Atomic Absorption & Atomic
Fluorescence Spectrometry

o Sample Atomization
o Atomic Absorption (AA)
o Atomic Fluorescence (AF)

- Both AA and AF require a light source

- Like Molecular Absorption & Fluorescence,
INn AA high intensity is NOT required, in AF
high intensity results in greater sensitivity
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They're HOT !

TABLE 9-1 Properties of Flames
Maximum Burning

Fuel Oxidant Temperatures, °C Velocity (cm s 1)
Natural gas Air 1700-1900 39-43
Natural gas Oxygen 2700-2800 370-390
Hydrogen Air 2000-2100 300440
Hydrogen Oxygen 2550-2700 900-1400
Acetylene Air 2100-2400 158-266
Acetylene Oxygen 3050-3150 1100-2480
Acetylene Nitrous oxide 2600-2800 285
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Figure 9-2 Regions in a flame.
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Figure 9-3 Temperature profiles in °C for a natural
gas/air flame. (From B. Lewis and G. vanElbe, ]. Chem. Phys.,
1943, 11, 94. With permission.)
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Figure 9-4 Flame absorbance profile for three elements.
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AA Slot Burner and Flame
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Sample introduction for solutions:
1) Pneumatic nebulizers
2) Ultrasonic nebulizers
3) Electrothermal vaporizers
4) Hydride generation
3BH, + 3H" + 4 H,AsO; =
3 H;BO; + 4 AsH; + 3 H,0

5) Cold vapor generation

H92+ + Sn2t > Hgo + Sn%t
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Interferences in AA can be

o Spectral — atomic spectral lines overlap or
are too close to resolve — these are rare &
generally well known or characterized

« Matrix — scattering of radiation during
atomization (smoke), enhancement by
matrix elements, structured background —
handled by background correction

 Chemical — reactions that take place to
alter the analyte (like Ca atoms reacting
with PO, to form a new species) — change
conditions



Background Correction in AA
e Two-Line correction (not very common)

e Continuous source correction (very
common)

e Zeeman background correction (common
for graphite furnace instruments)

o Smith-Hieftje correction (relatively new ‘83)
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Normally assume baseline is flat
not structured. In the absence
of peak would have flat baseline

Peak height easily measured

What Iif baseline is sloped?
How Is peak height measured?

ere " g here Need measurement of baseline

What if the baseline is really a mess?

Use Background Correction
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Figure 9-10 Absorption of a resonance line by atoms.

The AA source

(HCL or EDL) tells
us the absorbance
at the A of interest

Using another light
source will allow us

to determine the
background absorbance

Typically we are
Interested In points on
either side of the peak
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The Zeeman effect splits the absorption peak in a magnetic
field & shifts absorption to higher & lower wavelength. The

new absorption peaks interact differently with polarized light
allowing analyte & background absorbance to be measured
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Figure 9-15 5chematic of an electrothermal atomic absorption instrument that pro-
vides a background correction based upon the Zeeman effect. (Courtesy of Hitachi Scientifi
Instruments, Mountain View, CA.)



The Smith-Hieftje technique splits the HCL line
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Figure 9-16 Emission line profiles for a hollow-cathode
lamp operated at high and low currents.



Another type of matrix interference not alleviated by
background correction involves variable amounts of

analyte ionization in flames or plasmas

TABLE 9-2 Degree of lonization of Metals at Flame Temperatures*

Fraction lonized at the Indicated Pressure

and Temperature

lonization p = 10"%atm p = 10%atm

Potential, ——
Element eV 2000 K 3500 K 2000 K 3500 K
Cs 3.893 0.01 0.86 0.11 =(),99 |
Rb 4.176 0.004 0.74 0.04 >0.99 :
K 4339 0.003 0.66 0.03 0.99 |
Na 5.138 0.0003 0.26 0.003 0.90 |
Li 5.390 0.0001 0.18 0.001 082 |
Ba 5.210 0.0006 0.41 0.006 0.95 |
Sr 5.692 0.0001 0.21 0.001 0.87 |
Ca 6.111 3 X 1073 (.11 0.0003 0.67 |
Mg 7.644 4 % 1077 0.01 4 % 1076 0.09 |

*Data from B. L. Vallee and R, E. Thiers, in Treatise on Analyiical Chemistry, 1. M. Kolthoff and P, I, Elving, Eds., Part I, Vol, 6, p. 3500. New York: Interscience,

1965. Reprinted with permission of John Wiley & Sons, Inc
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Figure 9-17 Effect of potassium concentration on the
calibration curve for strontium. (Reprinted with permission from
I. A. Bowman and J. B. Willis, Anal. Chem., 1967, 39, 1220. apyright

1967 American Chemical Society.)

One other
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than temp.)
that influences
degree of
lonization is the
presence of
another easily
lonized
species. Here
K enhances the
Sr AA signal by
suppressing Sr
lonization




Atomic Fluorescence — use an intense light
source to excite AF of elements in a flame
or plasma.



TABLE 9-3 Detection Limits (ng/mL)* for Selected Elements¥

= AASE AASS AESE AESE AFSE
Element Flame Electrothermal Flame ICP Flame
Al 30 0.005 5 2 5
As 100 0.02 0.0005 40 100
Ca | 0.02 0.1 0.02 0.001
Cd 1 0.0001 800 2 0.01
Cr 3 0.01 4 0.3 4
Cu 2 0.002 10 0.1 1
Fe = 0.005 30 0.3 8
Hg 500 0.1 0.0004 1 20
Mg 0.1 0.00002 5 0.05 1
Mn 2 0.0002 3 0.06 2
Mo 30 0.005 100 0.2 60
Na 2 0.0002 0.1 0.2 -
Ni 5 0.02 20 0.4 3
Pb 10 0.002 100 2 10
Sn 20 0.1 300 30 50
v 20 0.1 10 0.2 70
Zn 2 0.00005 0.0005 2 0.02

Manaeram/milliliter = 10=2 we/ml. = 10-3 opm.




Emission Spectroscopy Using
Plasmas, Arcs or Sparks
* Inductively Coupled Plasma (ICP)

e Direct Current Plasma (DCP)
e Arcs and Sparks

Plasma = hot ionized gas or region with such
a significant number of charged species as to
dramatically change its electrical & magnetic

properties. Often called the 4t state of matter.
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Figare 10-9 Optical diagram of an echelle spectrometer with a charge-injection detector.
{From R. B. Bilhorm and M. B. Denton. Appl. Spectrosc.. 1990. 44 1615. With permission.)
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‘EXamination window. (From R. B. Bilhorn and M. B. Denton, Appl. Spectrosc., 1990, 44, 1540. With per-
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Figure 10-8 Schematic of an ICP polychromator. (Courtesy of Thermo Jarrell Ash Corp.)
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Figure 10-11 An echelle spectrometer with segmented array of charge-coupled devices. (From
T. W. Bammard et al., Anal. Chem., 1993, 65, 1232. With permission.)



Characterization of the Detection Power of ICP-AES

Detection limit (ng/mL) Number of lines
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Figure 10-13 Periodic table characterizing the detection power and number
of useful emission lines of ICP by employing a pneumatic nebulizer, The degree
of shading indicates the range of detection limits for the useful lines. The area
of shading indicates the number of useful lines.
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Figure 10-14 Typical calibration curves. (From V. A, Fassel
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Figure 10-15 Calibration curves with an inductively

coupled plasma source. Here, an yttrium line at 242.2 nm
served as an internal standard. Notice the lack of interele-
ment interference. From V. A. Fassel, Science, 1978, 202, 187.
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J. D. Ingle Jr. and 8. R. Crouch, Spectrochemical Analysis, p. 254. Englewood Cliffs, NJ: Prentice-Hall, 1988. With
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TABLE 10-1 Desirable Properties of an Emission
Spectrometer

1. High resolution (0.01 nm or A/AX > 100,000)
Rapid signal acquisition and recovery

Low stray light

Wide dynamic range (>109)

) B BB

Accurate and precise wavelength identification and
selection

6. Precise intensity readings (<1% RSD at 500 X the
detection limit)

7. High stability with respect to environmental changes
8. Easy background corrections

9. Computerized operation: readout, storage data
manipulation, etc.




Effect of Standardization Frequency on Precision of ICP Data*

Relative Standard Deviation, %
Frequency of Concentration Multiple above Detection Limit
R ration, hr 10' to 102 102 to 103 103 to 10* 10* to 10°
3-7 1-3 1-2 1.5-2
5-10 2-6 1.5-2.5 2-3
8-15 3-10 3-17 4-8

ata from: R. M. Barnes, in Applications of Inductively Coupled Plasmas to Emission Spectroscopy, R. M. Bamnes, Ed., p. 16. Philadelphia: The Franklin Institute
1978. With permission.




 '10~3 Comparison of Detection Limits for Several Atomic Spectral Methods*

Number of Elements Detected at Concentrations of

<1 ppb 1-10 ppb 11-100 ppb 101-500 ppb =500 ppb
ctively coupled plasma emission 9 32 14 6 0
ic emission 4 12 19 6 19
¢ alomic fluorescence 4 14 16 4 6
fomic absorption 1 14 25 3 14

I_ nits correspond to a signal that is twice as great as the standard deviation for the background noise. Data abstracted with permission from V. A. Fassel
LN Kniseley, Anal. Chem., 1974, 46(13), 1111A. Copyright 1974 American Chemical Society.
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