CHEM.5140 Advanced Analytical Chemistry

Electroanalytical Methods

Two general categories:

- Potentiometric Systems measure voltage (i.e., potential) of a galvanic cell (produces electricity spontaneously)
- Voltammetric Systems control potential & usually measure current in an electrolytic cell (consumes power to cause an electrochemical reaction to occur)

Potentiometry

 Determine concentrations by measuring the potential (i.e., voltage) of an electrochemical cell (galvanic cell)

- Two electrodes are required
 - 1) Indicator Electrode potential responds to activity of species of interest
 - 2) Reference Electrode chosen so that its potential is independent of solution composition.

$$E_{cell} = E_{ind} - E_{ref}$$
 (+ E_{J})

Nernst Equation

RT [Red]

$$E = E^{\circ} - ----- In -------$$

 nF [Ox]

Where R = gas constant

T = absolute temperature

n = number of electrons in reaction

F = Faraday's constant

E = potential

E° = standard potential

[Red] = molar concentration of reduced form of species [Ox] = molar concentration of oxidized form of species

Reference Electrodes

- Normal Hydrogen Electrode (NHE)
- $2H^+ + 2e^- \leftarrow \rightarrow H_2 E^0 = 0.000 \text{ v}$

- Saturated Calomel Electrode (SCE)
- $Hg_2Cl_2 + 2e^- \leftarrow \rightarrow 2 Hg + 2Cl^- E^0 = 0.268 v$

- Silver/Silver Chloride Electrode (AgCl)
- AgCl + $e^- \leftarrow \rightarrow$ Ag + Cl⁻ E° = 0.222 v

Indicator Electrodes

 potential "indicates" activity of species

 terms Working Electrode or Sensing Electrode are sometimes used Reference Electrode

 Coupled to reference and meter as usual

Indicator Electrodes

- Metallic Indicator Electrodes
- 1) Active metals (e.g., Ag, Cu, Hg, Pb, Cd) can serve as indicators for their own ions
- 2) Active metal in contact with slightly soluble precipitate involving the metal cation responds to anion concentration
- 3) Inert Electrodes e.g., Pt or Au (noble metal)

Membrane Electrodes

- Several types Glass membrane electrode
 - Solid State " "
 - Liquid Junction " "
 - -Permeable " "
- Most important is glass electrode for pH

thin glass membrane
$$[H^+] = a_1$$

$$\text{solution 1}$$

$$\text{(test soln.)}$$

$$[H^+] = a_2$$

$$\text{solution 2}$$

$$\text{(internal soln.)}$$

Glass pH Electrode

- E = K' 0.0591 pH
- Combine with reference electrode and meter
- Half cell voltage proportional to pH
- Nernstian slope
- Intercept is K', no E°
- Calibrate with buffers

Proper pH Calibration

- E = K' 0.0591 pH
- Meter measures E vs pH must calibrate both slope & intercept on meter with buffers
- Meter has two controls calibrate & slope
- 1st use pH 7.00 buffer to adjust calibrate knob

Calibrate knob raises and lowers the line without changing slope

Proper pH Calibration (cont.)

- 2nd step is to use any other pH buffer
- Adjust slope/temp control to correct pH value
- This will pivot the calibration line around the isopotential which is set to 7.00 in all meters

Slope/temp control pivots line around isopotential without changing it

- pH measurements are only as good as the buffers used to calibrate
 - Accuracy good to ±0.01 units*
 - Precision may be good to +0.001 units
- Junction potential dependent on ionic strength of solution – E_j may be a significant error if test solution has different ionic strength than buffers

^{*} Unless using special buffers, temp. control & a Faraday cage

 Asymmetry potential is another non-ideal potential that arises possibly from strain in the glass. When both internal & external H⁺ solutions are the same activity, potential should be 0 but it's not

$$E_{cell} = E_{ind} - E_{ref} + E_{j} + E_{a}$$

 Temperature of electrodes, calibration buffers and sample solutions must be the same primarily because of T in Nernst Eq. ATC probes are available for many meters

 Alkaline Error or Sodium Error occurs when pH is very high (e.g., 12) because Na+ concentration is high (from NaOH used to raise pH) and H+ is very low. Electrode responds slightly to Na⁺ & gives a lower reading than actual pH. This is related to the concept of selectivity coefficients where the electrode responds to many ions but is most selective for H⁺. Problem occurs because Na⁺ is 10 orders of magnitude higher than H⁺ in the solution.

Acid and Alkaline error of Some electrodes

- Acid Error electrode reads slightly higher than the actual pH in very acidic solutions (not well understood)
- Response Time related to activity for all potentiometric electrodes & is fast at high activity (concentration) & slow at low conc.
- Hydration of Glass Surface glass electrodes must be kept hydrated for good measurement & must be rehydrated for 24 hrs if it dries out - will cause noisy readings 16

Glass Electrode Summary

- Glass membrane electrodes are very good indicator electrodes in potentiometry
- Must exercise care in calibration and in maintaining integrity of glass membrane
- Some errors exist & are unavoidable
- Glass electrodes available for Na+, K+, NH₄+, Rb+, Cs+, Li+, Ag+ (cations only) by varying glass composition
- Combination electrodes combine pH & ref.

Combination pH Electrode

Liquid Membrane Electrodes

- Calcium Electrode is good example
- Liquid ion exchanger

 water immiscible
 organic compound
 with phosphate
 groups selective for
 Ca²⁺ in a hydrophobic
 membrane

Liquid Membrane Electrodes

- Principle of Ca²⁺ electrode is the same as for glass electrode, however, since Ca²⁺ is divalent $n = 2 \rightarrow Nernstian slope = 29.5 mV$ per 10 fold change in concentration
- Detection limit for Ca²⁺ is approx. 10⁻⁵ M
- Selectivity is:
 - Independent of pH from 5.5 to 11
 - 50 times better for Ca²⁺ than for Mg²⁺
 - 1000 times better for Ca²⁺ than Na⁺ or K⁺
- Other liquid membrane electrodes available

Table of liquid membrane electrodes

Analyte Ion	Concentration Range, M	Interferences
Ca ²⁺	10^0 to 5×10^{-7}	$10^{-5}Pb^{2+};4\times10^{-3}Hg^{2+},H^+,6\times10^{-3}Sr^{2+};2\times10^{-2}Fe^{2+};4\times10^{-2}Cu^{2+};\\5\times10^{-2}Ni^{2+};0.2NH_3;0.2Na^+;0.3Tris^+;0.3Li^+;0.4K^+;0.7Ba^{2+};1.0Zn^{2+};\\1.0Mg^{2+}$
BF ₄	10^0 to 7×10^{-6}	$5 \times 10^{-7} \text{ClO}_4^-$; $5 \times 10^{-6} \text{I}^-$; $5 \times 10^{-5} \text{ClO}_3^-$; $5 \times 10^{-4} \text{CN}^-$; 10^{-3}Br^- ; 10^{-3}NO_2^- ; $5 \times 10^{-3} \text{NO}_3^-$; $3 \times 10^{-3} \text{HCO}_3^-$; $5 \times 10^{-2} \text{Cl}^-$; $8 \times 10^{-2} \text{H}_2 \text{PO}_4^-$, $10^{-2} \text{H}_2 \text{PO}_4^-$; 10^{-2}Cl^- ; 10^{-2}Cl^- ; $10^{-2} \text{H}_2 \text{PO}_4^-$; 10^{-2}Cl^- ; $10^{-2} \text$
NO ₃	10^0 to 7×10^{-6}	$10^{-7} \text{ClO}_{4}^{-}; 5 \times 10^{-6} \text{I}^{-}; 5 \times 10^{-5} \text{ClO}_{3}^{-}; 10^{-4} \text{CN}^{-}; 7 \times 10^{-4} \text{Br}^{-}; 10^{-3} \text{HS}^{-}; 10^{-2} \text{HCO}_{3}^{-}; 2 \times 10^{-2} \text{CO}_{3}^{2}^{-}; 3 \times 10^{-2} \text{Cl}^{-}; 5 \times 10^{-2} \text{H}_{2} \text{PO}_{4}^{-}, \text{HPO}_{4}^{2}^{-}, \text{PO}_{4}^{3}^{-}; 0.2 \text{OAc}^{-}; 0.6 \text{F}^{-}; 1.0 \text{SO}_{4}^{2}^{-}$
ClO ₄	10^0 to 7×10^{-6}	$2 \times 10^{-3} \mathrm{I}^-; 2 \times 10^{-2} \mathrm{ClO}_3^-; 4 \times 10^{-2} \mathrm{CN}^-, \mathrm{Br}^-; 5 \times 10^{-2} \mathrm{NO}_2^-, \mathrm{NO}_3^-; 2 \mathrm{HCO}_3^-, \mathrm{CO}_3^{2-}, \mathrm{Cl}^-, \mathrm{H}_2\mathrm{PO}_4^-, \mathrm{HPO}_4^{2-}, \mathrm{PO}_4^{3-}, \mathrm{OAc}^-, \mathrm{F}^-, \mathrm{SO}_4^{2-}$
K+	10^0 to 10^{-6}	$3 \times 10^{-4} \text{Cs}^+; 6 \times 10^{-3} \text{NH}_4^+, \text{Tl}^+; 10^{-2} \text{H}^+; 1.0 \text{Ag}^+, \text{Tris}^+; 2.0 \text{Li}^+, \text{Na}^+$
Water Hardness (Ca ²⁺ + Mg ²⁺)	10^{-3} to 6×10^{-6}	$3 \times 10^{-5} \text{Cu}^{2+}$, Zn^{2+} ; 10^{-4}Ni^{2+} ; $4 \times 10^{-4} \text{Sr}^{2+}$; $6 \times 10^{-5} \text{Fe}^{2+}$; $6 \times 10^{-4} \text{Ba}^{2+}$; $3 \times 10^{-2} \text{Na}^+$; 0.1K^+

Solid State Membrane Electrodes

Solid State Membrane Chemistry				
Membrane	Ion Determined			
LaF ₃	F ⁻ , La ³⁺			
AgCI	Ag ⁺ , Cl ⁻			
AgBr	Ag⁺, Br⁻			
Agl	Ag⁺, I⁻			
Ag ₂ S	Ag+, S ²⁻			
Ag ₂ S + CuS	Cu ²⁺			
Ag ₂ S + CdS	Cd ²⁺			
Ag ₂ S + PbS	Pb ²⁺			

Solid State Membrane Electrodes

- Detection limits depend on solubility of the solid state membrane
- K_{sp} for AgCI = approx. 10^{-10}
- Therefore solubility is 10⁻⁵ M or membrane starts to produce ions of interest in solution
- Mixed crystals improve this somewhat but it is still a limitation
- Interferences or poisoning by high affinity ions
- Can polish electrodes to remove fouling
- Selectivity coefficient = electrode response ratio

Commercially Available Solid State Ion Selective Electrodes (ISEs)

Analyte Ion	Concentration Range, M	Interferences
Br ⁻	10^{0} to 5×10^{-6}	mr: 8×10^{-5} CN ⁻ ; 2×10^{-4} I ⁻ ; 2 NH ₃ ; 400 Cl ⁻ ; 3×10^{4} OH ⁻ . mba: S ²⁻
Cd ²⁺	10^{-1} to 10^{-7}	Fe ²⁺ + Pb ²⁺ may interfere. mba: Hg ²⁺ , Ag ⁺ , Cu ²⁺
Cl-	10^0 to 5×10^{-5}	mr: $2 \times 10^{-7} \text{CN}^-$; $5 \times 10^{-7} \text{I}^-$; $3 \times 10^{-3} \text{Br}^-$; $10^{-2} \text{S}_2\text{O}_3^{2-}$; 0.12NH_3 ; 80OH^- . mba: S^{2-}
Cu ²⁺	10^{-1} to 10^{-8}	high levels Fe ²⁺ , Cd ²⁺ , Br ⁻ , Cl ⁻ . mba: Hg ²⁺ , Ag ⁺ , Cu ⁺
CN-	10^{-2} to 10^{-6}	mr: $10^{-1} I^-$; $5 \times 10^3 Br^-$; $10^6 Cl^-$. mba: S^{2-}
F-	sat'd to 10^{-6}	0.1 M OH^- gives $<10\%$ interference when $[F^-] = 10^{-3} \text{ M}$
I-	10^0 to $5 imes 10^{-8}$	mr: 0.4 CN^- ; $5 \times 10^3 \text{ Br}^-$; $10^5 \text{ S}_2\text{O}_3^{2-}$; 10^6 Cl^-
Pb ²⁺	10^{-1} to 10^{-6}	mba: Hg ²⁺ , Ag ⁺ , Cu ²⁺
Ag ⁺ /S ²⁻	10^{0} to 10^{-7} Ag ⁺ 10^{0} to 10^{-7} S ²⁻	Hg ²⁺ must be less than 10 ⁻⁷ M
SCN-	$10^0 \text{ to } 5 \times 10^{-6}$	mr: 10^{-6}I^- ; $3 \times 10^{-3} \text{Br}^-$; $7 \times 10^{-3} \text{CN}^-$; $0.13 \text{S}_2 \text{O}_3^{2-}$; 20Cl^- ; 100OH^- . mba: S^{2-}

mr = maximum ratio of interferent to analyte mba = must be absent

Permeable Membrane Electrodes Gas Permeable Membrane Electrodes Gas Sensing Electrodes

- Membrane that is permeable to a gas (e.g., NH₃) is the key component of electrode
- Membrane is part of a small chamber which encloses a filling solution with a pH electrode housed inside
- Filling solution has "fixed" [NH₄+] which responds to changes in [NH₃] passing membrane according to

$$NH_3 + H_2O \longrightarrow NH_4^+ + OH^-$$

pH Electrode Bulb Styles

Gas Permeable Membrane Electrodes

- Electrode immersed in test solution
- NH₃ diffuses through membrane
- NH₃ in test solution equilibrates with NH₃ in filling solution

$$NH_3 + H_2O \longrightarrow NH_4^+ + OH^-$$

$$K_b = \frac{[NH_4^+][OH^-]}{[NH_3]}$$

$$[OH^{-}] = \frac{K_b}{[NH_4^{+}]}$$
 $[NH_3]$

$$pH = 14 - pOH = pNH_3$$

Hydrophobic membrane - gas permeable (yellow)

Commercial Gas Sensing Electrodes

Gas	Equilibrium in Internal Solution	Sensing Electrode
NH ₃	$NH_3 + H_2O \rightleftharpoons NH_4^+ + OH^-$	Glass, pH
CO ₂	$CO_2 + H_2O \rightleftharpoons HCO_3^- + H^+$	Glass, pH
HCN	$HCN \rightleftharpoons H^+ + CN^-$	Ag ₂ S, pCN
HF	$HF \rightleftharpoons H^+ + F^-$	LaF ₃ , pF
H ₂ S	$H_2S \rightleftharpoons 2H^+ + S^{2-}$	Ag ₂ S, pS
SO ₂	$SO_2 + H_2O \rightleftharpoons HSO_3^- + H^+$	Glass, pH
NO ₂	$2NO_2 + H_2O \rightleftharpoons NO_2^- + NO_3^- + 2H^+$	Immobilized ion exchange, pNO ₃

Enzyme Electrode e.g., Urea Electrode

An electrode sensitive to urea can be prepared by immobilizing a thin layer of the enzyme urease on the surface of the NH₃ electrode O

$$H_2N-\ddot{C}-NH_2 + H_2O \longrightarrow 2NH_3 + CO_2$$

- Urea comes in contact with urease immobilized on the surface
- Urea is broken down to NH₃
- & CO₂ in this enzyme layer
- -NH₃ diffuses through membrane to give response

Hydrophobic membrane - gas permeable (yellow)

Enzyme layer

Potentiometry - Conclusion

- Electrochemical (galvanic) cell with essentially no current flow
- Requires a solution that is conductive i.e., contains a "supporting electrolyte"
- Laboratory pH/millivolt meters should be capable of measuring <u>+</u> 0.1 mV
- This corresponds to 0.4 x n % uncertainty
- Electrodes measure activity not concentration
- Measure "free" or uncomplexed ions not total