Spectroscopic Studies of Aluminum lon Binding by Soil Derived Humic noil Britalt Fluorescence Enhancement

David K. Ryan

Department of Chemistry University of Massachusetts Lowell

NOMy-NOMy-VX+ $\bigvee X +$ $\bigvee X+$ NOMy-MX+ NOMy-

 M^{x+} = metal ion, toxic or non, of charge x+ (e.g., Cu^{2+} , Al^{3+} , etc.) NOM^{y-} = natural organic matter of varying negative charge y-

$$M^{x+} + NOM^{y-} \longleftrightarrow M-NOM^{(x-y)-}$$

$$K = \frac{[M-NOM^{(x-y)-}]}{[M^{x+}][NOM^{y-}]}$$

K = equilibrium constant describing complexation reaction M-NOM^{(y-x)-} = metal complex of natural organic matter

Metal Speciation = determination of the forms of metal in equilibrium with NOM

Measurement must not disturb equilibrium

Fluorescence Quenching

Fluorescence Quenching Curves

Added Copper Concentration (M x10⁵)

Fluorescence binding curves for Cu, Co, Mn & Al at pH values of 4-8

Fluorescence

- very sensitive
- does not disturb equilibrium
- few metals

Fluorescence Enhancement

Fluorescence Enhancement

Emission Wavelength in nm with 340 nm Excitation

Excitation Emission Matrix

15 mg/L Fulvic Acid at pH 4 with no Al(III)

Excitation Emission Matrix

15 mg/L Fulvic Acid at pH 4 with Al(III)

Fluorescence Enhancement Curve with One-Site Model

Fluorescence Enhancement Curve with Two-Site Model

Individual Fluorescence Intensities Making Up the Overall "1"

$$\mathbf{I} = \mathbf{I_{L1}} + \mathbf{I_{ML1}} + \mathbf{I_{L2}} + \mathbf{I_{ML2}}$$

Hypothetical Fluorescence Intensity Curves Showing Component Intensities

Binding Data for Al3+ & FA (15 mg/L)

الرا ال	77700
10g K.	5.55 <u>+</u> 0.30
10g K2	5,15 - 0,12
$C^{\Gamma,1}$	13.1 主 1.5 川川
$C_{\underline{12}}$	8.0 <u>7</u> 0.9 min
T ₁	0.07 -> 0.02
JRES	135,2 - 9,7

Conclusions

- Al-NOM speciation can be measured by fluorescence enhancement & ²⁷Al NMR
 - Fluorescence sensitive natural waters
 - NMR not sensitive soil solutions
- Both techniques are sensitive to the complexed Al species
- Data modeled for predictive purposes
- Al³⁺ binds strongly as expected
- Multiple Al species present

Dissolved Organic World

