Physics 7. Final Exam Farmula Sheet

Translational Motion
$\Delta \mathrm{x}=\mathrm{x}_{2}-\mathrm{x}_{1}$ (displacement)
$\mathrm{V}_{\text {average }}=\Delta \mathrm{x} / \Delta \mathrm{t}$
$\mathrm{a}_{\text {average }}=\Delta \mathrm{v} / \Delta \mathrm{t}$
Given $\mathrm{x}(\mathrm{t})$
$\mathrm{v}(\mathrm{t})=\mathrm{dx} / \mathrm{dt}$
$a(t)=d v / d t=d^{2} x / d t^{2}$
Kinematic eq-ns with const. acc.:
$\mathrm{v}(\mathrm{t})=\mathrm{v}_{0 \mathrm{x}}+\mathrm{at}$
$x(t)=x_{0}+v_{0 x} t+(1 / 2) a t^{2}$
$\mathrm{v}^{2}=\mathrm{v}_{0 \mathrm{x}}{ }^{2}+2 \mathrm{a}\left(\mathrm{x}-\mathrm{x}_{0}\right)$
Newton $2^{\text {nd }}$ law
$\sum \vec{F}=m \vec{a}$
$\sum \overrightarrow{\mathrm{F}}=\frac{\mathrm{d} \overrightarrow{\mathrm{P}}}{\mathrm{dt}}$
Frictional Forces:
$\mathrm{F}_{\mathrm{S}} \leq \mu_{\mathrm{S}} \mathrm{F}_{\mathrm{N}}$
$\mathrm{F}_{\mathrm{k}}=\mu_{\mathrm{k}} \mathrm{F}_{\mathrm{N}}$
For springs:
$\mathrm{F}=-\mathrm{kx}$
$\mathrm{U}(\mathrm{x})=(1 / 2) \mathrm{kx}^{2}$
Linear Momentum and Impulse
$\vec{p}=m \vec{v}$
$\vec{J}=\int \vec{F} d t=\vec{F}_{a v} \Delta t$
For elastic collision:
$\vec{p}_{A}+\vec{p}_{B}=\vec{p}_{A}{ }^{\prime}+\vec{p}_{B}^{\prime}$
$\frac{1}{2} m_{A} v_{A}^{2}+\frac{1}{2} m_{B} v_{B}^{2}=\frac{1}{2} m_{A} v_{A}^{\prime 2}+\frac{1}{2} m_{B} \nu_{B}^{\prime 2}$
For 1-D elastic head-on collisions:
$v_{A}-v_{B}=-\left(v_{A}^{\prime}-v_{B}^{\prime}\right)$
Work and Kinetic Energy
$\mathrm{W}=\mathrm{Fs} \cos \theta$
$\mathrm{W}=\int_{\mathrm{r}_{1}}^{\mathrm{r}_{2}} \overrightarrow{\mathrm{~F}} \cdot \mathrm{~d} \overrightarrow{\mathrm{~s}}$
$\mathrm{K}_{\text {trans }}=(1 / 2) \mathrm{mv}^{2} ; \quad \mathrm{K}_{\text {rot }}=(1 / 2) \mathrm{I} \omega^{2}$
$\mathrm{K}_{\text {tot }}=(1 / 2) \mathrm{I}_{\mathrm{CM}} \omega^{2}+(1 / 2) \mathrm{Mv}_{\mathrm{CM}}{ }^{2}$
Work-Kinetic Energy principle
$W_{\text {net }}=\Delta K$
With non-conservative forces:
$\Delta \mathrm{K}+\Delta \mathrm{U}=\mathrm{W}_{\mathrm{NC}}$
Centripetal acceleration:
$a_{R}=v^{2} / R ; a_{R}=\omega^{2} R$

Rotational Motion
$\Delta \theta=\theta_{2}-\theta_{1}$
$\omega=\mathrm{d} \theta / \mathrm{dt}$
$\alpha=\mathrm{d} \omega / \mathrm{dt}$
Given $\theta(\mathrm{t})$
$\omega(\mathrm{t})=\mathrm{d} \theta / \mathrm{dt}$
$\alpha(\mathrm{t})=\mathrm{d} \omega / \mathrm{dt}=\mathrm{d}^{2} \theta / \mathrm{dt}^{2}$
Rotat. kinematic eq-ns with const.
angular acceleration
$\omega(\mathrm{t})=\omega_{0}+\alpha \mathrm{t}$
$\theta(\mathrm{t})=\theta_{0}+\omega_{0} \mathrm{t}+(1 / 2) \alpha \mathrm{t}^{2}$
$\omega^{2}=\omega_{0}{ }^{2}+2 \alpha\left(\theta-\theta_{0}\right)$
Rotat. Newton $2^{\text {nd }}$ law
$\sum \vec{\tau}=\mathrm{I} \vec{\alpha}$
$\sum \vec{\tau}=\frac{d \vec{L}}{d t}$
Angular Momentum
$\vec{L}=\vec{r} \times \vec{p} ; \quad \vec{L}=I \vec{\omega}$
$\mathrm{I}=\Sigma \mathrm{m}_{\mathrm{i}} \mathrm{R}_{\mathrm{i}}{ }^{2}$
Torque
$\vec{\tau}=\vec{r} \times \vec{F} ; \quad \tau=\mathrm{rF} \sin \theta$
Potential Energy
$\Delta U=U(x)-U_{0}\left(x_{0}\right)=-\int_{x_{0}}^{x} F d x$
$F(x)=-d U(x) / d x$
For gravity on earth's surface:
$\mathrm{F}_{\mathrm{g}}=\mathrm{mg}$
$\mathrm{U}(\mathrm{y})=\mathrm{mgy}$
For gravity in general:
$\mathrm{F}_{\mathrm{g}}=-\mathrm{GmM}_{\mathrm{E}} / \mathrm{R}^{2}$
$\mathrm{U}(\mathrm{r})=-\mathrm{GmM}_{\mathrm{E}} / \mathrm{R}$
$\mathrm{g}=9.8 \mathrm{~m} / \mathrm{s}^{2} ; G=6.67 \times 10^{-11} \mathrm{~N} . \mathrm{m}^{2} / \mathrm{kg}^{2}$
Total mechanical energy:
$\mathrm{E}_{\text {tot }}=\mathrm{K}+\mathrm{U}$
Power
$\mathrm{P}_{\text {avg }}=\mathrm{W} / \mathrm{t} ; \quad \mathrm{P}=\mathrm{dW} / \mathrm{dt} ; \quad P=\vec{F} \bullet \vec{v}$
Equations connect. trans./rotat. motion
$\mathrm{v}_{\mathrm{tan}}=\mathrm{R} \omega$
$\mathrm{a}_{\mathrm{tan}}=\mathrm{R} \alpha$

Center of Mass

$\mathrm{r}_{\mathrm{cm}}=\Sigma \mathrm{m}_{\mathrm{i}} \mathrm{r}_{\mathrm{i}} / \mathrm{M}$
$\Sigma \mathrm{F}_{\text {ext }}=\mathrm{Ma}_{\mathrm{cm}}$
Differentiation:
$\mathrm{dx}^{\mathrm{n}} / \mathrm{dx}=\mathrm{nx}^{\mathrm{n}-1} \quad(\mathrm{n} \neq 0)$
$d \cos (\mathrm{x}) / \mathrm{dx}=-\sin (\mathrm{x})$ (x in radians)
$\mathrm{d} \sin (\mathrm{x}) / \mathrm{dx}=\cos (\mathrm{x})(\mathrm{x}$ in radians)
Misc Formulas:
Circumference of a circle $=2 \pi \mathrm{R}$
Area of a circle $=\pi \mathrm{R}^{2}$
Surface Area of a Sphere $=4 \pi R^{2}$
Volume of sphere $=(4 / 3) \pi R^{3}$
Volume of cylinder $=\pi R^{2} \mathrm{~L}$

Right triangle:
$\sin \theta=a / c$
$\cos \theta=b / c$
$\tan \theta=\mathrm{a} / \mathrm{b}$
$c^{2}=a^{2}+b^{2}$

Quadratic Formula:
$A x^{2}+B x+C=0$ has solutions:
$x=\frac{-B \pm \sqrt{B^{2}-4 A C}}{2 A}$
Integration:
$\int x^{n} d x=\frac{x^{n+1}}{n+1}+C$
Acceleration due to gravity:
$\mathrm{g}=9.8 \mathrm{~m} / \mathrm{s}^{2}$ downward

