Dissolved Gases in Seawater

- Fundamentals
- Solubility Relationships
- Air-Sea Exchange
- Departures from Ideality
- O₂ Dynamics (Intro)

DISSOLVED GASES IN THE OCEANS

- SOURCES 1. Atmosphere (Major Term) $(N_2, O_2, Ar, etc.)$
 - 2. Marine Production & Consumption Processes
 - a) Biological Activity

 (NO₃⁻ → N₂O, respiration)

 b) Radioactive Decay

 (²²⁶Ra → ²²²Rn)
 - 3) Submarine Volcanic Activity (³He)

BASIC CONCEPTS

I. Dalton's Law

 $P_{T} = \Sigma P_{i} \sim P_{N^{2}} + P_{O^{2}} + P_{Ar} + P_{H^{2}O} + P_{CO^{2}}$

II. Ideal Gas Law

 $P_i = n_i RT/V$ where R = 82.05 cm³ atm mol⁻¹deg⁻¹

III. $P_i = X_i [P_T - P_{H_{2O}}], P_{H_{2O}} = (h/100) P_{H_{2O-Sat}}$

IV. Henry's Law

 $C_{i} = K_{i} [P_{i}] \qquad P_{i} \sim f_{i}$ at equilibrium $P_{i} (soln) = P_{i} (air)$ $K_{i} = f (T,S,P)$

Dissolved Gases in Seawater

- Fundamentals
- Solubility Relationships
- Air-Sea Exchange
- Departures from Ideality
- O₂ Dynamics (Intro)

FIGURE 6.5. The effect of temperature on the solubility of gases in seawater.

Table 3.6. Solubilities of the major atmospheric gases in seawater (s = 35) at one atmosphere pressure and 20 °C

X_c is the mole fraction in a dry atmosphere (Glueckauf, 1951); $K_{\text{H-C}}$, the Henry's Law coefficient; C', the concentration in seawater at saturation equilibrium with the atmosphere. Saturation concentrations and Henry's Law coefficients for N₂, O₂, Ar, CO₂. Ne and He are calculated by using the equations in Table 3A1.1. Values for K₂, GH₄ and N₂O are from the compilation in Wanninkhof (1992). No correction was made here for the difference between the volume of the solvent and the solution in β and α (see text).

- Gas	Xc	, K _{H,C}	C^{sa}	$oldsymbol{eta}^{b}$	α ^c
	(mol _g mol ⁻¹)	(mol kg ⁻¹ atm ⁻¹)	(µmol kg ⁻¹)	(cm ³ _g)/	(cm _{sw} ⁻³)
N ₂	7.8084×10^{-1}	5.51×10^{-4}	4.21×10^2	1.27×10^{-2}	1.36 × 10 ⁻²
O ₂	2.0946 × 10 ⁻¹	1.10×10^{-3}	2.25 × 10 ²	2.53 × 10 ⁻²	2.71 × 10 ⁻²
Ar	9.34×10^{-3}	1.21×10^{-3}	1.10×10^{1}	2.78×10^{-2}	2.98×10^{-2}
CO₂	3.65×10^{-4}	3.24×10^{-2}	1.16×10^{1}	7.44 × 10 ⁻¹	7.98 × 10 ⁻¹
Ne	1.818×10^{-5}	3.84×10^{-4}	6.83×10^{-3}	8.82 × 10 ⁻³	9.47 × 10 ⁻³
He	5.24×10^{-6}	3.29×10^{-4}	1.66×10^{-3}	7.47 × 10 ⁻³	8.01 × 10 ⁻³
Kr	1.14×10^{-6}	2.20×10^{-3}	2.44×10^{-3}	5.05 × 10 ⁻²	5.42 × 10 ⁻²
CH₄	1.6×10^{-6}	1.21×10^{-3}	1.89×10^{-3}	2.78 × 10 ⁻²	2.97 × 10 ⁻²
N₂O	5.0×10^{-7}	2.34×10^{-2}	1.14×10^{-2}	5.37 × 10 ⁻¹	5.77 × 10 ⁻¹

EFFECT OF TEMPERATURE ON SOLUBILITY OF GASES IN SEAWATER

Gas	0° C	25° C
He	1.8 nM	1.7 nM
Ne	7.9	6.6
Kr	4.0	2.3
Xe	0.6	0.4
\mathbf{N}_2	616 µM	383 µM
O_2	349	206
Ar	17	10
N_2O	14	6
CO_2	20	9

EFFECT OF SALINITY ON SOLUBILITY OF GASES (0°C)

Gas	Water	Seawater
He	2.2 nM	1.8 nM
Ne	10	7.9
Kr	5.8	4.0
Xe	0.9	0.2
\mathbf{N}_2	823 μM	616 µM
O_2	456	349
Ar	22	17
CO_2	23	20

Table 3A1.1. Coefficients used in the fitting equations for air saturation (C) and Henry's Law coefficients (K₁₄) of gases in seawater (Table 3.6) The coefficients and fitting equations in the footnotes are for saturation values of O_2 , N_2 , Ar, Ne, and He in units of µmol kg⁻¹ and nil kg⁻¹. Values can be transformed between these units by using the real gas molar volumes calculated from Van der Waals constants (22.385.9, 22.391.9, 22.386.9, 22.422.4 and 22.436.9 mol⁻¹ for O_2 , N_2 , Ar, Ne, and He, respectively). The fitting equation for GO_2 is for the Henry's Law coefficient, $K_{\rm H}$ (mol kg⁻¹ atm⁻¹) instead of the saturation concentration.

	O ₂ ^{<i>a</i>} .	N2 ^b	Ar ⁶	Ne ^b	He ^c	KH,CO2
Coefficient	(µmol kg ⁻¹)			(nmol kg ⁻¹)	(ml kg ^{~1})	(mol kg ⁻¹ atm ⁻¹)
 Ao	5.808710	6.432.41	2.791 63	2.181 40		
A	3.202 910	2.927 58	3.177 14	1.289 31	-67.2178	60.240 9
A	4.178 870	4.303 5 1	4.13658	2.122.35	216.3442	93.4517
A3	5,100 060	4.26673	4.866 32		139.2032	23.3585
A ₄	-0.098 664					
A ₅	3.803 690					
Bo	0.007 016	-0.007 443 16	-0.006 963 17	-0.005 947 22		
B ₁	-0.007 700	-0.007 999 36	-0.007 683 87	0.005 093 70	-0.044 781	0.023517
B ₂	-0.01386	0.001 529 48	-0.001 190 78		0.023 541	-0.023 656
B ₃	-0.009 51 5				-0.0034266	0.0047035
Co	-2.759 150 × 10 ⁻⁷				E.	
[C] ^s at 20 °C 35 ppt	225.5	420.5	11.08	6.826	3.729 × 10 ⁻³	0.0324

^a Garcia and Gordon (1992): $\ln C^{s} = A_{0} + A_{1}T_{s} + A_{2}T_{s}^{2} + A_{3}T_{s}^{3} + A_{4}T_{s}^{4} + A_{5}T_{s}^{5} + S(B_{0} + B_{1}T_{s} + B_{2}T_{s}^{2} + B_{3}T_{s}^{3}) + C_{0}S^{2}$;

where $T_s = \ln \{(298.15 - t)(273.15 + t)^{-1}\}$ and t is temperature (°C).

^bHamme and Emerson (2004): same equation as in ^a.

^cWeiss (1971): $\ln C^{s} = A_{1} + A_{2}(100/T) + A_{3}\ln(T/100) + A_{4}(T/100) + S\{B_{1} + B_{2}(T/100) + B_{3}(T/100)^{2}\}$, where T is absolute temperature. ^dWeiss (1974): $\ln K_{H,CO_{2}} = A_{1} + A_{2}(100/T) + A_{3}\ln(T/100) + S\{B_{1} + B_{2}(T/100) + B_{3}(T/100)^{2}\}$, where T is absolute temperature.

Dissolved Gases in Seawater

- Fundamentals
- Solubility Relationships
- Air-Sea Exchange
- Departures from Ideality
- O₂ Dynamics (Intro)

Fick's First Law

$dC_i/dt = A D_i (dC_i/dz)$

Where:

A = area

- C_i = concentration species i
- **D**_i = diffusion coefficient
- Z = thickness of diffusion layer

Table 10.1. Molecular diffusion coefficients, D, and Schmidt numbers, Sc, for gases

The molecular diffusion coefficients, *D* (in units of 10^{-5} cm² s⁻¹; see note⁹), were determined from the equations presented in Chapter 9, Table 9.1. The kinematic viscosity of water is from Pilson (1998). The kinematic viscosity is 3%–5% greater in seawater than in freshwater, and we assume here that this is the only factor causing a salinity dependence on Sc. Opposite trends with *T* for diffusion coefficients and kinematic viscosity create greater temperature dependence for Schmidt numbers than for the

molecular diffusion coefficients.

_	$D (\times 10^5)^a$ (cm ² s ⁻¹)		Sc^b (S=0)		Sc ^c (S = 35)	
Gas	5°C	20°C	5°C	20°C	5°C	20°C
N2	1.63	2.52	931	398	9 58	415
O_2	1.49	2.24	1019	448	1048	467
Ār	1.42	2.23	1070	450	1100	469
CO ₂	1.09	1.68	1394	598	1433	623
Ne	2.62	3.65	580	275	596	287
He	5.19	6.73	293	149	310	155
Kr	1.03	1.61	1475	624	1516	650
Xe	0.79	1.27	1923	791	1977	823
CH₄	1.09	1.63	1394	616	1433	642

erent distances from the wall where molecular motions become as important as eddy motions for transport. The scales are called the viscous (momentum), thermal (heat) and diffusive (molecular) boundary layers near the interface.

Models for Air-Sea Gas Exchange

1) Stagnant Film (simplest)

2) Surface Renewal

3) Rigid Wall (Mathematically complex)

Combining Henry's and Fick's Laws:

$dC_i/dt = (A D_i K_i/\tau) [P_i (gas) - (P_i (liquid)]$ where:

 τ = thickness of boundary layer

More simply:

$$F_i = dC_i/dt \ge A^{-1} = G_c \le K_i \triangle P_i$$
$$G_c = G^* \quad (D_i/\nu)^n = G^* \quad (Sc_i)^{-n}$$

Where:

- $\mathbf{F} = \mathbf{flux} \ (\mathbf{mol} \ \mathbf{cm}^{-2} \ \mathbf{s}^{-1})$
- ΔP_i = change in partial pressure across interface (atm)
- Sc_i = Schmidt number
- v =kinematic viscosity
- **G**^{*} = transfer velocity (cm s⁻¹)
 - = permeability coefficient
 - = mass transfer coefficient
 - = exit coefficient
 - = piston velocity

FIGURE 6.2. The thickness of the laminar layer as a function of the wind speed.

Models for Air-Sea Gas Exchange

1) Stagnant Film $G_c = D_i/\delta$

2) Surface Renewal $G_c = 2 (D_i/\pi \theta)^{0.5}$ θ is renewal time

- 3) Rigid Wall $G_c = U^* / 12 (D_i / v)^{2/3}$ $= U^* / 12 (Sc_i)^{-2/3}$
- U* is the friction velocity at the interface

Figure 4

Comparison of CO₂ covariance flux measurements in the North Atlantic (solid squares) (McGillis et al.: and Equatorial Pacific (spen triangles) (McGillis et al. 2004b, Hare et al. 2004). The results are binned i nominally 1 m s⁻¹ wind speed bins and the error bars indicate the standard deviation of the points in e interval that range from as few as 4 at low and high winds to more than 200 at intermediate winds. The dashed red line is the parameterization expressed in Equation 32 and the solid red line is that in Equation

Summary of ³He/SF₆ dual-deliberate tracer results normalized to Sc = 660 and plotted against wind speed. The open symbols are for the experiments in the coastal oceans, while the solid symbols depict the studies in the open ocean. The error bars are based on the variation of ³He/SF₆ in the mixed layer at each sampling time propagated through Equation 18. References are as follows: North Sea, Nightingale et al. (2000b); West Florida Shelf, Wanninkhof et al. (1997); North Atlantic, Wanninkhof & McGillis (1999); Equatorial Pacific, Nightingale et al. (2000a); Southern Ocean, Wanninkhof et al. (2004); Southern Ocean 2, Ho et al. (2006); Georges Bank, Wanninkhof et al. (1993).

Figure 3

Dissolved Gases in Seawater

- Fundamentals
- Solubility Relationships
- Air-Sea Exchange
- Departures from Ideality
- O₂ Dynamics (Intro)

Causes of Non-Reactive Gases Departing from Expected Solubility

- 1. Departures from Standard Atmosphere
- 2. Dissolution and/or Collapse (Injection) of Air Bubbles
- 4. Heating/Cooling and Incomplete Gas Exchange
- 5. Mixing of Waters of Different Temperatures/Salinities

an indication of the depth of penetration of bubbles caused by breaking waves. (Data courtesy of Sven Vegel of the Institute of Ocean Sciences, Sidney, B. C.).

gram, is balanced by a diffusive flux across the air-water

interface, F_{AVVI} , indicated on the left side.

BUBBLE INJECTION EFFECTS

- 1. Less soluble gases become more enriched in bubbles
- 2. Diffusion coefficients are approximately double in bubbles
- 3. Bubbles are pushed to depths of 20 m ($P_t \sim 3$ atm)
- 4. Air Injection- the total dissolution of the air in a bubble due to hydrostatic pressure
- From the total dissolution of a bubble (1 cm³) of air at STP (15° C and S = 35) in 1 m³

HAMME AND EMERSON: CONTROLS ON INERT GAS SATURATIONS

Hamme & Emerson, 2002

Dissolved Gases in Seawater

- Fundamentals
- Solubility Relationships
- Air-Sea Exchange
- Departures from Ideality
- O₂ Dynamics (Intro)

% O_2 sat = O_2 obs/ O_2 sat x 100 AOU = O2 sat - O2 obs

e saturation value with atmospheric oxygen at a salinity of 35.

Ο₂ (μΜ)

FIGURE 6.9. Profiles of oxygen in the North Atlantic and Pacific Oceans.

FIGURE 6.11. Profiles of temperature and oxygen in Pacific waters showing increases due to photosynthesis.

FIGURE 6.15. Differences in the measured and calculated dissolved oxygen concentrations in surface waters.

FIGURE 6.16. Apparent oxygen utilization in deep waters of the world oceans.

METHODS OF MEASUREMENT

- Direct measurement in solution

 (O₂). Winkler Method for Oxygen
 - A. $MnSO_4$ + NaOH Fixing Agent

 $\begin{array}{rcl} \mathrm{Mn}^{2+} + 2 \ \mathrm{OH}^{-} \rightarrow & \mathrm{Mn}(\mathrm{OH})_{2} \\ 2 \ \mathrm{Mn}(\mathrm{OH})_{2} + \mathrm{O}_{2} \rightarrow & 2 \ \mathrm{MnO}(\mathrm{OH})_{2} \end{array}$

B. Add KI, HCl and titrate with $S_2O_3^{2-}$

 $I_{3^{-}} + 2 S_2 O_{3^{2^{-}}} \rightarrow 3 I^{-} + S_4 O_6^{2^{-}}$

2. Gas Chromatography (O₂,N₂,Ar,CO,CH₄)

3. Mass Spectrometry (low or non-reactive gases)