Gratings work on the principles of diffraction
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Grating Equation tdep.

mA=dsinf
Condition for constructive interference
AC = extra distance light travels for first order = d sin 3
For higher orders the distance gets longer



Reflection grating with non-normal incidence

mi = d (sin o £ sin ()



Reflection grating with non-normal incidence
(another view)
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Preparation of reflection gratings — a master grating
IS prepared by ruling grooves in a reflective
aluminum surface on glass (from 20 — 3000
grooves/mm or 10,000 lines/inch)

Replicate gratings can be prepared from master
grating which brings down the cost

fraction of monochromatic light

diffracted in a particular order

Grating Efficiency = --------- SRESEESERE NSRS
fraction specularly reflected

Efficiency is maximum for situation where diffracted
ray & specularly reflected ray coincide = blaze
wavelength = Ag = A of maximum efficiency



Efficiency is maximum for situation where
diffracted ray & specularly reflected ray coincide
= blaze wavelength = Ag = A of maximum
efficiency
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The echellette grating concentrates most of
the intensity in the first few orders

First order efficiency at A; is 60 - 70 % and
typically falls off by about half at 2/3 Az and

2\g
Choose angle for A region of interest

Echellette is the normal grating for UV, vis,
IR
Echelle grating used for atomic emission

— Concentrates intensity in higher orders
— Uses steeper steps



Mountings for Gratings — Czerny-Turner
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Mountings for Gratings — Ebert Mounting
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Littrow mounting is the same as for prism
except use grating in place of prism

Grating Characteristics — Resolution &
Dispersion are very high for a long, finely
ruled grating

. . order number of
Resolution (theoretical) / o

R=mN illuminated

Combine with grating equation (given previously)

R=W(sinf3)/A
where W (length of ruled area) = N d
***The length of ruled area is important™*



Dispersion - almost constant with wavelength
for grating (an advantage over prisms)
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Disadvantages of gratings relative to prisms:
1)  they are less rugged

2)  they generate slightly more scattered
light which is stray light - radiation present at
unwanted orders

3) order overlap = multiples of A present
Stray Radiation sources:
1) Diffracted from grating at unwanted angle
2) Diffracted from slit edges

3) Reflected from interior surfaces of filters, lenses,
prisms & other components of system

4) Scattered by imperfections in optical
components



Methods of reducing stray light:

1)
2)
3)
4)
5)

Paint interior black

Use baffles to obstruct stray radiation
Use high quality components

Keep out dust and fumes

Can also use double
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Michaelson Interferometer as commonly used in an FTIR

Where:

S = IR source

IR = infrared beam
D = detector

B = beamsplitter

FM = fixed mirror
MM = moving mirror
RL = reference laser
L = laser beam

LD = laser detector

d, = distance to
moving mirror

d, = distance to
fixed mirror




Basic diagram of a Michaelson Interferometer

from IR source
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Interferometers have no slits so a wide beam
of radiation can be used

Assuming monochromatic radiation

d, =d, +nA - for maximum
constructive interference

d,=d,+nA+7%A - for maximum
destructive interference



Michaelson Interferometer as commonly used in an FTIR

Where:

S = IR source

IR = infrared beam
D = detector

B = beamsplitter

FM = fixed mirror
MM = moving mirror
RL = reference laser
L = laser beam

LD = laser detector

d, = distance to
moving mirror

d, = distance to
fixed mirror




Reference laser signal as it passes through
the interferometer

Signal

“— constructive
interference

X

destructive
interference

This allows the position of the moving mirror
to be determined accurately



Interferogram is a plot of energy vs mirror
displacement from zero (i.e. d, = d,)

Intensity This is for
\ polychromatic
radiation

Retardation, x



Mechanical specifications for mirror
movement are very exacting = gets worse
as A gets shorter, therefore interferometers
are used in the IR region but are not very
feasible in the visible and UV regions

Extracting a conventional spectrum (i.e. | vs A)
from interferogram involves the complex
mathematics of the Fourier integral also
known as Fourier Transform - need
computer to do calculations



Advantages of Interferometers:

1) Energy throughput is much grater than
for monochromators - better signal to
noise ratio because there are no slits —
this is particularly important in IR where
the sources are relatively weak

2) Multiplex Advantage — all signals are
viewed simultaneously

Disadvantage: Mechanical tolerance for
mirror movement Is severe — can’'t do

interferometry in the UV-vis region, A too
short



