Lecture 21

Chapter 17

Interference

Today we are going to discuss:

Chapter 17:

Section 17.5-7

In this section we will look at the interference of two waves traveling in the same direction.

Interference in One Dimension

The pattern resulting from the superposition of two waves is often called interference. In this section we will look at the interference of two waves traveling in the *same* direction.

The resulting amplitude is A = 2a for *maximum* <u>constructive interference</u>.

The resulting amplitude is A = 0 for *perfect <u>destructive interference</u>*

Let's describe 1D interference mathematically

Consider two traveling waves. They have:

- The same direction, +x direction 1.
- 2. The same amplitude, a
- 3. The same frequency, ω

Let's find a displacement at point P at time t:

Constructive/destructive interference

$$y(t) = \left[2a \cos\left(\frac{\Delta \phi}{2}\right) \right] \sin(kx_{avg} - \omega t + (\phi_0)_{avg})$$
 It is still a traveling wave
The amplitude: $A = \left| 2a \cos\left[\frac{\Delta \phi}{2}\right] \right|$ where $\Delta \phi = \phi_1 - \phi_2$ is the phase difference
between the two waves.
• The amplitude has a maximum value $A = 2a$ if
 $\cos(\Delta \phi/2) = \pm 1$. $\Rightarrow \frac{\Delta \phi}{2} = m\pi$, where $m = 0, 1, 2, ...$
• Similarly, the amplitude is zero, $A = \theta$ if
 $\cos(\Delta \phi/2) = 0$. $\Rightarrow \Delta \phi/2 = \left(m + \frac{1}{2}\right)\pi$, where $m = 0, 1, 2, ...$
where $m = 0, 1, 2, ...$

Conditions for destructive interference $\Delta \varphi = \left(m + \frac{1}{2}\right) 2\pi$

Let's look deeper in $\Delta\phi$

 $\Delta \phi = \phi_2 - \phi_1$ is the phase difference between the two waves.

$$\Delta \varphi = (kx_2 - \omega t + \varphi_{20}) - (kx_1 - \omega t + \varphi_{10}) = k(x_2 - x_1) + (\varphi_{20} - \varphi_{10}) = k\Delta x + \Delta \varphi_0$$
Conditions for
$$\Delta \varphi = \frac{2\pi}{\lambda} \Delta x + \Delta \varphi_0 = \frac{2\pi}{\lambda} \Delta x + \Delta \varphi_0$$

$$= (m + \frac{1}{2}) 2\pi \text{ destructive interference:}$$

$$i = (m + \frac{1}{2}) 2\pi \text{ destructive interference:}$$
So, there are two contributions to the phase difference:
$$\frac{1}{2} \Delta x = x_2 - x_1 - pathlength \ difference \\ 2. \ \Delta \varphi_0 = \varphi_{20} - \varphi_{10} - inherent \ phase \ difference$$

Inherent phase difference

Sources are very often identical $(\varDelta \varphi_0 = 0)$

(like the double slit experiment in Optics)

So, let's prepare expressions for these cases:

Pathlength difference for <u>constructive</u> interference

Assume that the sources are identical $\Delta \varphi_0 = 0$. Let's separate the sources with a pathlength Δx

Thus, for a constructive interference of two identical sources with A = 2a, we need to separate them by an integer number of wavelength

Pathlength difference for <u>destructive</u> interference

Assume that the sources are identical $\Delta \varphi_0 = 0$. Let's separate the sources with a pathlength Δx

Thus, for a constructive interference of two identical sources with A =0, we need to separate them by an half integer number of wavelength

Applications

Noise-cancelling headphones

It allows reducing unwanted sound by the addition of a second sound specifically designed to cancel the first (destructive interference).

- Thin transparent films, placed on glass surfaces, such as lenses, can control reflections from the glass.
- Antireflection coatings on the lenses in cameras, microscopes, and other optical equipment are examples of thin-film coatings.

$$\Delta x \neq \mathbf{0}$$
$$\Delta \varphi_{\mathbf{0}} = \mathbf{0}$$

ConcepTest *ID* interference

- Two loudspeakers emit waves with $\lambda = 2 m$.
- What, if anything, can be done to cause constructive interference between the two waves?
- A Move speaker 1 forward by 0.5 m
- B) Move speaker 1 forward by 1.0 m
- C) Move speaker 1 forward by 2.0 m
- D) Do nothing

The sources are out of phase, $\Delta \phi_0 = \pi$ rad.

We have to compensate the inherent phase difference with a pathlength difference

It has to be moved by $\Delta x = \lambda/2$ to align crests

The end of the lecture

A Circular or Spherical Wave

A linear (1D) wave can be written

$$y(x,t) = a\sin(kx - \omega t + \varphi_0)$$

A circular (2D) or spherical (3D) wave can be written

$$D(r,t) = a\sin(kr - \omega t + \varphi_0)$$

where r is the distance measured outward from the source.

Transition from 1D to 2D/3D interference

- The mathematical description of interference in two or three dimensions is very similar to that of one-dimensional interference.
- The conditions for constructive and destructive interference are:

one-dimensional

Constructive:

Destructive:

$$\Delta \varphi = \frac{2\pi}{\lambda} \Delta x + \Delta \varphi_0 = \left(m + \frac{1}{2}\right) 2\pi$$

two or three dimensions

Example of 2D interference

 The path-length difference ∆r determines whether the interference at a particular point is constructive or destructive.

$$\Delta r_A = r_1 - r_2 = \lambda$$

• At A, $\Delta r_A = \lambda$, so this is a point of constructive interference.

$$\Delta r_B = r_1 - r_2 = \frac{1}{2}\lambda$$

• At B, $\Delta r_{\rm B} = \frac{1}{2}\lambda$, so this is a point of destructive interference.

A) The interference is constructive.

Two in-phase sources emit sound waves of equal wavelength and intensity. At the position of the dot,

B) The interference is destructive

C) The interference is somewhere between constructive and destructive

D) There's not enough information to tell about the interference.

Constructive if $\Delta r = m\lambda$ Destructive if $\Delta r = (m + \frac{1}{2})\lambda$

EXAMPLE 21.10 Two-dimensional interference between two loudspeakers

Thank you See you next time

