913/12/$30.00 © 2013 AIP Publishing LLC139, 121913-1
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FIG. 1. Schematic representation of the native structure of dimer WW − WW , formed by the C-terminal to N-terminal connected all-β-sheet WW domains
(PDB code: 1PIN). The first WW domain, denoted as WW1, is shown in blue, the second WW domain, denoted as WW2, is shown in red, and the two-residue
linker is shown in yellow color. In pulling simulations, the constant force f is applied to the C-terminus of domain WW2 in the direction coinsiding with
the end-to-end vector of dimer WW − WW ; the N-terminus of domain WW1 is constrained. Structural analysis of unfolding trajectories revealed that the force
unfolding transitions from the native folded state (F) to the unfolded state (U) in each WW domain occur in a single step, F → U. Shown are the two possible
scenarios. In the first pathway (left), WW1 unfolds first (1st unfolding time t1:2) and WW2 unfolds second (2-nd unfolding time t2:2). In the second pathway
(right), WW1 unfolds second (t2:2) and WW2 unfolds first (t1:2).

movement.3, 15 In addition, many proteins have evolved to act
as “force sensors” to convert tension-induced conformational
changes into biological signal.10 For example, tissue defor-
mation during mechanical stimulation alters the conforma-
tion of ECM molecules. Filamins involved in mechanotrans-
duction alter their structure in response to external tension.16

Proper communication between structural regions in mul-
tidomain proteins is important for regulation. For example,
dynamic coupling between the regulatory domain and the
ligand-binding domain in P-selectins is implicated in forma-
tion of force-activated bonds17 (“catch bonds”18) with their
ligands (PSGL-1).

Single-molecule experimental techniques such as Atomic
Force Microscopy (AFM)1, 19, 20 and optical trap,19, 21 have
made it possible to study life processes at the level of indi-
vidual molecules. These experiments, which utilize mechan-
ical force to unfold proteins or to dissociate protein-protein
complexes, have made it possible to probe the unfolding or
unbinding transitions one at a time.22 In the context of protein
forced unfolding, grabbing the molecule at specific positions
allows one to select specific region(s) of the molecule and to
define the unfolding reaction coordinate. Mechanical manip-
ulation continues to provide a unique approach to quantify the
unfolding transitions in terms of the measurable quantities –
the unfolding forces (constant velocity or force-ramp experi-
ment) and the unfolding times (constant force or force-clamp
experiment). Consider a force-clamp experiment on a multi-
meric protein Dn formed by head-to-tail connected identical
domains (D’s). The protein is subjected to the external pulling
force, and each unfolding transition causes an increase in the
chain length, �Y. As a result, the total length of the polypep-
tide chain Y shows the characteristic pattern of stepwise in-
creases (�Y’s), which mark sequential unfolding transitions
in protein domains.

The goal of statistical analysis and modeling of force
spectroscopy data is to obtain accurate information about the
physical characteristics of protein domains. Yet, due to inher-

ent limitations in the experimental resolution, there is no di-
rect way of attributing the times of transitions to the protein
domains or structural regions where these transitions have oc-
curred. We only have partial or incomplete observation of the
system. Said differently, it is not possible to determine which
specific domain has unfolded since any domain can unfold
at any given time. Consider the simplest case of the dimer
WW − WW of the WW domain, presented in Fig. 1. There
are two possible scenarios of unfolding. In the first pathway,
the first domain (WW1) unfolds first and the second domain
(WW2) unfolds second. In the second pathway, the order of
unfolding is reversed. In an experimental measurement, what
is being recorded is the first unfolding time (t1:2) and the sec-
ond unfolding time (t2:2) in a sequence of two observations,
and it is impossible to tell which domain has unfolded first
or second. Hence, the first unfolding times (t1:2) and the sec-
ond unfolding times (t2:2) involve contributions from the first
domain WW1, which unfolds at time t1, and the second do-
main WW2, which unfolds at time t2. Can we obtain domain-
specific information from the experimental data?

The first step is to understand the nature of the random
variables measured. In a constant force experiment on an n-
domain protein (D1 − D2 − . . . −Dn), individual domains
unfold one after another but any domain can unfold at any
given time. The observed unfolding times are ordered, i.e.,
they comprise a set of ordered time variates, also known as
order statistics.23, 24 Hence, what is being measured are the
“time-ordered data” t1:n, t2:n, . . . , tn:n, where tr:n is the rth un-
folding time (r = 1, 2, . . . , n) (in a sequence of n observa-
tions). These are different from the (hidden) “parent data” t1,
t2, . . . , tn with ti being the unfolding time of the ith domain
(Di, i = 1, 2, . . . , n), which contain information about the indi-
vidual protein domains (D1, D2, . . . , Dn). Hence, the question
becomes – can we solve an inverse problem, namely, can we
perform the inference of the parent distributions of unfolding
times from the distributions of (observed) ordered unfolding
times?
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The rth order statistic is characterized by the cumulative
distribution function (cdf) Pr:n(t), and the probability density
function (pdf) pr:n(t) of the rth unfolding time, r = 1, 2, . . . ,
n, in a sequence of n observations (for n domains). The rth or-
der statistic cdf Pr:n(t) is the probability that the rth unfolding
time tr does not exceed t, i.e., Pr:n(t) = Prob(tr ≤ t), and the
rth order statistic pdf is pr:n(t) = dPr:n(t)/dt.23 In our example
for the dimer WW − WW , the first unfolding time (t1:2) and
the second unfolding time (t2:2) both carry information about
the unfolding times for the first domain WW1 (t1) and for the
second domain WW2 (t2). In general, because the cdf Pr:n(t)
and the pdf pr:n(t) of the rth order statistic depend on the par-
ent cdf Pi(t) and pdf pi(t) (i = 1, 2, . . . , n), it is possible, at
least in principle, to resolve Pi(t) and pi(t) from the cdf and
pdf of the order statistics, Pr:n(t) and pr:n(t).

In our recent papers,25, 26 we used Order statistics to solve
the inverse problem for the independent identically distributed
(iid) random variables and for the independent non-identically
distributed (inid) random variables. The formalism presented
in these papers can be used to describe the physically
non-interacting identical protein domains (D’s) forming a
multimeric protein D − D − . . . − D (iid case), and the
non-interacting non-identical domains (Di’s, i = 1, 2, . . . , n)
forming a multi-domain protein D1 − D2 − . . . − Dn (inid
case).25 We have designed rigorous statistical tools for assess-
ing the independence of the parent forced unfolding times (ti)
and the equality of the parent pdfs of unfolding times (pi(t))
from the observed ordered unfolding times (tr:n).26 These sta-
tistical tests can be utilized to classify the parent unfolding
times and to detect correlated unfolding transitions in multi-
domain proteins using experimental force spectroscopy data.
We have also extended Order statistics approach to describe
the unfolding forces measured in the constant-velocity (force-
ramp) experiments.27 Order statistics inference methods have
been applied successfully to inverse problems involving, e.g.,
partially observed queuing systems.28–30

Here we take a step further and present a new theory in-
spired by Order statistics, to solve the inverse problem for
the dependent identically distributed (did) random variables
and for the dependent non-identically distributed (dnid) ran-
dom variables, using a squared-Gaussian parametric model of
the distributions of unfolding times. The developed formalism
can be used to describe the mechanical behavior of interacting
(coupled) identical protein domains in a multimeric protein D
− D − . . . − D (did case), and interacting non-identical do-
mains in a multidomain protein D1 − D2 − . . . − Dn (dnid
case). In Sec. II, we describe our method. We focus on the
order statistics pdf’s, since these statistical measures can be
easily estimated by constructing the histograms of unfolding
times. We establish a relationship between the order statistics
pdf’s and the parent pdf’s. In Sec. III, we describe the Self
Organized Polymer (SOP) model of the all-β-sheet WW do-
main and Langevin simulations of the forced unfolding of the
dimer WW − WW used as a model system (Fig. 1). These
in silico experiments mimic single-molecule measurements in
vitro31–34 In Sec. IV, we perform a direct statistical analysis of
the simulation output for dimer WW − WW and describe the
effects of “mechanical symmetry breaking” and “topological
coupling.” In Sec. V, we compare several statistical measures

of the “parent data” for each WW domain – the distribution
of unfolding times, the average unfolding time, the standard
deviation, and the skewness of distribution, and Pearson cor-
relation coefficient, with the same measures obtained by ap-
plying Order statistics inference to the “time-ordered data.”
We discuss our results in Sec. VI.

II. ORDER STATISTICS INFERENCE

Consider a vector of order statistics T′ = [t1:n, t2:n, . . . ,
tn:n]†, in which the entries obtained in a single measurement
correspond to the 1st unfolding time (t1:n), 2nd unfolding time
(t2:n), . . . , and nth unfolding time (tn:n), the symbol “dag-
ger” (†) represents vector transpose (tr:n denotes the rth un-
folding time out of n times for a protein D1 − D2 − . . .
− Dn of n domains D1, D2, . . . , Dn). This same observa-
tion T′ can be also obtained by rearranging the components
of another vector T = [t1, t2, . . . , tn]† in the order of in-
creasing time variates, which represents the unfolding times
of the 1st domain D1 (t1), 2nd domain D2 (t2), . . . , and nth
domain Dn (tn) of the same multidomain protein D1 − D2

− . . . − Dn. This is because any domain can unfold at any
given time and, hence, there are multiple unfolding scenar-
ios. Hence, on the one hand, we observe the “time-ordered
data” (tr:n), and on the other hand, we have (hidden) “parent
data” (ti). We call this transformation map G and write
T′ = G(T) = [t1:n, t2:n, . . . , tn:n]†, where tr:n is the rth com-
ponent of vector T.

Let vector T′ have the joint pdf pT′(t1:n, t2:n, . . . , tn:n) and
let vector T have the joint pdf pT(t1, t2, . . . tn). We seek to
establish a relationship between the pdf of the ordered data,
pT′(t1:n, t2:n, . . . , tn:n), and the pdf of the parent data, pT(t1,
t2, . . . tn). Let us first assume, that vector T can be written as
T = [t1, t2, . . . , tn]† = [x2

1 , x2
2 , . . . , x2

n]†, where X = [x1, x2,
. . . , xn]† is an arbitrary random vector sampled from the Gaus-
sian distribution

pX(x1, x2, . . . , xn) = 1

(2π )n/2
√|�|e

− 1
2 (X−μ)†�−1(X−μ), (1)

where μ = [μ1, μ2, . . . , μn]† is the vector of the mean, and
� = [σij ]ni,j=1 is the covariance matrix of vector X. Here,
|�| denotes the determinant of matrix �. We use squared-
Gaussian distribution since it yields one-sided exponential
tail behavior and a non-zero skewness (typical of Gamma-
process), but unlike Gamma distribution, squared-Gaussian
allows one to describe correlations of the data.

We next obtain the joint probability density function of
the parent data T in terms of the random variable X, by using
the following general transformation formula for the joint pdf
of the multivariate random variable,

pT(t1, t2, . . . , tn) =
∑

l

pX(xl(t1, t2, . . . , tn))

×‖Jl(t1, t2, . . . , tn)‖, (2)

which is valid for a smooth many-to-one mapping from real
space Rn to real space Rn with the non-zero Jacobian of the
inverse mapping. In Eq. (2), the sum runs over all inverse
branches, xl(t1, t2, . . . , tn), with l being the lth branch, and
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||Jl|| = | det[ ∂xl
i (t)

∂tj
]ni,j=1| is the absolute value of the Jacobian

of the lth inverse branch. The total number of inverse branches
for the transformation ti = x2

i (i = 1, 2, . . . , n) is 2n, and they
can be written as xl

i = sl
i

√
ti , sl

i = ±1, l = 1, 2, . . . , 2n (i = 1,
2, . . . , n). The Jacobian matrix for this transformation is given
by a diagonal matrix, with the ith diagonal entry given by

J l
i = sl

i

2
√

ti
. The determinant of this matrix is |Jl| = ∏n

i=1
sl
i

2
√

ti
.

Substituting the expressions for pX and ||Jl|| in Eq. (2), we
arrive at the joint pdf of the parent data expressed in terms of
the pdf of vector X:

pT(t1, t2, . . . , tn) = 1

(2π )n/2
√|�| · 1

2n
√

t1 · t2 · · · tn

×
∑

s

e− 1
2 (s

√
T−μ)†�−1(s

√
T−μ), (3)

where the sum varies over all vectors of signs s
= [s1, s2, . . . , sn]† with the entries si = ±1, and s

√
T

= [s1
√

t1, s2
√

t2, . . . , sn

√
tn]† is the vector of inverse trans-

formation written in terms of the components (i = 1, 2,
. . . , n).

The final step is to obtain the pdf of the time-ordered
data, pT′(t1:n, t2:n, . . . , tn:n), in terms of the pdf of the par-
ent data using Eq. (2). Consider the map G, and use this
map in Eq. (2). Since G orders the components of vector
T to produce the order statistics vector T′ = [t1:n, t2:n, . . . ,
tn:n]†, the inverse branches of G are all possible permuta-
tions, κ , of the components of vector T′. In the case of
n domains, there are a total of n! possible rearrangements
of n components and, hence, n! of the inverse branches of
G. Since the Jacobian of the permutation transformation is
either +1 or −1, the formula connecting the joint pdf of
the order statistics data and the joint pdf of the parent data
reads

pT′(t1:n, t2:n, . . . , tn:n)

=
∑

κ

pT(tκ(1):n, tκ(2):n, . . . , tκ(n):n)

= 1

(2π )n/2
√|�| · 1

2n
√

t1:n · t2:n · · · tn:n

×
∑

κ

∑
s

e− 1
2 (s

√
Tκ−μ)†�−1(s

√
Tκ−μ), (4)

where the symbolic summation is performed over all possible
permutations of components of vector T′, denoted as κ , and
s
√

Tκ = [s1
√

tκ(1):n, s2
√

tκ(2):n, . . . , sn

√
tκ(n):n]† is a vector of

inverse branches of transformations ti = x2
i and ordering G.

The expression in the third line of Eq. (4) has 2n + n(n − 1)/2
unknown parameters, including n components of the vector of
the mean (μ = [μ1, μ2, . . . , μn]†), and (n2 + n)/2 entries of the
symmetric covariance matrix (� = [σij ]ni,j=1). One can use
any estimation method to determine these parameters. Given
the statistics of xi (μi and σ ij), we can obtain the pdf (pi(t)),
the mean (μT

i ), the variance (σT
i ), the skewness of distribution

(γ T
i ) for ti (i = 1, 2,. . . ,n), and estimate pair-wise correlations

(ρT
ij ) using the analysis in the Appendix, which treats the case

of i, j = 1, 2.

III. FORCE-CLAMP MEASUREMENTS IN SILICO

A. Computer model of dimer W W − W W

We used the Cα-based SOP model of the polypeptide
chain35 to describe the dimer WW − WW formed by the
all-β-sheet WW domains (Fig. 1). The WW domain has 34
amino acid residues (Protein Data Bank (PDB) entry 1PIN36).
The mechanical unraveling of WW is described by the single-
step kinetics of unfolding, F → U, from the folded state F
to the unfolded state U. The dimer WW − WW was con-
structed by connecting the N- and C-termini of the adjacent
WW domain using flexible linkers of two and four neutral
residues (Fig. 1). Each residue in WW − WW was repre-
sented by its Cα-atom with the Cα − Cα covalent bond dis-
tance of a = 3.8 Å (peptide bond length).

The molecular potential energy of a protein conforma-
tion, specified in terms of the residue coordinates {ri}, i = 1,
2, . . . , M, is given by

VMOL = VFENE + V AT T
NB + V REP

NB

= −
M−1∑
i=1

k

2
R2

0 log

(
1 −

(
ri,i+1 − r0

i,i+1

)2

R2
0

)

+
M−3∑
i=1

M∑
j=i+3

εh

⎡
⎣

(
r0
ij

rij

)12

− 2

(
r0
ij

rij

)6
⎤
⎦ �ij

+
M−2∑
i=1

εl

(
σ

ri,i+1

)6

+
M−3∑
i=1

M∑
j=i+3

εl

(
r0
ij

rij

)6

(1−�ij ),

(5)

where the distance between any two interacting residues i and
i + 1 is ri,i+1, whereas r0

i,i+1 is its value in the native struc-
ture. The first term in Eq. (5) is the finite extensible nonlinear
elastic (FENE) potential, which describes the chain connec-
tivity; R0 = 2 Å is the tolerance in the change of a covalent
bond (k = 1.4 N/m). The second term is the Lennard-Jones
potential (V AT T

NB ), which accounts for the native interactions.
We assumed that if the non-covalently linked residues i and j
(|i − j| > 2) are within the cutoff distance in the native state
rC = 8.0 Å, then �ij = 1 and zero otherwise. We used a uni-
form value of εh = 1.5 kcal/mol, which specifies the strength
of the non-bonded interactions. All the non-native interactions
were treated as repulsive (V REP

NB ). An additional constraint
was imposed on the bond angle between residues i, i + 1,
and i + 2 by including the repulsive potential with parameters
εl = 1 kcal/mol and σ = 3.8 Å, which quantify the strength
and the range of repulsion. To ensure the self-avoidance of the
protein chain, we set σ = 3.8 Å.

B. Simulations of forced unfolding of dimer
W W − W W

The unfolding dynamics were obtained by integrat-
ing the Langevin equations for each particle position ri in
the over-damped limit, ηdri/dt = −∂V/∂ri + gi(t). Here,
V = VMOL − fY is the total potential energy, in which the
first term (VMOL) is the molecular contribution (see Eq. (5))
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and the second term represents the influence of applied force
on the molecular extension Y. Also, g(t) is the Gaussian dis-
tributed random force and η is the friction coefficient. In
each simulation run, the N-terminal Cα-atom of the first do-
main (WW1) was constrained and a constant force f = fn
was applied to the C-terminal Cα-atom of the second do-
main (WW2) in the direction n of the end-to-end vector of
the dimer Y (see Fig. 1). The Langevin equations were prop-
agated with the time step �t = 0.08τH = 20 ps, where τH

= ζεhτ L/kBT. Here, τL = (ma2/εh)1/2 = 3 ps, ζ = 50 is the
dimensionless friction constant for a residue in water
(η = ζm/τ L), and m ≈ 3 × 10−22 g is the residue mass.37

Pulling simulations were carried out at room temperature us-
ing the bulk water viscosity, which corresponds to the friction
coefficient η = 7.0 × 105 pN ps/nm. We utilized the GPU-
based acceleration to generate the statistically representative
sets of the unfolding time data.38, 39 For each value of con-
stant force f = 80, 100, 120, 140, and 160 pN, we generated
two sets of trajectories with 1000 trajectories in each set: one
set for dimer of WW domains connected by the linker of two
neutral residues, and the other for the four-residue linker. The
unfolding time for each domain (parent statistics) was defined
as the first time at which the end-to-end distance of the do-
main had exceeded 90% (∼11.25 nm) of its contour length
L = 33a ≈ 12.5 nm.

Representative trajectories of the total end-to-end dis-
tance for the dimer WW − WW obtained at f = 100 pN and
f = 160 pN are compared in Fig. 2, which also shows graph-
ically the definition of the first unfolding time t1:2 and the
second unfolding time t2:2. We observe a typical “unfolding
staircase,” i.e., a series of sudden step-wise increases in the
end-to-end distance of WW − WW as a function of time.
These mark the consecutive unfolding transitions in WW do-
mains, which occur at the first unfolding time t1:2 (1st unfold-
ing event) and at the second unfolding time t2:2 (2nd unfolding
event). The unfolding transitions are more discrete at a lower
force f = 100 pN (Fig. 2(a)) but more continuous at a higher
force f = 160 pN (Fig. 2(b)). We remind that in experiment
(but not in simulations), there is no way of knowing which
domain has unfolded at any given time, and the time-ordered
data (tr:n) are the only observable quantities.

IV. TOPOLOGICAL COUPLING AND MECHANICAL
SYMMETRY BREAKING

To provide a basis for the Order statistics inference,
we performed a direct statistical analysis of the simula-
tion output for WW − WW generated at f = 80, 100,
120, 140, and 160 pN (parent data). The data sets con-
tain Q = 1000 unfolding times for each force value and
for each linker length. First, we constructed the histogram-
based estimates of the distributions of unfolding times for
the first domain (WW1) and second domain (WW2), which
are compared in Fig. 3 (bin size was chosen using the
Freedman-Diaconis rule40). We calculated the average un-
folding times μT

1 and μT
2 (μT

i = 1/Q
∑Q

j=1 tij , i = 1, 2),
the standard deviations σT

1 and σT
2 (σi = (E(t2

i ) − (μT
i )2)1/2,

where E(t2
i ) is the second moment of ti, i = 1, 2), and
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FIG. 2. The time-evolution of the end-to-end distance of the dimer WW

− WW (see Fig. 1), Y, under the influence of constant pulling force of
f = 100 pN (panel (a)) and f = 160 pN (panel (b)). Shown in different
color are a few representative trajectories. The unfolding transitions in
WW − WW are reflected in the stepwise increases in Y, which occur at
the 1st unfolding time t1:2 (unfolding of WW1 or WW2), and 2nd unfolding
time t2:2 (unfolding of WW1 or WW2). These transitions are magnified in the
insets for each force value for just one simulation run.

the values of the skewness of distributions γ T
1 and γ T

2 , and
the Pearson correlation coefficient ρT = ρT

12. The skewness
of the distributions was calculated using the formula γ T

i

= (E(t3
i ) − 3μT

i (σT
i )2 − (μT

i )3)/(σT
i )3, where E(t3

i ) is the
third moment of ti (i = 1, 2). Pearson correlation co-
efficient was calculated as ρT = (E(t1t2) − μT

1 μT
2 )/σT

1 σT
2 ,

where E(t1t2) is the first moment of the product t1t2. These
statistical measures are compared in Tables I and II for the
case of the linker of two and four residues, respectively.

The parent distributions of unfolding times are skewed,
broadly distributed, and exponential-like at low forces
(f = 80 pN) and become more narrowly distributed, and
Gaussian-like at high forces (f = 160 pN; see Fig. 3). These
changes become manifest when comparing the values of μT

i ,
σT

i , and γ T
i , i = 1, 2 (see Tables I and II). Here, μT

1 and μT
2

decrease as f is increased, because the applied force destabi-
lizes the native state of WW , and, hence, decreases their life-
times. At low forces, dynamic fluctuations are not suppressed
and the unfolding transitions are more variable (stochastic),
which is reflected in the width of the distributions (σT

i ). When
f is increased, fluctuations become less important and the un-
folding events become increasingly more deterministic (less
stochastic), which results in the decrease of σT

1 and σT
2 .

Interestingly, we found that the unfolding times t1 for the
first domain (WW1) and t2 for the second domain (WW2) are
uncorrelated at low forces, but become correlated (dependent)
at a high force (f = 160 pN). This is reflected in the values of
the correlation coefficient ρT (Tables I and II). Hence, our re-
sults show that tension couples otherwise non-interacting pro-
tein domains forming a multi-domain protein. Because this
result could have been observed in the case of physically in-
teracting protein domains, e.g., through a common binding
interface, we termed this effect the “topological coupling” to
stress the importance of chain connectivity (topology). Hence,
our results indicate that under large mechanical stress protein
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FIG. 3. The “parent unfolding times” ti, i = 1, 2, for the dimer WW − WW of domains WW1 and WW2 connected by the two-residue linker (panels (a) − (f))
and four-residue linker (panels (g) − (l)). Shown are the histogram-based estimates of the pdf’s of unfolding times for the first domain WW1 (t1, blue bars) and
for the second domain WW2 (t2, red bars), obtained directly from the simulation output. These are compared with the theoretical curves of the same quantities
obtained by applying Order statistics inference (black and purple curves) for f = 80 pN (panels (a), (b) and (g), (h)), f = 120 pN (panels (c), (d) and (i), (j)),
and f = 160 pN (panels (e), (f) and (k), (l)).

domains might become topologically coupled even in the ab-
sence of domain-domain interactions.

Another interesting finding is that although the unfolding
times for the first domain WW1 (t1) and for the second domain
WW2 (t2) are similarly distributed at a low force (f = 80 pN),
these become more and more nonidentically distributed at
higher forces (f = 100 − 160 pN). Indeed, the values of μT

i ,
σT

i , and γ T
i for i = 1, 2 are very similar at f = 80 pN, yet, very

different at f = 160 pN (Tables I and II). Hence, our results
indicate that increased tension breaks the mechanical symme-

try. Indeed, identical protein domains WW1 and WW2 have
very similar mechanical properties at a low force, but these
become distinctly different at higher forces.

V. FROM TIME-ORDERED DATA TO PARENT
DISTRIBUTIONS

In force-clamp single-molecule experiments on multido-
main proteins, experimentalists have no prior knowledge re-
garding the type of random variables measured. Our results

TABLE I. Statistical measures of the parent unfolding times for the first domain WW1 (t1), and second domain
WW2 (t2), connected in the dimer WW − WW by the two-residue linker: the average unfolding times μT

1 and
μT

2 , the standard deviations σT
1 and σT

2 , the skewness of the distributions γ T
1 and γ T

2 , the Pearson correlation co-
efficient ρT = ρT

12, and Spearman rank correlation coefficient sT = sT
12. The estimates of these measures (except

for sT), obtained directly from the simulation output, are compared with the estimates obtained by applying Order
statistics inference (shown in parentheses).

Force, μT
1 μT

2 σT
1 σT

2

(pN) (ms) (ms) (ms) (ms) γ T
1 γ T

2 ρT sT

80 174.2 106.1 134.4 102.3 1.69 1.51 −0.012 0.006
(189.8) (93.5) (143.7) (88.5) (1.2) (1.55) (−0.097)

100 4.13 2.25 3.60 2.25 1.41 1.67 −5 · 10−5 0.025
(4.19) (2.09) (3.77) (1.87) (1.46) (1.67) (−0.067)

120 0.32 0.13 0.23 0.12 1.71 1.98 −0.064 − 0.049
(0.31) (0.13) (0.23) (0.08) (1.20) (0.98) (−0.111)

140 0.093 0.034 0.031 0.019 1.21 2.01 0.014 0.132
(0.095) (0.032) (0.024) (0.016) (0.39) (0.76) (0.174)

160 0.058 0.016 0.010 0.006 1.18 1.86 0.131 0.123
(0.057) (0.016) (0.009) (0.005) (0.24) (0.51) (0.151)
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TABLE II. Same quantities as in Table I but for the dimer WW − WW of WW domains connected by the linker
of four residues.

Force, μT
1 μT

2 σT
1 σT

2

(pN) (ms) (ms) (ms) (ms) γ T
1 γ T

2 ρT sT

80 166.0 112.9 133.5 99.6 1.74 1.35 0.028 0.037
(150.0) (103.8) (125.4) (94.3) (1.34) (1.47) (0.077)

100 3.80 2.46 3.30 2.30 1.42 1.62 0.030 0.052
(4.04) (2.52) (3.59) (1.97) (1.44) (1.24) (0.048)

120 0.32 0.15 0.23 0.12 1.68 1.73 − 0.026 − 0.033
(0.30) (0.16) (0.23) (0.10) (1.20) (0.96) ( − 0.004)

140 0.10 0.040 0.036 0.023 1.42 1.55 − 0.017 0.069
(0.10) (0.039) (0.032) (0.021) (0.46) (0.83) ( − 0.266)

160 0.065 0.021 0.011 0.008 1.19 1.00 0.259 0.255
(0.064) (0.021) (0.011) (0.008) (0.25) (0.55) (0.285)

for the dimer WW − WW indicate that the mechanical force
can topologically couple the non-interacting protein domains
and can break the similarity in their physical properties even
when domains are identical. Using our classification of ran-
dom variables, the unfolding times for identical protein do-
mains in a multi-domain protein might form a set of iid ran-
dom variables at low forces, inid random variables at the
intermediate force level, and dnid random variables at high
enough forces. Hence, a unified approach is needed to ana-
lyze and model the different types of random variables. Here,
we describe the results of application of Order statistics infer-
ence, developed in Sec. II, to characterize the forced unfold-
ing times for the dimer WW − WW obtained for different
values of applied constant force f = 80 − 160 pN. The for-
malism adapted for the two-domain protein is presented in the
Appendix.

Because in a single-molecule experiment size of the data
sample might be small, we picked at random 330 data points
(330 pairs (t1, t2)) out of Q = 1000 observations from each
data set. Next, we ordered the data for each pair to gener-
ate ordered unfolding times as observed in experiment. As an
example for the dimer WW − WW (linker of two residues),
we present the histogram-based estimates of the pdf’s of the
1st unfolding time (t1:2) and the 2nd unfolding time (t2:2), ob-
tained at f = 80, 120, and 160 pN in Fig. 4. The histograms of
the ordered unfolding times are markedly different in terms

of their overall shape, width, and position of the maximum
(most probable unfolding time). That the maximum for t2:2

corresponds to longer times compared to the maximum for
t1:2 is not unexpected, since, by construction, t1:2 < t2:2. A sur-
prising element is that the histograms of t2:2 have longer tails,
which means that fluctuations play a more important role in
the unfolding transitions that occur later in time. According
to our formalism, the time-ordered data correspond to vectors
of order statistics T′ = [t1:2, t2:2]† described by the joint pdf
pT′(t1:2, t2:2) (see Eq. (A4)).

The model for two-domain protein WW − WW has five
unknown parameters: the average values μ1 and μ2, the stan-
dard deviations σ 11 and σ 22, and the covariance σ 12. These
describe the statistics of vector X = [x1, x2]†. Once deter-
mined, they can be used to describe the parent statistics of
vector T = [t1, t2]†. We employed the Maximum Likelihood
Estimation (MLE) to obtain the vector of parameters,
θ = (μ1, μ2, σ 11, σ 22, σ 12). The likelihood function for the
pdf given by Eq. (A4) is L(θ ) = ∏330

j=1 pT′({t1:n, t2:n}j |θ ), but
in the model calculations we used the log-likelihood function,
log[L(θ )] = ∑330

j=1 log pT′({t1:n, t2:n}j |θ ), to obtain the values
of μ1, μ2, σ 11, σ 22, and σ 12. These quantities and Eqs. (A5)–
(A8) were then used to obtain the parent statistics: the av-
erage quantities μT

1 and μT
2 , the standard deviations σT

1 and
σT

2 , the skewness coefficients γ T
1 and γ T

2 , and the correlation
coefficient ρT (see the Appendix). Finally, the closed-form

FIG. 4. The “time-ordered unfolding times” tr:2, r = 1, 2 for the dimer WW − WW (two-residue linker). The data are represented by the histogram-based
estimates of the pdf’s of the 1st unfolding time (t1:2) and 2nd unfolding time (t2:2) compared for f = 80 pN (panels (a) and (b)), f = 120 pN (panels (c) and
(d)), and f = 160 pN (panels (e) and (f)).
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expressions for the parent pdf’s of unfolding times p1(t) and
p2(t) were obtained by integrating out t2 and t1, respectively,
in Eq. (A3) for the joint parent pdf,

pi(t) = 1

σii

√
2π

· 1

2
√

t

[
exp

(
− (

√
t − μi)2

2σ 2
ii

)

+ exp

(
− (

√
t + μi)2

2σ 2
ii

) ]
, i = 1, 2. (6)

Statistical measures of the parent unfolding times (parent
statistics of vector T = [t1, t2]†), μT

1 , μT
2 , σT

1 , σT
2 , and ρT,

obtained by applying Order statistics inference to the order-
statistics data, are compared with the same quantities, ob-
tained from a direct statistical analysis of the parent data, in
Tables I and II. The theoretical curves of the parent distribu-
tions pi(t) (i = 1, 2), generated by substituting the values of
μ1, μ2, σ 11, and σ 22 (statistics of vector X = [x1, x2]†) into
Eq. (6), are overlaid in Fig. 3 with the histograms of the parent
unfolding times.

We witness a very good agreement between the
histogram-based estimates and theoretical curves of the pdf’s
of the parent unfolding times for both domains WW1 and
WW2 and for all force values f = 80, 120, and 160 pN in
terms of the overall shape and position of the maximum (Fig.
3). In agreement with simulations, our theory predicts that at
high forces the second domain (WW2), to which the force
is applied (Fig. 1), unravels on a faster timescale compared
to the first domain (WW1). Hence, our theory captures the
growing difference between the time distributions for WW1

and WW2 at larger forces reflecting the mechanical symmetry
breaking. Comparing the values of μT

i , σT
i , γ T

i , and ρT, ob-
tained using Order statistics inference, with the “true” values
of these quantities from a direct statistical analysis, we see
that the agreement is nearly quantitative for μT

i and σT
i and

very good for γ T
i at low forces (f = 80 pN). At larger forces

(>100 pN), the agreement for μT
i and σT

i is very good, yet,
the agreement for γ T

i is more qualitative rather than quantita-
tive. Importantly, Order statistics inference correctly captured
the mutual independence of unfolding times (t1 and t2) at low
forces, which is reflected in small values of Pearson correla-
tion coefficient ρT for f < 140 pN. Order statistics inference
correctly predicts the emergence of topological interactions at
higher forces (i.e., for f = 160 pN), for which the values of
ρT are in the 0.1 − 0.3 range (Tables I and II).

VI. DISCUSSION

Single-molecule force spectroscopy has enabled re-
searchers to uncover the mechanism of adaptation of protein
structures to mechanical loads.19, 41 These experiments are
now routinely used to study proteins and other biomolecules
beyond the ensemble average picture and to map the en-
tire distributions of the relevant molecular characteristics.42, 43

Yet, existing theoretical approaches for analyzing and model-
ing the experimental results lag behind. This calls for the de-
velopment of next generation theoretical methods, which take
into account both the complexity of the problem and the na-
ture and statistics of experimental observables.

In the previous studies, we have demonstrated that the
unfolding times observed in the constant force (force-clamp)
measurements on a multidomain protein D1 − D2 − . . . −
Dn comprise a set of the rth order statistics, tr:n (r = 1, 2, . . . ,
n),25 and that the unfolding forces observed in the constant ve-
locity (force-ramp) measurements form a set of the first order
statistic t1:n in a sample of decreasing size (n, n − 1, . . . , 1).27

We have also developed rigorous statistical tests for classifi-
cation of random variables measured in these experiments.27

Here, we developed an Order statistical theory to describe
coupled proteins forming a multimeric protein or proteins
forming the tertiary structure within the same multidomain
protein subject to the mechanical stress. We focused on inter-
esting new effects of tension-induced mechanical symmetry
breaking and topological coupling in multi-domain proteins
formed by the physically non-interacting protein domains,
using an example of the two-domain protein WW − WW .
However, our theory can also be used to characterize the
physico-chemical properties of proteins with strong domain-
domain interactions, such as fibrin fibers, microtubules, and
actin filaments mentioned in the Introduction. Strong inter-
actions will translate into large values of the off-diagonal
elements of the covariance matrix (Pearson correlation
coefficient).

Our approach is based on Order statistics inference,
which proved to be successful at solving the inverse problems.
The approach can be used to accurately analyze, interpret,
and model the results of protein forced unfolding measure-
ments available from the constant force assays on multimeric
and multidomain proteins. One of the main results of this pa-
per is that Order statistics inference enables one to analyze
and model the forced unfolding times for a multi-domain pro-
tein formed by noninteracting identical domains (iid case) and
non-identical domains (inid case), and by interacting identical
domains (did case) and non-identical domains (dnid case).
With little effort, the formalism can be extended to analyze
the results of constant velocity measurements. We applied our
approach to analyze the results of protein forced unfolding
in silico for the dimer WW − WW of the all-β-sheet WW

domains.44, 45 In simulations, one can access the parent data
and the time-ordered data. This was used to compare directly
the various statistical measures – the distributions of unfold-
ing times, the average unfolding times, the standard devia-
tions, and the skewness of the distributions, obtained from the
statistical analysis of the parent unfolding times for domains
WW1 and WW2, and the same measures, obtained by apply-
ing Order statistics inference to the time-ordered data. A very
good agreement obtained between the statistics of unfolding
times from pulling simulations and from the theoretical infer-
ence validates our theory. The presence of correlations is re-
flected in the inequality of the joint distribution to the product
of the marginals, i.e., pT(t1, t2) 	=p1(t)p2(t).42, 43 In the bivari-
ate case for just two domains, dynamic correlations between
the parent unfolding times t1 and t2 are contained in the off-
diagonal matrix element σ12 of the covariance matrix � for
vector X = [x1, x2]†. Order statistics inference correctly de-
tected the absence of correlations at a small force (f = 80,
100, and 120 pN), and the presence of correlations at a large
force (f = 160 pN).
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FIG. 5. The “parent unfolding times” ti, i = 1, 2, and 3, for the trimer WW − WW − WW of WW domains connected by linkers of two residues. Compared
are the histogram-based estimates of the parent pdf’s of unfolding times for the first domain WW1 (t1, blue bars), second domain WW2 (t2, red bars), and third
domain WW3 (t3, green bars), obtained directly from the simulation output generated for f = 100 pN (panels (a), (b), and (c)), f = 140 pN (panels (d), (e),
and (f)), and f = 160 pN (panels (g), (h), and (i)).

We found the mechanical symmetry breaking and topo-
logical interactions observed in a multi-domain protein sub-
ject to tension. The growing asymmetry in the mechanical
properties of identical protein domains comprising a multi-
domain protein, can be understood by considering an exam-
ple of WW − WW . When the pulling force is applied, it takes
time τ f for tension to propagate from the tagged residue in do-
main WW2 to the other domain WW1. Hence, domain WW2

is subjected to the mechanical force for a longer time than
domain WW1 (Fig. 1). When force is large enough so that
the average unfolding time μf becomes comparable with τ f,
tension propagation prolongs the lifetime of the more dis-
tal domain WW1, i.e., μ1(f) ≈ μf + τ f versus μ2(f) ≈ μf.
This is reflected in the inequality of the distributions of un-
folding times for domains WW1 and WW2 (Fig. 3). But this
same result would have been observed for a different two-
domain protein, say D1 − D2, formed by the non-identical
domains, e.g., the mechanically stronger domain D1 and me-
chanically weaker domain D2, characterized by the differently
distributed unfolding times.

The topological coupling can be understood using a
concept of correlation length. In the folded state, overall
bending flexibility of a dimer is determined by the mobility at
the domain-domain interface. Under low tension, the average
inter-domain angle φ should show large deviations from the
180◦ angle, �φ, and the correlation length lc is short. Under
high tension, �φ decreases and lc increases. This same result
would have been observed for the domains that interact, e.g.,
through their inter-domain interface. Domain interactions
would have decreased the mobility at the domain-domain
interface, which, in turn, would have resulted in smaller �φ

and longer lc. The averaged squared deviations of the inter-
domain angle can be linked to the correlation length as 〈�φ2〉
= 2d/lc, where d is the inter-domain distance. We estimated
lc using the results of pulling simulations for WW − WW

(linker of two residues). For f = 100 pN, d ≈ 1.2 nm and

|�φ| ≈ 30◦, and lc ≈ 1.8 nm is shorter than the average
size of the WW domain at equilibrium (≈ 3 − 4 nm). For
f = 160 pN, d ≈ 2.8 nm and |�φ| ≈ 15◦. This results in the
three-fold increase in lc ≈ 5.2 nm, which now exceeds the
dimension of WW domain. Hence, under high tension WW

domains unravel in a concerted fashion, which is reflected in
the dependence of the unfolding times t1 and t2 at large forces
(Tables I and II).

To provide the reader with yet another glimpse of the
hidden complexity underlying a seemingly trivial problem of
unfolding of a multi-domain protein, we performed pulling
simulations for the trimer WW − WW − WW , in which the
force was applied to the third domain (WW3). The histograms
of unfolding times for the first domain WW1 (t1), second do-
main WW2 (t2), and third domain WW3 (t3) are compared
in Fig. 5. Numerical values of the correlation coefficients for
pair-wise correlations ρT

ij , i 	= j = 1, 2, 3, of the unfolding
times are summarized in Table III. We see that the distribu-
tions of unfolding times are nearly identical and unimodal,
reflecting the mechanical symmetry, at a low 100 pN-force;
yet, the time distributions become increasingly more different

TABLE III. The Pearson correlation coefficients, ρT
ij = ρT

12, ρT
13, and ρT

23,

and the Spearman rank correlation coefficients, sT
ij = sT

12, sT
13, and sT

23, quan-
tifying the degree of pairwise correlations (dependence) of the parent un-
folding times ti (i = 1, 2, 3) for the first domain WW1 (t1), second do-
main WW2 (t2), and third domain WW3 (t3). These measures are ob-
tained by performing a statistical analysis of the simulation output for the
trimer WW − WW − WW of WW domains connected by the linkers of two
residues.

Force (pN) ρT
12(sT

12) ρT
13(sT

13) ρT
23(sT

23)

100 − 0.023 (0.032) 0.053 (0.050) 0.038 (0.035)
120 − 0.073 (−0.130) − 0.035 (−0.039) 0.054 (−0.032)
140 − 0.341 (−0.295) 0.042 (0.057) 0.043 (0.092)
160 − 0.537 (−0.139) 0.038 (0.021) − 0.016 (−0.032)

 This article is copyrighted as indicated in the article. Reuse of AIP content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to  IP:

129.63.144.97 On: Wed, 25 Mar 2015 15:30:28



121913-10 Kononova, Jones, and Barsegov J. Chem. Phys. 139, 121913 (2013)

with the increasing tension. Indeed, the distributions of un-
folding times for WW1 and WW2, but not for WW3, develop
the second mode at f = 140 pN. The parent unfolding times
for WW1 (t1) and WW2 (t2), but not for WW1 and WW3 and
not for WW2 and WW3, develop correlations, which tend to
grow with force (Table III).

VII. CONCLUSION

Intramolecular and intermolecular interactions involving
proteins are at the core of virtually every biological process.
Here, we developed and tested a new Order statistics approach
for detecting and describing biomolecular interactions. Order
statistics offers a new tool kit for accurate interpretation and
modeling of experimental data on multidomain proteins, mul-
timeric proteins, and engineered polyproteins available from
single-molecule force spectroscopy. Looking into the future,
we anticipate that Order statistics based calculus of proba-
bility will play an important role when single-molecule tech-
niques will expand into new avenues of research such as fold-
ing of multi-domain proteins,46 protein folding in cellular en-
vironment, and nanomechanics of protein assemblies (protein
fibers, microtubules, actin filaments, viruses, etc.).31, 32 Also,
life processes in living cells are coordinated both spatially and
temporally. In this respect, Order statistics builds in causality
into a theoretical description in a natural way.

Mechanical symmetry breaking and topological coupling
might be related to the biological utility of proteins. The struc-
tural design of multidomain proteins – number of domains,
linker length, etc., carves out a larger “parameter space” for
the physical characteristics such as mechanical strength, toler-
ance to fluctuations, correlation length, all of which are force-
dependent. As we showed in the paper, when tension is high
enough, this design permits the “mechanical differentiation”
of protein domains, which become, in some sense, “functional
isoforms” of the same structural unit. Protein systems may
have evolved to select certain modular architectures with the
optimal physico-chemical properties for efficient mechanical
integration of forces. Also, the mechanical stress promotes
coupling between structural elements, which transforms a me-
chanically non-cooperative system into a highly cooperative

one. This might be a mechanism of information transfer over
long distances to coordinate cell processes over the relevant
lengthscales and timescales.10
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APPENDIX: ORDER STATISTICS INFERENCE FOR
TWO-DOMAIN CASE

In the case of a two-domain protein D1 − D2, the unfold-
ing time data can be represented by vectors T′ = [t1:2, t2:2]†

containing the first and second order statistic. These data can
be used to gather information about parent vectors T = [t1,
t2]† for the first domain (D1) and second domain (D2). For
each vector T, we define vector X2 = [x2

1 , x2
2 ]†, in which ran-

dom variables x1 and x2 are sampled from the Gaussian dis-
tribution (see Eq. (1)). Statistics of x1 and x2 are described by
the vector of the average μ = [μ1, μ2]† and the covariance

matrix � = [
σ 2

11 σ12

σ21 σ 2
22

], where σ 2
11 and σ 2

22 are the variances

of x1 and x2, respectively, and σ 12 = σ 21 is the covariance.
Equation (3) for the joint pdf of the parent data T = [t1, t2]†

becomes

pT(t1, t2)= 1

2π
√|�| ·

1

22
√

t1 · t2
·
∑

s

e− 1
2 (s

√
T−μ)†�−1(s

√
T−μ),

(A1)
where |�| = σ 2

11σ
2
22 − σ 2

12 is the determinant and �−1

= 1
|�| [

σ 2
22 −σ12

−σ12 σ 2
11

] is the inverse of the covariance ma-

trix �. In Eq. (A1), s = [s1, s2]† = {[1, 1]†, [1, −1]†,
[−1, 1]†, [− 1, −1]†} are vectors of all possible signs of√

t1 and
√

t2 and s
√

T = [s1
√

t1, s2
√

t2]† is the vector of in-
verse values, which correspond to all possible branches of
the inverse transformation [t1, t2] = [x2

1 , x
2
2 ]. Performing vec-

tor multiplication in the exponent of the exponential function
forming the sum in Eq. (A1), we obtain

(s
√

T − μ)† �−1 (s
√

T − μ) = (s1
√

t1 − μ1)2σ 2
22 + (s2

√
t2 − μ2)2σ 2

11 − 2(s1
√

t1 − μ1)(s2
√

t2 − μ2)σ12

σ 2
11σ

2
22 − σ 2

12

, (A2)

which, depending on the choice of s = [s1, s2]†, takes the following form:

k1(t1, t2) = (
√

t1 − μ1)2σ 2
22 + (

√
t2 − μ2)2σ 2

11 − 2(
√

t1 − μ1)(
√

t2 − μ2)σ12

2
(
σ 2

12 − σ 2
11σ

2
22

) , s = [1, 1]†,

k2(t1, t2) = (
√

t1 − μ1)2σ 2
22 + (

√
t2 + μ2)2σ 2

11 + 2(
√

t1 − μ1)(
√

t2 + μ2)σ12

2
(
σ 2

12 − σ 2
11σ

2
22

) , s = [1,−1]†,

k3(t1, t2) = (
√

t1 + μ1)2σ 2
22 + (

√
t2 − μ2)2σ 2

11 + 2(
√

t1 + μ1)(
√

t2 − μ2)σ12

2
(
σ 2

12 − σ 2
11σ

2
22

) , s = [−1, 1]†,

k4(t1, t2) = (
√

t1 + μ1)2σ 2
22 + (

√
t2 + μ2)2σ 2

11 − 2(
√

t1 + μ1)(
√

t2 + μ2)σ12

2
(
σ 2

12 − σ 2
11σ

2
22

) , s = [−1,−1]†.
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Substituting these expressions for kj = kj(t1, t2) (j = 1,
2, 3, 4) and the expression for |�| in Eq. (A1), we obtain the
closed form expression for the joint pdf of the parent data,

pT(t1, t2) = 1

2π

√
σ 2

11σ
2
22 − σ 2

12

· 1

4
√

t1 · t2
·

4∑
j=1

ekj (t1,t2) (A3)

in which the summation over s is replaced with the summation
over j.

Next, to obtain the closed form expression for the
joint pdf of the order statistics, we use Eq. (4) and
take into account possible permutations of the vec-
tor components of order statistics [tκ(1):2, tκ(2):2]†. In
the 2D-case, there are only two options, namely vec-
tor [t1:2, t2:2]† and vector [t2:2, t1:2]†, which correspond
to permutations (t1, t2) and (t2, t1) of the parent data.
Then, the joint pdf of the order statistics is given
by

pT′(t1:2, t2:2) = pT(t1, t2) + pT(t2, t1)

= 1

4
√

t1 · t2
· 1

2π

√
σ 2

11σ
2
22 − σ 2

12

×
[

exp

(
(
√

t1 − μ1)2σ 2
22 + (

√
t2 − μ2)2σ 2

11 − 2(
√

t1 − μ1)(
√

t2 − μ2)σ12

2
(
σ 2

12 − σ 2
11σ

2
22

)
)

+ exp

(
(
√

t1 − μ1)2σ 2
22 + (

√
t2 + μ2)2σ 2

11 + 2(
√

t1 − μ1)(
√

t2 + μ2)σ12

2
(
σ 2

12 − σ 2
11σ

2
22

)
)

+ exp

(
(
√

t1+μ1)2σ 2
22 + (

√
t2 − μ2)2σ 2

11 + 2(
√

t1 + μ1)(
√

t2 − μ2)σ12

2
(
σ 2

12 − σ 2
11σ

2
22

)
)

+ exp

(
(
√

t1 + μ1)2σ 2
22 + (

√
t2 + μ2)2σ 2

11 − 2(
√

t1 + μ1)(
√

t2 + μ2)σ12

2
(
σ 2

12 − σ 2
11σ

2
22

)
)

+ exp

(
(
√

t2 − μ1)2σ 2
22 + (

√
t1 − μ2)2σ 2

11 − 2(
√

t2 − μ1)(
√

t1 − μ2)σ12

2
(
σ 2

12 − σ 2
11σ

2
22

)
)

+ exp

(
(
√

t2 − μ1)2σ 2
22 + (

√
t1 + μ2)2σ 2

11 + 2(
√

t2 − μ1)(
√

t1 + μ2)σ12

2
(
σ 2

12 − σ 2
11σ

2
22

)
)

+ exp

(
(
√

t2 + μ1)2σ 2
22 + (

√
t1 − μ2)2σ 2

11 + 2(
√

t2 + μ1)(
√

t1 − μ2)σ12

2
(
σ 2

12 − σ 2
11σ

2
22

)
)

+ exp

(
(
√

t2 + μ1)2σ 2
22 + (

√
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11 − 2(
√

t2 + μ1)(
√

t1 + μ2)σ12

2
(
σ 2

12 − σ 2
11σ

2
22

)
) ]

. (A4)

To obtain the average values μ1 and μ2, the standard devia-
tions σ 11 and σ 22, and the covariance σ 12, we used the Max-
imum Likelihood Estimation method (Sec. V) and the joint
pdf of the order statistics (see Eq. (A4)). These parameters
correspond to the vector X = [x1, x2]†, which allows us to
estimate the average value (μT

i ), the standard deviation (σT
i ),

the skewness of the distribution (γ T
i ), and the correlation co-

efficient (ρT) for the parent data T = [t1, t2]†.
The theoretically estimated average unfolding times for

domains D1 and D2 are given by

μT
i = E(ti) = E

(
x2

i

)
= μ2

i + σ 2
ii , i = 1, 2, (A5)

where E(ti) denotes the expected value of ti and E(x2
i ) is the

second moment of xi. The standard deviations are given by

σT
i =

√
V ar(ti) =

√
V ar

(
x2

i

)

=
√

E
(
x4

i

) − (
E

(
x2

i

))2

=
√

4σ 2
iiμ

2
i + 2σ 4

ii , i = 1, 2, (A6)

where V ar(ti) = V ar(x2
i ) is the variance of the parent un-

folding times ti = x2
i , and E(x2

i ) and E(x4
i ) are the sec-

ond and fourth moments of xi, respectively, (i = 1, 2). The
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skewness of the distributions can be estimated as

γ T
i = E

(
t3
i

) − 3μT
i

(
σT

i

)2 − (
μT

i

)3

(
σT

i

)3

= E
(
x6

i

) − 3μT
i

(
σT

i

)2 − (
μT

i

)3

(
σT

i

)3

= 24μ2
i σ

4
ii + 8σ 6

ii√(
4σ 2

iiμ
2
i + 2σ 4

ii

)3
, i = 1, 2, (A7)

The correlation coefficient of unfolding times t1 and t2,
ρT = ρ ij (i 	= j = 1, 2) is defined as

ρT = E(t1t2) − E(t1)E(t2)√
V ar(t1)

√
V ar(t2)

= E
(
x2

1x2
2

) − E
(
x2

1

)
E

(
x2

2

)
√

V ar
(
x2

1

)√
V ar

(
x2

2

) , (A8)

In order to calculate E(x2
1x2

2 ) – the expected value of x2
1

and x2
2 , we rewrite x2 in the form x2 = μ2 + ρ σ22

σ11
(x1 − μ1)

+ σ22

√
1 − ρ2R, where R is a normal random vari-

able, independent of x1, with zero mean and unit vari-
ance, and ρ is the correlation coefficient for x1 and x2,
given by ρ = σ 12/(σ 11σ 22). Then, E(x2

1x2
2 ) becomes

E(x2
1x2

2 ) = E(x2
1 (μ2 + ρ σ22

σ11
(x1 − μ1) + σ22

√
1 − ρ2R)2).

Simplifying the expression for E(x2
1x

2
2 ), we obtain

E
(
x2

1x2
2

) = A2E
(
x2

1

) + σ 2
12

σ 4
11

E
(
x4

1

) + 2A
σ12

σ 2
11

E
(
x3

1

)

+
(

σ 2
22 − σ 2

12

σ 2
11

)
E

(
x2

1

)
, (A9)

where the coefficient A, the third moment E(x3
1 ) of x1, and the

fourth moment E(x4
1 ) of x1 are given, respectively, by

A = μ2 − σ12

σ 2
11

μ1,

E
(
x3

1

) = μ3
1 + 3μ1σ

2
11,

E
(
x4

1

) = μ4
1 + 6μ2

1σ
2
11 + 3σ 4

11. (A10)

The correlation coefficient for the parent data can be calcu-
lated theoretically by substituting Eqs. (A10) into Eq. (A9),
then substituting Eq. (A9) into the second line in Eq. (A8),
and finally using Eqs. (A5) and (A6) for the average un-

folding time μT
i = E(x2

i ) and the variance σT
i =

√
V ar(x2

i )
(i = 1, 2).
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