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ABSTRACT: The use of graphics processing units (GPUs) in
simulation applications offers a significant speed gain as com-
pared to computations on central processing units (CPUs).
Many simulation methods require a large number of indepen-
dent random variables generated at each step. We present two
approaches for implementation of random number generators
(RNGs) on a GPU. In the one-RNG-per-thread approach, one
RNG produces a stream of random numbers in each thread of
execution, whereas the one-RNG-for-all-threads method builds
on the ability of different threads to communicate, thus, sharing
random seeds across an entire GPU device. We used these approaches to implement Ran2, Hybrid Taus, and Lagged Fibonacci
algorithms on a GPU. We profiled the performance of these generators in terms of the computational time, memory usage, and the
speedup factor (CPU time/GPU time). These generators have been incorporated into the program for Langevin simulations of
biomolecules fully implemented on the GPU. The ∼250-fold computational speedup on the GPU allowed us to carry out single-
molecule dynamic force measurements in silico to explore the mechanical properties of the bacteriophage HK97 in the experimental
subsecond time scale. We found that the nanomechanical response of HK97 depends on the conditions of force application,
including the rate of change and geometry of the mechanical perturbation. Hence, using the GPU-based implementation of RNGs,
presented here, in conjunction with Langevin simulations, makes it possible to directly compare the results of dynamic force
measurements in vitro and in silico.

I. INTRODUCTION

Graphics processing units (GPUs) are emerging as an alter-
native programming platform that provides high raw computa-
tional power for scientific applications.1-7 The computational
efficiency of contemporary GPUs reaching ∼1 TFlops for a
single chip8 enables one to utilize GPUs as performance accel-
erators in compute-intensive molecular simulations.1,2,6,7 The
GPU-based calculations can be performed concurrently onmany
computational cores (Arithmetic Logic Units, ALUs) grouped
into multiprocessors, each with its own flow control and cache
units. For example, the number of multiprocessors per GPU can
reach 15 on the most up-to-date graphics cards (e.g., GeForce
GTX 480 from NVIDIA) bringing the total number of ALUs to
480 per chip. Although a GPU device has its own global
memory with∼10 times larger bandwidth compared to DRAM
on a CPU, the number of memory invocations (per ALU)
should be minimized to optimize the GPU performance.
Hence, the computational task should be compute-intensive
so that, most of the time, the GPU performs computations
rather than reads/writes data.8 This makes an N body problem
a prime candidate for the numerical implementation on the
GPU.

Langevin dynamics (LD) simulations, Monte Carlo (MC)
simulations, and molecular dynamics (MD) simulations in im-
plicit solvent, widely used to access the microscopic transitions in
biomolecules, are among the many applications that can be
implemented on a GPU. Since in MD simulations in implicit
water and in LD simulations the effect of solvent molecules are
described implicitly, these methods require a reliable source of
3N normally distributed random numbers, gi,R (i = 1, 2, ...,N, and
R = x, y, z), generated at each step of a simulation run, in order to
compute the Gaussian random force Gi,R. For example, in MD
simulations in implicit water,9,10 the dynamics of the ith particle
are governed by the equations of motion for the particle position,
dRi/dt = Vi, and velocity,mi dVi/dt = ξViþ f(Ri)þGi(t), where
mi is the particle mass, ξ is the friction coefficient, and f(Ri) =
-∂U/∂Ri is the molecular force exerted on the ith particle due to
the potential energyU. In LD simulations, the dynamics of the ith
particle are obtained by following the Langevin equation in the
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overdamped limit, ξ dRi/dt = f(Ri) þ Gi(t).
11 In MC simula-

tions, the results of multiple trials, each driven by some random
process, are combined to extract the average answer.

An algorithmic (pseudo)random number generator (RNG)
must have a long period and must meet the conflicting goals of
being fast while providing a large amount of random numbers of
proven statistical quality.12 There is an extensive body of litera-
ture devoted to random number generation on a central process-
ing unit (CPU).13 Yet, because of the fundamental differences in
processor and memory architecture of a GPU, the CPU-based
methods cannot be easily translated from a CPU to a GPU. One
option is to have random numbers pregenerated on the CPU,
and use these numbers in the simulations on the GPU. However,
this requires a large amount of memory for an RNG. For a system
of 104 particles in three dimensions, 3�104 random numbers
are needed at each simulation step. To generate these numbers,
say, every 102-103 steps, requires 3 � 106-3 � 107 random
numbers, which takes 12-120 MB of the GPU memory. This
might be significant even for the most up-to-date GPUs, which
have limited ∼1 GB memory.

We explored this option in Langevin simulations of N Brown-
ian oscillators11 using the Hybrid Taus and additive Lagged
Fibonacci algorithms described below. We compared the com-
putational time as a function of the system size N for three
different implementations of Langevin simulations: (1) random
numbers and dynamics are generated on the CPU, (2) random
numbers, obtained on the CPU, are transferred to the GPU and
used to generate dynamics on the GPU, and (3) random numbers
and dynamics are generated on the GPU. The results for a
2.83 GHz Intel Core i7 930 CPU and a 1.4 GHz GeForce GTX
480 GPU show that, starting from ∼102 particles, it becomes
computationally expensive to generate random numbers on the
CPU, transfer them to the GPU, and generate stochastic trajec-
tories on the GPU (Figure 1a). We found a substantial speedup
for LD simulations fully implemented on the GPU, compared to
the CPU-based LD simulations, which also depends on the RNG
choice and system sizeN (Figure 1b). We observed a∼10-250-
fold speedup for Langevin simulations ofN = 103-106 Brownian
particles on the GPU (Figure 1b). Hence, for efficient molecular
simulations in a stochastic thermostat, random numbers must be
generated on the GPU device.

While there exist stand-alone implementations of RNGs on a
GPU, to fully utilize computational resources of a GPU, an RNG
should be incorporated into the main simulation program. This
allows one to minimize read/write calls associated with invoca-
tion of the GPU global memory, and to generate streams of ran-
dom numbers “on-the-fly”, i.e., at each step of a simulation run,
using fast GPU shared memory. Here, we describe the method-
ology for generating pseudorandom numbers on a GPU, which
can be used in GPU-based implementations of MD simulations
in implicit solvent, LD simulations, and MC simulations. In the
next section, we focus on the linear congruential generator
(LCG), and the Ran2, Hybrid Taus, and Lagged Fibonacci algo-
rithms. These are used in section III to describe the methodology
for generation of (pseudo)random numbers on a GPU. Pseudo-
codes are given in the Supporting Information (SI). We test the
GPU-based implementations of the LCG, and Ran2, Hybrid
Taus, and Lagged Fibonacci algorithms in section IV, where we
present the application-based assessment of their statistical
properties using the Ornstein-Uhlenbeck process. We also profile
these generators in terms of the computational time andmemory
usage. We use these algorithms in conjunction with the CR-based

coarse-grained self-organized polymer (SOP) model14-16 in
section V to perform single-molecule dynamic force measure-
ments in silico to characterize the physical properties of the viral
capsid HK97, a λ-like dsDNA bacteriophage.17 This is a model
system for numerous studies of the kinetics of virus maturation,
pressure-induced expansion, and the mechanism(s) of infection
of cells.18,19 All the simulations were carried on the GPU
GeForce GTX 480 (NVIDIA). The main results are discussed
in section VI. We conclude in section VII.

II. PSEUDORANDOMNUMBER GENERATORS: THE GPU
PERSPECTIVE

We focus on algorithmic RNGs, the most common type of
deterministic random number generators.20 An RNG produces a
sequence of random numbers, ui, which is supposed to imitate
independent uniform random variates from the unit interval
(0,1). In implicit water models and in LD simulations of biomol-
ecules, normally distributed random forces are used to emulate
stochastic kicks from the solvent molecules. To generate the
distribution of random forces, a common approach is to convert

Figure 1. (a) The computational time for LD of NBrownian oscillators
with the Hybrid Taus and additive Lagged Fibonacci generators of
(pseudo)random numbers. We considered the three implementations,
where (1) random numbers and LD are generated on the CPU (Hybrid
Taus (CPU)þDynamics (CPU)), (2) random numbers are obtained on
the CPU, transferred to the GPU and used to propagate LD on the GPU
(Hybrid Taus (CPU)þDynamics (GPU)), and (3) random numbers
and LD are generated on the GPU (Hybrid Taus (GPU)þDynamics
(GPU) and Lagged Fibonacci (GPU)þDynamics (GPU)). (b) The
computational speedup (CPU time versus GPU time) for LD simula-
tions fully implemented on the GPU and on the single CPU core. We
compared the two options when an RNG (Hybrid Taus or Lagged
Fibonacci) is organized in a separate kernel or is inside the main
(integration) kernel. We ran long trajectories (106 steps) to converge
the speedup factor.
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the uniformly distributed random variates (ui) into the Gaussian
distributed random variates (gi) using a variety of methods.21-23

Here, we adopt the most commonly used Box-Mueller trans-
formation.23

There are three main requirements for a numerical imple-
mentation of an RNG: (1) good statistical properties, (2) high
computational speed, and (3) low memory usage. Because a
deterministic sequence of random numbers comes eventually to
a starting point, unþp = un (Poincar�e recurrence), an RNG should
have a long period p. An RNGmust be tested empirically for ran-
domness, i.e., for the uniformity of distribution and for the inde-
pendence.12 The statistical tests of randomness are accumulated
in the DIEHARD test suite and in the TestU01 library.12,24-26 In
addition, an RNG must pass application-based tests of random-
ness that offer exact solutions to the test applications. Using
random numbers of poor statistical quality might result in
insufficient sampling, unphysical correlations,27,28 and unrealistic
results, which leads to errors in practical applications.29 A good
quality RNG should also be computationally efficient so that
random number generation does not become amajor bottleneck.
In Langevin simulations of a biomolecule on a GPU, one can
follow a long trajectory over 1010 iterations, which requires
∼1015 random numbers for a system of N = 105 particles. The
condition of low memory usage is also important since con-
temporary graphics processors have low on-chip memory, ∼64
KB per multiprocessor (graphics cards with Fermi architecture)
compared to ∼2 MB memory on the CPU. Hence, an efficient
RNG algorithm must use a limited working area without invok-
ing the relatively slow GPU global memory.

A fast RNG employs simple logic and a few state variables to
store its current state, but this may harm its statistical properties.
On the other hand, using a more sophisticated algorithm with
many arithmetic operations or combining several generators into
a hybrid generator allows one to improve statistics, but such
generators are slower and use more memory. Here, we focus
on some of the most widely used LCG,13 Ran2,13 Hybrid
Taus,13,20,30,31 and Lagged Fibonacci algorithms (Appendix
A).13,32 LCG can be used in performance benchmarks since it
employs a very fast algorithm. Ran2 is a standard choice for many
applications due to its long period p > 1018, good statistical
quality, and high computational performance on a CPU. How-
ever, Ran2 requires a large amount of on-chip GPU local and
global memory to store its current state. In Hybrid Taus, several
simple algorithms are combined to improve the statistical
characteristics of the random numbers produced. It scores better
in terms of the computational speed on a GPU than KISS, the
best known combined generator,33 and its long period p > 1036

makes it a good choice for GPU-based computations. Lagged
Fibonacci employs simple logic while producing random numbers
of high statistical quality.12 It is used in distributed MC simula-
tions, and it can also be utilized in GPU-based computations. We
employed the additive Lagged Fibonacci RNG, which generates
floating point variates without the usual floating of random
integers.

III. LCG, RAN2, HYBRID TAUS, AND LAGGED FIBO-
NACCI ON A GPU

A. Basic Ideas. To solve an N body problem on a GPU, an
RNG should produce random numbers simultaneously for all
particles. One possibility is to build an RNG into the main
simulation kernel to maximize the amount of computations on a

GPU while minimizing the number of calls of the GPU global
memory (read/write operations). To fully utilize the GPU resources,
the total number of threads should be∼10-times larger than the
number of computational cores, so that none of the cores waits
for the others to complete their tasks. We employ the cycle divi-
sion paradigm,32 in which a single sequence of random numbers
is partitioned among many computational threads running
concurrently across an entire GPU, each producing a stream of
random numbers. Since most RNG algorithms are based on
sequential transformations of the current state (LCG, Hybrid
Taus, and Ran2), the most common way of partitioning the
sequence is to provide each thread with different seeds while
also separating the threads along the sequence to avoid inter-
stream correlations. This is the basis of the one-RNG-per-thread
approach (Figure 1a in the SI). On the other hand, Mersenne
Twister and Lagged Fibonacci algorithms, which employ recur-
sive transformations, allow one to leap ahead in a sequence and to
produce the (nþ1)th random number without knowing the nth
number.32-34 The leap size, which, in general, depends on the
parameters of an RNG, can be adjusted to the number of threads
(number of particles N), or multiples of N. Then, all N random
numbers can be obtained simultaneously, so that the jth thread
produces numbers j, jþN, jþ2N, and so forth. At the end of each
simulation step, threads must be synchronized to update the
current RNG state. Hence, the same RNG state can be used in all
threads, each updating just one element of the state. We refer
to this as the one-RNG-for-all-threads approach (Figure 1b in
the SI).
B. One-RNG-per-Thread Approach. The idea is to run the

same RNG algorithm in each thread to generate different subse-
quences of the same sequence of random numbers, but starting
from different initial seeds. The CPU initiates N sets of random
seeds (one for each RNG) and passes them to the GPU global
memory (Figure 2 in the SI). To exclude correlations, these sets
should come from an independent sequence of random numbers.
Each thread on the GPU reads its random seeds from the
GPU global memory and copies them to the GPU local (per
thread) memory or shared (per thread block) memory. Then,
each RNG generates random numbers without using the slow
GPU global memory. At the end of a simulation step, each
RNG saves its current state to the global memory and frees
shared memory. Since each thread has its own RNG, there
is no need for thread synchronization. However, when particles
interact, threads must be synchronized. In the simulations, arrays
of the initial seeds and the current state should be arranged
for coalescent memory read to speedup the global memory
access.
In the one-RNG-per-thread setting, an RNG should be very

light in terms of thememory usage. Small size of on-chipmemory
can be insufficient to store the current state of an RNG with
complex logic. The amount of memory required to store the
current state is proportional to the number of threads (number of
particles N). Hence, a significant amount of memory has to be
allocated for all RNGs to describe a large system. For example,
LCG uses one integer seed to store its current state, which takes 4
bytes per thread (per generator) or ∼4 MB of memory for 106

threads (particles), whereas Hybrid Taus uses 4 integers, i.e. 16
MB of memory. These are acceptable numbers, given the
hundreds of megabytes of the GPU memory. By contrast,
Ran2 uses 35 long integers and a total of 280 bytes per thread,
or ∼280 MB of memory for 106 threads (particles). As a result,
not all seeds can be stored in on-chip (local or shared) memory,
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and the GPU global memory has to be accessed to read/update
the current state. In addition, less memory becomes accessible to
other computational routines. This might prevent Ran2 from
being used in the simulations of large systems on some graphics
cards, including GeForce GTX 280 and GTX 295 (NVIDIA),
with 768 MB of global memory (per GPU). Yet, this is not an
issue when using high-end graphics cards, such as Tesla C2070
with 6 GB of global memory. In this paper, we utilized the one-
RNG-per-thread approach to develop the GPU-based imple-
mentations of the LCG, Hybrid Taus, and Ran2 algorithms
(Figure 2 in the SI). Pseudocodes are presented in Section I
in the SI. Numerical values of the constant parameters for
LCG, Ran2, and Hybrid Taus can be found, respectively, in
Appendix A,12 in ref 13, and in Section I in the SI.
C. One-RNG-for-All-Threads Approach. In the one-RNG-

for-all-threads approach, one can utilize a single RNGby allowing
all computational threads to share the state of a generator. This
can be used in algorithms that are based on the recursive trans-
formations, i.e., xn = f(yn-r, yn-rþ1 ,..., yn-k), where r is a
recurrence degree and k > r is a constant parameter, to obtain
a random number in the nth step from the state variables
generated in the previous steps n - r, n - r þ 1, ..., n - k. If a
sequence of random numbers is obtained simultaneously in N
threads, each generating just one random number, then N ran-
dom numbers are produced at each step. Given k > N, all the
elements of the transformation have been obtained at the pre-
vious steps, in which case they can be accessed without thread
synchronization. One of the algorithms that can be implemented
on the GPU using the one-RNG-for-all-threads approach is
additive Lagged Fibonacci (Figure 3 in the SI).34 A pseudocode
is presented in section II in the SI. When one random number is
computed in each thread and when sl >N and ll- sl >N, where ll
and sl are the long and short lags, N random numbers can be
obtained simultaneously on the GPU device; sl and ll could be
taken to be sufficiently large to guarantee good statistical proper-
ties of the random numbers produced.
To initialize the Lagged Fibonacci RNG on the GPU, ll

integers are allocated on the CPU. On the GPU, each thread
reads two integers of the sequence (one for ll, and the other for
sl), generates the resulting integer, and saves it to the location in
the GPU global memory, which corresponds to ll. Setting sl > N
and ll - sl > N guarantees that the same position in the array of
integers (current state variables) will not be accessed by different
threads at the same time. The window of N random numbers,
updated inN threads, is moving along the array of state variables,
leaping forward by N positions at each step. Importantly, the
period of the Lagged Fibonacci generator, p ∼ 2llþ31, can be
adjusted to the system sizeN by assigning large values to sl and ll,
so that p . N � S, where S is the number of simulation steps.
Varying ll and sl does not affect the execution time, but changes
the size of the array of state variables, which scales linearly with ll,
the amount of integers stored in the GPU global memory. A large
ll value is not an issue even when ll∼ 106, which corresponds to
∼4 MB of the GPU global memory. Numerical values of the
constant parameters for Lagged Fibonacci are given in Table 1
in the SI.

IV. BENCHMARK TESTING

A. Test of Randomness: Ornstein-Uhlenbeck Process.
To assess the statistical performance of the GPU-based realiza-
tions of LCG, Ran2, Hybrid Taus, and Lagged Fibonacci, we

carried out Langevin simulations of N independent Brownian
oscillators11 on a GPU. Each particle evolves on a harmonic
potential, U(Ri) = kspRi

2/2, where Ri is the ith particle position
and ksp is the spring constant, and is subject to random force.
We employed this analytically tractable model to directly com-
pare the simulation output with the exact results that would be
obtained with truly random numbers. The LDs, ξ dRi/dt =
-∂U(R1, R2, ..., RN)/∂Ri þ Gi(t),

14-16,35,36 were obtained
numerically using the first-order integration scheme,37

RiðtþΔtÞ ¼ RiðtÞþ f ðRiðtÞÞΔt=ξþ giðtÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2kBTΔt=ξ

p
ð1Þ

where f(Ri) =-∂U(R1, R2, ..., RN)/∂Ri is the deterministic force,
and gi are the normally distributed random variates (with zero
mean and unit variance) used to obtain the Gaussian random
forces Gi(t) = gi(t)(2kBTΔt/ξ)

1/2. Numerical algorithms for the
GPU-based implementation of Langevin simulations, used here,
are presented in ref 38.
Numerical calculations for N = 104 particles were carried out

with the time step Δt = 1 ps at room temperature, starting from
the initial position R0 = 103 nm, and using the diffusion constant
D = 0.25 nm2/ns. A soft harmonic spring (ksp = 0.01 pN/nm)
allowed us to follow long 1 ms trajectories over 109 steps. The
average position ÆR(t)æ and the two-point correlation function
C(t) = ÆR(t)R(0)æ, obtained from the simulations, are compared
in Figure 2 with their exact counterparts,11,39 ÆR(t)æ = Ri(0)
exp[-t/τ] and C(t) = (kBT/ksp) exp[-t/τ], where τ = ξ/ksp is
the characteristic time. We see that all RNGs describe well the
exact Brownian dynamics except for the LCG. Indeed, ÆR(t)æ and
C(t), obtained using Ran2, Hybrid Taus, and Lagged Fibonacci
algorithms, practically collapse on the theoretical curve of these
quantities. By contrast, using LCG results in a repeated pattern
for ÆR(t)æ and in the unphysically short-lived correlations inC(t).
At longer times, ÆR(t)æ and C(t), obtained from simulations,
deviate from their theoretical reference curves due to a soft har-
monic spring and insufficient sampling.
B. Computational Performance. We benchmarked the

computational efficiency of the obtained GPU-based realizations
of the Ran2, Hybrid Taus, and Lagged Fibonacci algorithms
using Langevin simulations of N Brownian oscillators in three
dimensions. For each system sizeN, we ran one trajectory for 106

simulation steps. All N threads were synchronized at the end of
each step to emulate an LD simulation run of a biomolecule on a
GPU. The execution time and memory usage are profiled in
Figure 3. We find that Ran2 is the most demanding generator.
Using Ran2 for a system of N = 104 particles requires an
additional∼264 h of wall-clock time to obtain a single trajectory
over 109 steps. The memory demand for Ran2 is quite high, i.e.,
>250 MB for N = 106 (Figure 3b). Because in biomolecular
simulations a large memory area is needed to store parameters of
the force field, Verlet lists, interparticle distances, and so forth,
the high memory demand might prevent one from using Ran2 in
simulations of a large system. Also, implementing Ran2 in
Langevin simulations on the GPU does not lead to a substantial
speedup (Figure 3a). By contrast, Hybrid Taus and Lagged
Fibonacci RNGs are light and fast in terms of the memory usage
and the execution time (Figure 3). These generators require a
small amount of memory, i.e., <15-20 MB, even for a large
system of N = 106 particles (Figure 3b).
In general, the number of memory calls scales linearly with

N. Because on a GPU the computational speed even of a fast
RNG is determined by the number of memory calls, multiple
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reads/writes from/to the GPU global memory can prolong the
computational time. We profiled the LCG, Ran2, Hybrid Taus,
and Lagged Fibonacci RNGs, which use, respectively, 1, 40, 4,
and ∼3 state variables per thread, in terms of the number of
memory calls per simulation step. The state size for Lagged
Fibonacci depends on the choice of ll and sl (Appendix A). LCG,

Hybrid Taus, and Lagged Fibonacci use 4-16 bytes/thread,
which is quite reasonable even for a large system of N = 106

particles. However, Ran2 requires 280 bytes/thread, which is
significant (Table 1). Since Ran2 has large size of the state,
saving/updating its current state using the GPU local or shared
memory is not efficient computationally. Also, Ran2 employs
long 64-bit variables, which doubles the amount of data (memory),
and requires 4/4 read/write memory calls (7/7 read/write calls
are needed to generate four random numbers). Hybrid Taus uses
the GPU global memory only when it is initialized, and when it
updates its current state. Since it uses four state variables, 4/4
read/write calls per thread are required regardless of the amount
of random numbers (Table 1). Lagged Fibonacci uses two
random seeds, which results in 2/1 read/write calls per random
number (8/4 read/write calls for four random numbers). The
execution time for the Hybrid Taus and Lagged Fibonacci RNGs
scales sublinearly with N for N < 104 particles due to insufficient
parallelization of the GPU device, but grows linearly for larger
systems when all ALUs on the GPU become fully subscribed
(Figure 4). It takes about the same time to generate random
numbers using these generators and to propagate LD to the next
step (Figure 4). This is a high performance level given the fact
that the potential function does not involve long-range interactions.

Figure 2. The average particle position ÆR(t)æ (a,b) and two-point
correlation function C(t) (c) for a system of N = 104 Brownian
oscillators. Theoretical curves of ÆR(t)æ and C(t) are compared with the
simulation results obtained using the LCG, Hybrid Taus, Ran2, and
Lagged Fibonacci algorithms. Equilibrium fluctuations in ÆR(t)æ in a
longer time scale, obtained using LCG, are magnified in panel b, where
one can observe a repeated pattern due to correlations amongN streams
of random numbers.

Figure 3. The computational performance of LCG, and Ran2, Hybrid
Taus, and Lagged Fibonacci algorithms in Langevin simulations of N
Brownian oscillators in three dimensions on theGPU. (a) The execution
time threads have been synchronized on the GPU at the end of each step
to imitate an LD simulation run of a biomolecule. As a reference, we
display the CPU time for Langevin simulations with Ran2 and Hybrid
Taus generators. (b) The memory demand, i.e., the amount of memory
needed for an RNG to store its current state. Step-wise increases in the
memory usage for Lagged Fibonacci are due to the change of constant
parameters (Table 1 in the SI).
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V. DYNAMIC FORCE MEASUREMENTS IN SILICO

A. The SOP Model. We employed the Hybrid Taus and
additive Lagged Fibonacci generators to develop the GPU-based
implementation of Langevin simulations using a CR-based
coarse-grained self-organized polymer (SOP) model of a protein
chain.14 All the steps of the algorithm have been converted into a
CUDA code (SOP-GPU package).38 The SOP model, briefly
reviewed in Appendix B, was developed to describe the mechan-
ical properties of proteins. Steered molecular dynamics (SMD)
simulations are currently limited to a 10-50 nm length scale and
0.1-2.5 μs duration.1,40,41 Hence, it is virtually impossible to
resolve the micromechanics of biological assemblies under the
experimentally relevant force-loads (vf ≈ 0.1-10 μm/s) in the
experimental subsecond time scale using all-atom MD
methods.38,42 Computational approaches based on elastic network
models allow mostly for the theoretical exploration of equilibri-
um properties of biomolecules.43,44

The physical basis for using the SOP model is the following.
First, atomic force microscopy (AFM) experiments cannot resolve
biomolecular structures on length scales shorter than∼1 nm, and
the typical radius of the cantilever tips used in AFM is R. 1 nm.
Second, a force-driven mechanical reaction of a large-size bio-
molecule to an external perturbation occurs through sequential
unraveling of large fragments and even entire blocks of the
secondary structure elements. This allows us to use simplified
coarse-grained descriptions of capsomers forming HK97, which
involve averaging over irrelevant degrees of freedom that cannot
be fully resolved experimentally. Finally, topology and arrange-
ment of the secondary structure elements into the overall capsomer
and the whole shell structure, not atomic details, govern the
large-scale conformational transitions in viral capsids.38 The
structure-based SOP model, used here, preserves topology and
keeps only one interaction site (CR-bead) per each amino acid
residue. The energy function used in the SOP model includes
chain connectivity and noncovalent interactions that stabilize the
native state. The SOPmodel has been shown to describe well the
mechanical properties of proteins including the green fluorescent
protein,45 the tubulin dimer,46 and kinesin.47 This model has also
been used to explore the kinetics and to resolve the free energy
landscape of tetrahymena ribozyme,14 riboswitch aptamers,48

GroEL,49 protein kinase A,50 and myosin V.51 In this paper, we
employed the SOP model and Langevin simulations, fully imple-
mented on a GPU, to carry out single-molecule dynamic force
measurements in silico of the mechanical indentation of the
bacteriophage HK97.
B. Forced Indentation of the Bacteriophage HK97. HK97

(N = 115 140 residues)18 is made of 420 copies of the gp5

protein17 and is formed by 60 icosahedral units, each composed
of 7 domains A-G. Domains A-F form 60 hexamers, and
domain G binds to 5 G chains to form 12 pentamers. Each
subunit is joined to two of its neighbors by ligation of Lys169 to
Asp356, which results in the formation of the topologically linked
protein rings (catenanes). The capsid outer radius is X≈ 32 nm,
and the average wall thickness is ΔX ≈ 2.1 nm (in the head II
state). The HK97 maturation involves pressure-induced capsid
expansion due to the dsDNA packaging.18 We probed the
mechanical reaction of the bacteriophage HK97 in the head II
state (Protein Data Bank (PDB) code: 2FT1) by indenting it
with the cantilever tip. The tip exerts the time-dependent mecha-
nical force f(t) = rft, where rf = κυf is the force-loading rate, and
κ and υf are, respectively, the cantilever spring constant and the
tip velocity. We analyzed the dependence of the physical proper-
ties of HK97 on the rate of change rf and geometry of mechanical
perturbation. The effect of geometry was studied using the
spherical tip of different radius R.
To obtain LD, we numerically integrated eq 1 for each residue

position Ri. To mimic the force-indentation measurements, in
each simulation run, the bottom portion of HK97 was cons-
trained on the surface, and a time-dependent force f(t) = f(t)n
with themagnitude f(t) = rftwas applied to the spherical tip in the

Table 1. Memory Usage (in bytes/thread) and theNumber of
GPU Global Memory Calls, i.e., the Numbers of Read/Write
Operations Per One Random Number (M1) and for Four
RandomNumbers (M2), for the LCG,Hybrid Taus, Ran2, and
Lagged Fibonacci Algorithmsa

parameter LCG Hybrid Taus Ran2 Lagged Fibonacci

bytes/thread 4 16 280 12

M1 1/1 4/4 4/4 3/1

M2 1/1 4/4 7/7 12/4
a Four random numbers are needed per particle to generate three
components of the Gaussian random force.

Figure 4. The computational time for the GPU-based implementation
of Langevin simulations of N Brownian oscillators in three dimensions
using Hybrid Taus RNG (a) and Lagged Fibonacci RNG (b). The
simulation time for LD is compared with the time for generating random
numbers using Hybrid Taus RNG or Lagged Fibonacci RNG, and with
the time required to obtain deterministic (Newtonian) dynamics with-
out random numbers. The associated computational speedup is dis-
played in Figure 1b.
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direction n perpendicular to the outer surface of HK97 (see
Figure 5). The Langevin equations of motion were propagated
with the time step Δt = 0.08τH = 20 ps, where τH = ζɛnτL/kBT.
Here, τL = (ma2/ɛn)

1/2 = 3 ps, a = 3.8 Å is the CR-CR covalent
bond distance, ζ = 50 is the dimensionless friction constant for

a residue in water (ξ = ζm/τL), and m ≈ 3� 10-22 g is the
residue mass. Because of the presence of catenanes in the HK97
structure, we assumed that the strengths of the intracapsomer
contacts and the intercapsomer contacts are roughly equal
(Appendix B). Langevin simulations were carried out at room
temperature using the bulk water viscosity, which corresponds to
the friction coefficient η = 7.0 � 105 pN ps/nm.
We generated the force-indentation curves (FZ curves) to

quantify the mechanical response of HK97 as a function of the
distance traveled by the cantilever Z.52,53 We varied the speed
and radius of the cantilever tip by setting vf = 2.5 μm/s (in the
experimental range54), 25 μm/s, and 250 μm/s, and using R = 5,
10, and 25 nm. For each set of values of vf and R, we generated
three force-indentation curves. It took ∼34 days (109 steps)
and ∼3.4 days (108 steps) of wall-clock time to generate a singe
indentation trajectory of length 20ms and 2ms, using vf = 2.5 and
25 μm/s, respectively, on the GPU GeForce GTX 480. For
comparison, it would take ∼120 and ∼12 months, respectively,
to complete the same jobs on the CPU Intel Core i7 930. The
typical FZ curves, the number of native contacts Q, and the
capsid spring constant K are displayed in Figure 5. We estimated
the values of K, which quantifies the elastic component of the
mechanical response of HK97, using the formula 1/KFZ = 1/κþ
1/K52,55 for the spring constant for the combined system (capsid
plus tip), KFZ, extracted from the FZ curves.
The mechanical response of HK97 shows stochastic variation

at a slow force-load vf = 2.5 μm/s (Figure 5a), but it becomes
more “deterministic'' when vf is increased (Figure 5b,c). The
slope of the FZ curves (proportional to K), while increasing with
vf and R, fluctuates for all values of vf and R used, which implies
that the capsid elasticity is a dynamic, rather than static, property.
Interestingly, K increases from 0.01-0.025 pN/nm at vf = 2.5
μm/s to 0.05-0.075 pN/nm at vf = 25 μm/s, and to 0.2-0.35
pN/nm at vf = 250 μm/s (Table 2). This demonstrates that the
capsid wall becomes stiffer when indented faster, and implies that
the capsid elasticity also depends on the geometry of a force-
bearing load. The buckling transitions were observed only at the
slowest force-load of vf = 2.5 μm/s (Figure 5a) when a large 25
nm tip was used. When the capsid buckles, K first increases and
then decreases with Z, while the number of native contacts Q,
stabilizing the shell structure, decreases monotonically with Z.
The buckling transition sets in at Z ≈ 25 nm, at which point K
drops to zero, signifying loss of mechanical resistance
(Figure 5a). At vf = 2.5 μm/s and for R = 10 nm, the indentation
is monotonic (no buckling); however, at vf = 2.5 μm/s and for
R = 5 nm, the indentation continues up to Z ≈ 55 nm, at which
point the mechanical fracture occurs (Figure 5a). The fracture is
localized to the area where the tip penetrates the viral shell, and is
associated with partial unfolding and disruption of some of the
native contacts, which is also reflected in the sudden drop in Q
(Figure 5a). The native contacts form again as the tip passes
through the capsid wall, resulting in the increase in Q.
The buckling transitions were not detected at the faster loads

vf = 25 μm/s and 250 μm/s (Figures 5b and c). At vf = 25 μm/s,
the dependence of the mechanical reaction on Z is monotonic
only for a large 10 nm and 25 nm tip. For a small 5 nm tip, the
gradual indentation is interrupted by the capsid fracture at Z ≈
65 nm. This results in a loss of capsid elasticity (Figure 5b), which
is reflected in a sudden drop inQ, and in the decrease ofK to zero
(Figure 5b). At vf = 250 μm/s, the FZ curves were monotonic
only when a large 25 nm tip was used. Indenting with smaller
5 nm and 10 nm tips resulted in the capsid fracture at Z≈ 65 nm

Figure 5. The force-indentation profiles showing the dependence of
force on the cantilever displacement Z (FZ curves) for the bacteriophage
HK97, obtained using Langevin simulations and Lagged Fibonacci RNG
fully implemented on the GPU. To mimic the dynamic force measure-
ments in vitro, the capsid was indented by using a spherical tip (gray
balls) of radius R = 5, 10, and 25 nm. The cantilever with the spring
constant κ = 50 N/m is moving downward in the direction shown by the
gray arrows, approaching the viral shell with the constant velocity vf = 2.5
μm/s (a), 25 μm/s (b), and 250 μm/s (c). Also presented are the tran-
sient structures formed in the course of a single indentation trajectory.
These show the geometric changes to the HK97 conformation due to
the continuous indentation (b), buckling (a), and fracture (c). The
insets show the number of native contacts Q and the spring constant of
the viral shell K as a function of Z.
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and Z ≈ 120 nm, respectively (Figure 5c). A small structural
damage was localized to the residue positions affected by the tip
moving downward, and the recovery of the native contacts was
only partial for R = 10 nm, but full for R = 5 nm (Figure 5c). The
structural analysis of bacteriophage HK97 has revealed that
the ratio of the wall thickness to the outer radius is ΔX/X ≈
0.065, 1. This allowed us to use the thin-shell approximation to
connect the spring constant Kwith the Young's modulus Y, using
the formula K = RYΔX2/X, where R is the proportionality
factor.56 Assuming that R ≈ 1, we estimated the modulus Y,
which characterizes the “in-plane” elasticity of the viral shell.
We evaluated the energy costs for the structural damage, i.e., for
the formation of a spherical cavity, ΔEf, and for buckling, ΔEb.
We also calculated the critical pressure pc = fc/A, where A is
the contact area on the capsid outer surface impacted by the
cantilever tip. The numerical values of Y, pc, ΔEb, and ΔEf are
accumulated in Table 2.

VI. DISCUSSION

A. Choosing RNG for GPU-Based Computations. RNGs
are used in many computer applications such as simulations of
stochastic systems, probabilistic algorithms, and numerical anal-
ysis among many others. The highly parallel architecture of a
GPU provides an alternative computational platform that allows
one to utilize multiple ALUs on a single processor. This comes at
a price of having smaller cachememory and reduced flow control.
Hence, to harvest raw computational power offered by the GPU,
one needs to redesign computational algorithms that have been
used on the CPU for many decades. Here, we described two
general approaches to generating pseudorandom numbers on the
GPU. In the one-RNG-per-thread approach, the same RNG
algorithm is executed in each computational thread (for each
particle), a procedure used in the CPU-based methods. In the
one-RNG-for-all-threads setting, one can utilize the ability of dif-
ferent threads to communicate across an entire GPU device.
Thesemethods were used to develop the GPU-based realizations
of the Ran2, andHybrid Taus generators (Figure 2 in the SI), and
the additive Lagged Fibonacci RNG (Figure 3 in the SI). The
Hybrid Taus and Lagged Fibonacci generators provide random
numbers at a computational speed almost equal to that of the
LCG, and the associated memory demand is low (Figure 3).
Their long periods are sufficient to describe the dynamics of a
large system (N > 106 particles) over >109 simulation steps. Ran2
is a well tested generator of proven statistical quality,13 but it
works only ∼10-15-times faster on the GPU and requires a
large memory area (Figure 3). By contrast, employing the Hybrid
Taus and Lagged Fibonacci algorithms results in an impressive
200-250-fold speedup (Figure 1).
As an application-based test of randomness, we carried out

Langevin simulations of N Brownian oscillators (Ornstein-
Uhlenbeck process). We found an excellent agreement between
the stochastic trajectories, obtained analytically and computa-

tionally, by using the Hybrid Taus, Ran2, and Lagged Fibonacci
algorithms (Figure 2). We also applied stringent statistical tests
to access the statistical properties of the random numbers pro-
duced by using the GPU-based implementation of the Hybrid
Taus and Lagged Fibonacci RNGs developed. We found that
Hybrid Taus does not fail a single tests in the DIEHARD test
suite24 and passes BigCrush and SmallCrush tests in the Test-
UO1 package.12 Lagged Fibonacci, even with a small short lag sl =
1252, does not fail any test in DIEHARD, and passes BigCrush
in TestU01.We recommend these generators for Langevin simu-
lations, MC simulations, and MD simulations in implicit solvent
of large biomolecular systems. Given their high statistical quality,
these RNGs is a reasonable choice for GPU-based simulations of
biomolecules.
B. Dynamic Signatures of the Force-Indentation Spectra.

We utilized the structure-based coarse-grained description of
proteins to carry out single-molecule forced indentation experi-
ments in silico of the bacteriophage HK97. The 180-fold compu-
tational acceleration achieved on the GPU GeForce GTX 480,
compared to the heavily tuned CPU version of the same program
(Figure 1), allowed us to explore the physical properties of this
biological assembly (105 particles) in the subsecond time scale.38

We used experimental force-loading conditions (force-ramp),
employed in the AFM-based dynamic forcemeasurements, inclu-
ding the cantilever spring constant κ, and the spherical tip size R
and velocity vf. We found that the microscopic mechanical res-
ponse of the virion HK97 depends rather sensitively on the rate
and geometry of force application.
We observed a whole spectrum of biomechanical reactions in

the far-from-equilibrium regime from gradual indentation at low
and moderately high forces to buckling at intermediate forces,
and to mechanical fracture at high forces (Figure 5). These
dynamic signatures in the theoretical force spectra might reflect
the general physical properties shared by many virus shells. We
found that virus shell elasticity is a fluctuating dynamic property,
which varies with the rate of change of the mechanical perturba-
tion. The spring constant of ∼0.01-0.02 N/m for the bacter-
iophage HK97, observed at the experimental pulling speed vf =
2.5 μm/s used in AFM, agrees with the experimental estimates of
this parameter for empty viral shells.55 Our finding that the spring
constant of a virus shell (K) might change with size of a load-
bearing tip implies that K is a local mechanical characteristic.
Indeed, the larger the tip, the more structural units must coope-
rate to withstand the external mechanical stress. Hence, larger
tips comparable with the dimensions of the viral shell in question
should be used to average over local variations of the mechanical
properties. In addition, Kmight vary depending on where on the
shell surface the tip presses against the virus shell,42 but we leave
this aspect for future studies.
We found that temporary loss of virus shell elasticity, when K

rapidly decreases to zero, might occur due to buckling or mecha-
nical fracture. In the event of buckling, the capsid shell rapidly
regains its elasticity, which results in the subsequent increase in

Table 2. Average Parameters Characterizing the Micromechanical Properties of the Bacteriophage HK97: Spring Constant K,
Young's Modulus Y, Critical Pressure pc, and Energy Change Due to Buckling ΔEb and Fracture ΔEf

a

υf, μm/s K, N/m Y, MPa pc, MPa ΔEb/10
-17, Nm ΔEf/10

-17, Nm

2.5 0.01-0.025 64-160 6 (5 nm) 1.4 (25 nm) 2.7 (5 nm)

25 0.05-0.075 320-480 9 (5 nm) 3.0 (5 nm)

250 0.2-0.35 1280-2230 13 (5 nm), 18 (10 nm) 3.4 (5 nm), 5.7 (10 nm)
aValues of R are given in parentheses.
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K. A sudden drop in K indicates, rather, the onset of the mecha-
nical fracture due to the structural damage, associated with partial
disruption of the network of native contacts, and unfolding
transitions on a short length scale (3-5 nm). This process is
reversible, as the native contacts tend to reform after the canti-
lever tip has passed through the capsid wall (Figure 5). These
results agree well with the experimental observations on other
virions.52,55 We observed the expected crossover from the elastic
behavior at low forces to the plastic behavior at higher forces,42

which also follows from the decrease of K at longer Z values, but
this effect is not so well-pronounced, which might be due to the
presence of the topological links.57 This rare feature of the
molecular architecture of bacteriophage HK97 seems to enhance
its elastic properties. In fact, the observed sudden drops inQwere
mostly due to the disruption of the intracapsomer contacts,
which stabilize the capsid structural units, rather than the inter-
capsomer contacts.
The onset of buckling is controlled by a universal physical

characteristic: the Foppl-von K�arm�an (FvK) number γ.58 For a
thin spherical shell, it is defined as γ = YX2/k, where k is the “out-
of-plane” bending modulus. For a buckling transition to occur in
a shell of radius X, the ratio of the “in-plane” stretching (YX2) to
the “out-of-plane” bending (k) must be large so that γ exceeds
some critical value∼103.58 The results obtained for vf = 2.5 μm/s
show that the buckling regime sets in when the capsid is indented
with a large tip, i.e., when R∼ X (Figure 5a). In this case, the tip
excites mostly the in-plane stretching modes, and YX2 . k. On
the other hand, the fracture occurs when a smaller tip is used, i.e.,
when R < X. Here, the tip motion excites the out-of-plane
bending modes, and YX2 , k. Hence, both dynamic regimes
can be accessed by controlling the geometry of the force
application. The results obtained for faster force-loads (vf = 25
and 250 μm/s) indicate strongly that whether mechanical failure
(buckling or fracture) occurs also depends on the rate of change
of an applied force f(t) (Figure 5b,c). Hence, theoretical models
of viral shell mechanics should be extended to account for
dynamic coupling of the in-plane modes and the out-of-plane
modes of motion, and for the far-from-equilibrium conditions of
propagation and distribution of the mechanical stress on the
spherical surface.
The Young's modulus Y was found to depend on the rate of

change and geometry of an applied force (Table 2). At the
experimental value of vf = 2.5 μm/s, the modulus Y = 60-160
MPa for HK97 is comparable with Y = 140 MPa for the empty
shell CCMV,55 but is less than Y = 1.8 GPa for the bacteriophage
φ2952 (Table 2). The empty shell HK97 is capable of with-
standing the mechanical pressures on the order of 60-140 atm,
which is comparable with the effective pressure inside the
bacteriophage φ29 due to DNA packaging. The results obtained
show that dynamic force assays in silico can be used to explore the
limits of elasticity of virus shells and to predict the maximum
internal pressure. We found that with the tip-sphere moving at
vf = 2.5 μm/s, the energy cost associated with the local fracture
(spherical cavity of radius 5 nm) isΔEf = 2.7� 10-17 Nm, which
is roughly twice the energy required to buckle the capsid (ΔEb =
1.4 � 10-17 Nm). We also found that ΔEf grows with vf
(Table 2).

VII. CONCLUSION

The development of new Fermi architecture (NVIDIA) and
Larrabee architecture (Intel) is an important step for general

purpose GPU computing. The high-speed interconnection net-
work will provide a fast interface for threads communication.
These advances will enable the programmer to distribute a com-
putational workload among many cores on a GPU more effi-
ciently, and to reach an even higher performance level. In this
regard, the developed GPU-based implementation of additive
Lagged Fibonacci RNG can be ported to new graphics processors
with minor modifications. In the context of biomolecular simula-
tions, this will make it possible to compute random forces using
thread synchronization over an entire GPU device. This makes
the one-RNG-for-all-threads method of generation of pseudo-
random numbers on the GPU, where thread synchronization is
utilized, all the more important. This approach can also be used
to develop GPU-based implementations of Mersenne Twister
algorithm59 and several other algorithms, including multiple
recursive generator (MRG) and linear/generalized shift feed-
back register (LSFR/GSFR) generators, such as the 4-lag Lagged
Fibonacci algorithm.12,33

Continuum mechanics approaches, such as finite element
analysis, provides valuable information about the average macro-
scopic parameters characterizing the mechanical properties of
the protein shells of many viruses. The developed GPU-based
realizations of several RNG algorithms open a new dimension in
the theoretical exploration of viral capsids, as they enable one to
follow stochastic dynamics of viral shells in the experimental
centisecond time scale. Moreover, the presented formalism
allows one to go beyond the ensemble-average picture and to
resolve the entire distributions of the relevant molecular char-
acteristics. The structure-based coarse-grained SOP model can
also be used to explore the kinetics of nanomechanical transitions
in supramolecular assemblies of the biological interest. Under-
standing the micromechanical properties of nanometer-scale
protein shells is important for virus biology, materials engineer-
ing, and for nanotechnological applications. Dynamic force
measurements in silico, described here, which mimic the AFM-
based measurements in vitro, can be performed in reasonable
“GPU-time” using realistic conditions of force application. This
permits a direct comparison of experimental and simulation
results. Hence, dynamic signatures observed for continuous
transitions (indentation), phase transitions (buckling), and
structural failure (fracture) can be used to provide meaningful
interpretation for the force peaks and kinks in the experimental
force spectra.

’APPENDIX A: LCG, RAN2, HYBRID TAUS AND
LAGGED FIBONACCI ALGORITHMS

LCG. The LCGs use a transitional formula

xn ¼ ðaxn- 1 þ cÞ mod m ðA1Þ
where m is the maximum period, and a = 1664525 and c =
1013904223 are constant parameters.13 To produce a uniformly
distributed random number, xn is divided by 2

32. Assuming a 32-
bit integer, the maximum period can be at most p = 232, which is
far too low.12 Ifm = 232, one can neglect mod m operation as the
returned value is low-order 32 bits of the true 64-bit product.
Then, the transitional formula reads xn = axn-1þ c, which is the
so-called quick and dirty or ranqd2 generator (simplified LCG).
Quick and dirty LCG is very fast, as it takes a single multiplication
and a single addition to produce a random number, and it uses
one integer to describe its current state.
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Ran2. Ran2 combines two LCGs and employs randomization
using some shuffling procedure.13 Ran2 has a long period and
provides random numbers of very good statistical properties.12 It is
one of a very few generators that does not fail a single statistical test.
Ran2 is reasonably fast, but it involves long integer arithmetic (64-bit
logic), a computational bottleneck for contemporary GPUs, and it
requires a large amount of memory to store its current state.

Hybrid Taus. Hybrid Taus20 is a combined generator that
uses LCG and Tausworthe algorithms. Tausworthe taus88 is a
fast equidistributed modulo 2 generator,30,31 which produces
random numbers by generating a sequence of bits from a linear
recurrence modulo 2, and forming the resulting number by
taking a block of successive bits. In the space of binary vectors,
the nth element of a vector is constructed using the linear
transformation

yn ¼ a1yn- 1 þ a2yn- 2 þ :::akyn- k ðA2Þ
where an are constant coefficients. Given initial values y0, y1, ...,
yn-1, the nth random integer is obtained as xn =

P
j=1
L ynsþj-12

-j,
where s is a positive integer and L = 32 is the integer size
(machine word size). Computing xn involves performing s steps
of the recurrence, which might be costly computationally. Fast
implementation can be obtained for a certain choice of param-
eters: when ak = aq= a0 = 1, where 0 < 2q< k and an= 0 for 0 < se
k - q < k e L, the algorithm can be simplified to a series of
binary operations.31 Statistical properties of a combined gen-
erator are better than those of its components. When periods of
all components are coprime numbers, a period of a combined
generator is the product of periods of all components. A similar
approach is used in the KISS generator.33 However, multiple 32-
bit multiplications, used in KISS, might harm its performance on
the GPU. The period of the Hybrid Taus is the lowest common
multiplier of the periods of three Tausworthe steps and one
LCG. We used parameters that result in the periods p1 ≈ 231,
p2≈ 230, and p3≈ 2 28 for the Tausworthe generators and the period
p4 = 232 for the LCG, which makes the period of the combined
generator equal ∼2121 > 1036. Hybrid Taus uses small memory
area since only four integers are needed to store its current state.

Lagged Fibonacci. The Lagged Fibonacci algorithm is de-
fined by the recursive relation,

xn ¼ f ðxn- sl, xn- llÞ mod m ðA3Þ
where sl and ll are the short lag and the long lag, respectively
(ll > sl), m defines the maximum period, and f is a function that
takes two integers xn-sl and xn-ll to produce integer xn. The most
commonly used functions are multiplication, f(xn-sl, xn-ll) =
xn-sl � xn-ll (multiplicative Lagged Fibonacci), and addition,
f(xn-sl, xn-ll) = xn-sl þ xn-ll (additive Lagged Fibonacci).
Random numbers are generated from the initial set of ll integer
seeds. To achieve the maximum period∼2ll-1 � m, ll should be
set equal the base of aMersenne exponent, and sl should be taken so
that the characteristic polynomial xll þ xsl þ 1 is primitive. Also, sl
should not be too small nor too close to ll. It is recommended that sl
≈ F � ll, where F ≈ 0.618.12 When single precision arithmetic is
used, the mod m operation can be omitted by setting m = 232.

’APPENDIX B: SOP MODEL

In the SOP model,14-16 each residue is described by a single
interaction center (CR-atom). The potential energy function of a

protein conformationUSOP, specified in terms of the coordinates
{r} = r1, r2, ..., rN, is given by

USOP ¼ UFENE þUATT
NB þUREP

NB

¼ -
XN- 1

i¼ 1

k
2
R0

2 log 1-
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ðB1Þ
For a detailed account of the numerical values of the molecular

parameters entering eq B1, the reader should consult ref 14.
To summarize, in eq B1, the finite extensible nonlinear elastic
(FENE) potential UFENE with the spring constant k = 14 N/m
describes the backbone chain potential. The distance between
residues i and iþ1 is ri,iþ1, r

0
i,iþ1 is its value in the native (PDB)

structure, and R0 = 2 Å is the tolerance in the change of a covalent
bond distance. Here, R0 and k account for chain connectivity.

14-16

We used the Lennard-Jones potential UNB
ATT to account for the

noncovalent interactions that stabilize the native state. We
assumed that if the noncovalently linked residues i and j (|i -
j| > 2) are within the cutoff RC = 8 Å, then Δij = 1, and zero
otherwise. The range of possible values for RC is dictated by the
protein structures in the PDB. Typically, the distance between
two amino acids forming a native contact, which stabilizes the
native folded state of a protein, is ∼8 Å. The value of εn (= 1.5
kcal/mol) quantifies the strength of the nonbonded interactions.
All the non-native interactions in the potential UNB

REP are treated
as repulsive. An additional constraint is imposed on the bond
angle formed by residues i, iþ1, and iþ2 by including the repul-
sive potential with parameters εr = 1 kcal/mol and σi,iþ2 = 3.8 Å,
which determine the strength and the range of repulsion. To
ensure self-avoidance of a protein chain, we set σ = 3.8 Å .

’ASSOCIATED CONTENT

bS Supporting Information. The one-RNG-per-thread ap-
proach and the one-RNG-for-all-threads approach are exempli-
fied further. We also present pseudocodes for our GPU-based
implementations of the Hybrid Taus, Ran2, and additive Lagged
Fibonacci algorithms. This information is available free of charge
via the Internet at http://pubs.acs.org.
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