Lecture 3

Equations of motion for constant acceleration

Course website:

http://faculty.uml.edu/Andriy_Danylov/Teaching/PhysicsI

Lecture Capture:

http://echo360.uml.edu/danylov2013/physics1fall.html

Outline

Chapter 2: Sections 5-7

Constant acceleration

Equations of motion

Free fall (gravity)

Problem solving

Math test results

Motion at **CONSTANT** acceleration

Consider a special, important type of motion:

- Objects are point masses; have mass, no size
- In a straight line (one dimension)
- Acceleration is constant (a=const)

Motion at Constant Acceleration

Assume:

At $t_0 = 0$, initial values $x = x_0$, $v = v_0$ and a = const.

Need to find:

At t > 0, final values x(t), v(t).

Motion at Constant Acceleration (equation 1)

by definition, acceleration

$$a = \frac{v(t) - v_o}{t - t_0}$$
 and $t_0 = 0$

$$a = \frac{v(t) - v_o}{t} \Longrightarrow$$

$$v(t) = v_0 + at \qquad (1)$$

the velocity is increasing at a constant rate

Motion at Constant Acceleration (equation 4)

When acceleration is constant, the average velocity is midway between the initial and final velocities.

Motion at Constant Acceleration (equation 2)

The average velocity of an object during a time interval t is

$$\frac{1}{v} = \frac{\Delta x}{\Delta t} = \frac{x(t) - x_o}{t - t_0} = \frac{x(t) - x_o}{t}$$

$$\frac{1}{v} = \frac{v(t) + v_o}{2}$$

$$v = v_0 + at$$
Combining these two equations
$$x(t) = x_0 + v_0 t + \frac{at^2}{2} \quad (2)$$

Combining these

$$x(t) = x_0 + v_0 t + \frac{at^2}{2}$$
 (2)

Equation 2. Derivation

Definition of everage velocity
$$(t_0=0)$$

$$\overline{N} = \frac{x_0 - x_0}{t} \implies x = x_0 + \overline{V} \cdot t$$
let's use $Eq.4$ $\overline{N} = \frac{V_0 + V}{2}$, so
$$x = x_0 + (\frac{V_0 + V}{2})t = \left\| \frac{Fq.1}{V = V_0 + at} \right\| =$$

$$= x_0 + (\frac{V_0 + V_0 + at}{2})t = x_0 + \frac{x_0 t}{2} + \frac{at^2}{2}$$

$$x = x_0 + V_0 t + \frac{at^2}{2} Eq.2$$

$$\begin{cases} v(t) = v_0 + at \\ x(t) = x_0 + v_0 t + \frac{at^2}{2} \end{cases}$$
 (1)

We need an equation without time

Motion at Constant Acceleration (equation 3)

We can also combine these equations so as to eliminate t:

$$\frac{1}{v} = \frac{x(t) - x_o}{t}$$

$$\frac{1}{v} = \frac{v(t) + v_o}{2}$$

$$a = \frac{v(t) - v_o}{t}$$
(3)

Motion at Constant

$$v^2(t) = v_0^2 + 2a(x - x_0)$$
 (3)

Acceleration

tion he's derive Eq. #3

(equation 3)

• Querage velocity
$$\overline{v} = \frac{x - x_0}{t} \implies x = x_0 + \overline{v}t = \left\| \overline{v} = \frac{v + v_0}{z} \right\| =$$

$$= \mathcal{X}_{o} + \left(\frac{\mathcal{S} + \mathcal{S}_{o}}{2}\right) \cdot t = \left| \begin{array}{c} a = \frac{\mathcal{S} - \mathcal{S}_{o}}{t} \\ t = \frac{\mathcal{S} - \mathcal{S}_{o}}{2} \end{array} \right| =$$

$$=\mathcal{X}_{o}+\left(\frac{\mathcal{V}+\mathcal{V}_{o}}{2}\right)\cdot\left(\frac{\mathcal{V}-\mathcal{V}_{o}}{a}\right)=\mathcal{X}_{o}+\frac{1}{2a}\left(\mathcal{V}^{2}-\mathcal{V}_{o}^{2}\right)$$

So
$$2c = 2c_0 + \frac{\ell}{2a} \cdot (\sqrt[2]{v^2 - \sqrt{v^2}})$$

let's invert it:

$$V^2 - V_o^2 = 2a(x - x_o)$$

we managed to eliminate time.

Motion at Constant Acceleration (all equations)

We now have all the equations we need to solve constantacceleration problems.

$$\begin{cases} v(t) = v_0 + at \\ x(t) = x_0 + v_0 t + \frac{at^2}{2} \end{cases}$$
 (2)
$$\begin{cases} v^2(t) = v_0^2 + 2a(x - x_0) \end{cases}$$
 (3)

$$\overline{v} = \frac{v(t) + v_0}{2} \tag{4}$$

Problem Solving

- How to solve:
 - Divide problem into "knowns" and "unknowns"
 - Determine best equation to solve the problem
 - Input numbers

Example 2-9

• A plane taking off from rest a runway needs to achieve a speed of 28 m/s in order to take off. If the acceleration of the plane is constant at 2 m/s², what is the minimum length of the runway which can be used?

initial

$$a = 2^{44/52}$$
 $x = 0$
 x

Velocity/Acceleration/Position

4,5 – negative acceleration,
 but from 0<t <t₄ or t₅ – decceleration
 but for t> t₄ or t₅ – acceleration

Freely Falling Objects

Near the surface of the Earth, all objects experience approximately the same acceleration due to gravity.

This is one of the most common examples of motion with constant acceleration.

Freely Falling Objects

The acceleration due to gravity at the Earth's surface is approximately 9.80 m/s². At a given location on the Earth and in the absence of air resistance, all objects fall with the same constant acceleration.

You drop a rubber ball. Right after it leaves your hand and before it hits the floor, which of the above plots represents the vs. t graph for this motion? (Assume your y-axis is pointing up).

You drop a rubber ball. Right after it leaves your hand and before it hits the floor, which of the above plots represents the vvs. t graph for this motion? (Assume your y-axis is pointing up).

The ball is dropped from rest, so its initial velocity is zero. Because the y-axis is pointing upward and the ball is falling downward, its velocity is negative and becomes more and more negative as it accelerates downward.

You toss a ball straight up in the air and catch it again. Right after it leaves your hand and before you catch it, which of the above plots represents the vvs. t graph for this motion? (Assume your y-axis is pointing up).

You toss a ball straight up in the air and catch it again. Right after it leaves your hand and before you catch it, which of the above plots represents the vvs. t graph for this motion? (Assume your y-axis is pointing up).

The ball has an initial velocity that is positive but diminishing as it slows. It stops at the top (v = 0), and then its velocity becomes negative and becomes more and more negative as it accelerates downward.

Freely Falling Objects

$$v(t) = v_0 + at \tag{1}$$

$$x(t) = x_0 + v_0 t + \frac{at^2}{2}$$
 (2)

$$v^2(t) = v_0^2 + 2a(x - x_0)$$
 (3)

if
$$g$$
 then $a = -g$

if
$$v = v_0 - gt$$

$$y = y_0 + v_0t - \frac{gt^2}{2}$$

$$v^2 = v_0^2 - 2g(y - y_0)$$

if
$$v = v_0 + gt$$

$$y = y_0 + v_0 t + \frac{gt^2}{2}$$

$$v^2 = v_0^2 + 2g(y - y_0)$$

$$v = v_0 + gt$$
 $y = y_0 + v_0 t + \frac{gt^2}{2}$
 $v^2 = v_0^2 + 2g(y - y_0)$

Question 3 Up in the Air I

You throw a ball upward with an initial speed of 10 m/s.
Assuming that there is no air resistance, what is its speed when it returns to you?

- 1) more than 10 m/s
- 2) 10 m/s
- 3) less than 10 m/s
- 4) zero
- 5) need more information

ConcepTest 2.10a

Up in the Air I

You throw a ball upward with an initial speed of 10 m/s.
Assuming that there is no air resistance, what is its speed when it returns to you?

- 1) more than 10 m/s
- 2) 10 m/s
- 3) less than 10 m/s
- 4) zero
- 5) need more information

The ball is slowing down on the way up due to gravity. Eventually it stops. Then it accelerates downward due to gravity (again). Because a = g on the way up and on the way down, the ball reaches the same speed when it gets back to you as it had when it left.

Example 2-16

Freely Falling Objects

Example 2-16: Ball thrown upward.

A person throws a ball upward into the air with an initial velocity of 10.0 m/s. Calculate (a) how high it goes, and (b) how long the ball is in the air before it comes back to the hand. Ignore air resistance.

Example 2-16(a)

Given: No=10 Ms; Mo=0

Calculate how high it foes: y-?

1. Choose a coord. system:

y-upward,

G-downward (always)

SO
$$a = -g$$

$$y = y_0 + v_0 t + \frac{at^2}{2}$$

$$v = v_0 + at$$

$$v^2 = v_0^2 + 2a(y - y_0)$$

$$y = y_0 + v_0 t - gt^2 \times (u_0 t i_0 t_0)$$

$$v = v_0 - gt \times (u_0 t i_0 t_0)$$

$$v = v_0^2 - 2g(y - y_0)$$

$$v = v_0$$

Example 2-16 (b)

1.
$$y = y_0 + v_0 t - gt^2$$
 both
2. $v = v_0 - gt$ ok!!
 $v = v_0^2 - 2g(y - y_0) \times$

initial and final points

$$y = y_0^0 + v_0 t - g t^2$$

 $0 = t(v_0 - g t)$ there are two solution.

$$t_1=0$$
; $v_0-gt_1=0$
 $t_2=\frac{2v_0}{g}=\frac{2\cdot 10^{10}}{9.8^{10}}=\frac{2.5}{9.8^{10}}$

Example 2-16 (b)

The End See you on Monday. HW2 is due to on Sunday (6pm)